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ABSTRACT The human multi-drug resistance membrane transporter, P-glycoprotein, or P-gp, has been extensively studied
due to its importance to human health and disease. Thus far, the kinetic analysis of P-gp transport has been limited to steady-
state Michaelis-Menten approaches or to compartmental models, neither of which can prove molecular mechanisms.
Determination of the elementary kinetic rate constants of transport will be essential to understanding how P-gp works. The
experimental system we use is a confluent monolayer of MDCKII-hMDR1 cells that overexpress P-gp. It is a physiologically
relevant model system, and transport is measured without biochemical manipulations of P-gp. The Michaelis-Menten mass
action reaction is used to model P-gp transport. Without imposing the steady-state assumptions, this reaction depends upon
several parameters that must be simultaneously fitted. An exhaustive fitting of transport data to find all possible parameter
vectors that best fit the data was accomplished with a reasonable computation time using a hierarchical algorithm. For three
P-gp substrates (amprenavir, loperamide, and quinidine), we have successfully fitted the elementary rate constants, i.e., drug
association to P-gp from the apical membrane inner monolayer, drug dissociation back into the apical membrane inner
monolayer, and drug efflux from P-gp into the apical chamber, as well as the density of efflux active P-gp. All three drugs had
overlapping ranges for the efflux active P-gp, which was a benchmark for the validity of the fitting process. One novel finding
was that the association to P-gp appears to be rate-limited solely by drug lateral diffusion within the inner monolayer of the
plasma membrane for all three drugs. This would be expected if P-gp structure were open to the lipids of the apical membrane
inner monolayer, as has been suggested by recent structural studies. The fitted kinetic parameters show how P-gp efflux of
a wide range of xenobiotics has been maximized.

INTRODUCTION

Multi-drug resistance transporters are clinically important

because of their ability to render cells resistant to many

chemotherapeutic agents, such as anticancer drugs and

antibiotics (Borst and Elferink, 2002; Gottesman, 2002;

Poelarends et al., 2002; Ambudkar et al., 2003). In addition,

it has become increasingly clear over the past decade that

some mammalian multi-drug resistance transporters also

play an important role in the absorption, distribution, and

elimination of drugs and xenobiotics, and may be respon-

sible for clinically important drug-drug interactions (Lown

et al., 1997; Schinkel, 1998; Goh et al., 2002). Binding and

transport of substrates by P-gp (the P-glycoprotein product

of the human MDR1 gene) has been intensely studied,

providing important insights into the structure and function

of the protein (Gottesmann and Pastan, 1993; Senior et al.,

1995; Ambudkar et al., 1999, 2003; Loo and Clarke, 1999;

Hrycyna, 2001; Borst and Elferink, 2002; Schmitt and

Tampe, 2002; Seelig and Gatlik-Landwojtowicz, 2004). The

catalytic cycle of P-gp and its conformational changes have

been studied using purified P-gp remixed with lipids or

reconstituted proteoliposomes (Sharom et al., 1993; al-

Shawi et al., 2003; Loo et al., 2003; Urbatsch et al., 2003).

There is a dose-dependent response between ATPase activity

and transport activity in cells (Ambudkar et al., 1997) and

reconstituted P-gp proteoliposomes (Sharom et al., 1993;

Omote and al-Shawi, 2002).

Any model of the P-gp catalytic cycle must be tested

against a rigorous kinetic analysis of transport activity for

P-gp expressed in a physiologically relevant cell system and,

eventually, in vivo. To date, kinetics analyses of P-gp

transport have been limited to steady-state Michaelis-Menten

approaches (Stein, 1997; Ho et al., 1995; Doppenschmitt

et al., 1999; Kuh et al., 2000; al-Shawi et al., 2003; or

compartmental analyses (Demant et al., 1990; Ashida et al.,

1998; Ito et al., 1999), neither of which can prove transport

mechanism.

Our experimental system was the confluent monolayer of

MDCKII-hMDR1 cells that overexpress P-gp (Evers et al.,

2000; Tang et al., 2002a,b; Tran et al., 2004). This system

was chosen because it is a physiologically relevant model for

P-gp in tissue, and it involves no biochemical manipulations

to measure transport. Substrate can be added to either face of

the polarized cell monolayer, apical or basolateral, and

transport to the other chamber is monitored. A potent P-gp
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inhibitor was used to independently measure passive

permeability through the cell monolayer. The P-gp substrates

used were amprenavir, an HIV protease inhibitor; quinidine,

a Na1 channel blocker; and loperamide, an antidiarrheal

drug. These drugs were chosen because they are good P-gp

substrates and show different mass balance problems (Tran

et al., 2004). Furthermore, amprenavir shows no evidence for

transport saturation (Polli et al., 2001; Bentz et al., un-

published data), rendering the standard Michaelis-Menten

analysis of P-gp transport useless. So amprenavir provided

a challenging test case.

A minimal comprehensive mass action model for P-gp

transport through a confluent cell monolayer must include

the known kinetic barriers to transport. This means that

several parameters must be fitted simultaneously, and each

has a wide range of potential values. This generates a very

large ensemble of initial parameter guesses to be fitted

against data. Thus, a hierarchical algorithm for fitting was

required to get fits in a reasonable time. This computationally

intensive approach is the only way to analyze the kinetics of

a system with three or more important elementary param-

eters. We have applied this approach successfully to the

kinetics of membrane fusion (Bentz, 2000; Mittal and Bentz,

2001; Mittal et al., 2002; Bentz and Mittal., 2003). Never-

theless, the first hypothesis of this study was that the data

from the experimental system would be consistent enough

and the kinetic analysis robust enough that a small compact

set of parameter values yielding best fits could be found at all.

The mass action model for P-gp transport is precisely the

same as used by all prior studies, i.e., the Michaelis-Menten

reaction. Our analysis is more complex because we fit all of

the parameters of this reaction. Past work has just used the

Michaelis-Menten (or Eadie-Hofstee or Wolf-Hanes) steady-

state equations to fit the data. For some data, e.g., the ATPase

activity of P-gp, the steady-state equations appear to work

well enough. The ATPase of P-gp is in the water, like a

soluble enzyme. For other data, e.g., transport through a

confluent monolayer of cells, we have found that these

equations yield very inaccurate predictions for the elemen-

tary parameters (Bentz et al., unpublished data). This is why

we focus only on the elementary parameters here.

There is a tendency to view a more complicated analysis

of a well-known problem as a way of curve fitting, with

enough parameters to make the fit look better. However,

aside from the rate constants of the Michaelis-Menten

reaction and the density of efflux active P-gp, every other

parameter we introduce was fitted to independent data with

the minimum flexibility possible. The rate constants of the

Michaelis-Menten reaction and the density of efflux active

P-gp had to be fitted simultaneously, just as would be the

case for a soluble enzyme when the active enzyme con-

centration is not known. To impose the steady-state

equations onto such data would be a choice based upon

assumptions. A rigorous fitting is always better and is now

possible.

Our findings suggest new hypotheses and, at the same

time, support the simplest picture for a transporter whose job

is to remove a wide range of amphipathic xenobiotic com-

pounds from epithelial cells as rapidly as possible. First,

it seems clear that the primary selective pressure on P-gp

function was to maintain a wide substrate range, which

means that the binding constants for nearly all substrates

should be weak. This is what we found for all three drugs. In

fact, were it not for the substantial partition coefficients of

these drugs into lipid bilayers, their membrane concen-

trations would be too low to show significant efflux. Second,

for P-gp to acquire the substrate rapidly, the on-rate to P-gp

from the inner apical monolayer should be fast. All three

drugs had very large association rate constants, suggesting

that lateral diffusion of the drug through the lipid bilayer was

the sole rate-limiting step. Third, the P-gp efflux rate con-

stants for quinidine and loperamide were about the same as

the currently known maximal rate of ATP hydrolysis by

P-gp, whereas that for amprenavir was substantially larger.

We also note that the combination of weak binding to P-gp

and ATP hydrolysis-limited efflux requires that efflux of

a substrate into the apical chamber occurs only after many

tens of thousands or even millions of substrate molecules

have visited the binding site and returned to the inner apical

monolayer.

The fitted value of the density of efflux active P-gp, was

substantially smaller than values measured by quantitative

Western blots in similar, but not identical, cell lines. We

believe the reason is not due to misfolded P-gp or substantial

intracellular sequestration, but rather due to the architecture

of the microvilli of the apical membranes of these cells. We

speculate that efflux into the apical chamber happens only

from the P-gp at the tips of the microvilli. Drug exiting from

P-gp at the base of a microvillus would undergo a long

random walk, involving many encounters with the same or

a nearby microvillus and the P-gp therein. The quantitative

Western blot gives whole cell P-gp estimates, whereas our

kinetic analysis estimates only the amount of P-gp that

actually succeeds in effluxing the drug directly into the apical

chamber. This hypothesis is being studied currently.

MATERIALS AND METHODS

Materials

Amprenavir and GF120918 were from GlaxoSmithKline, USA (Research

Triangle Park, North Carolina). Loperamide was from Sigma-Aldrich (St.

Louis, MO) and quinidine from Fisher Scientific (Hampton, NH).
3H-Loperamide (10 Ci/mmole) and 3H-amprenavir (21 Ci/mmole) were

custom-synthesized by Amersham Pharmacia Biotech (Little Chalfont,

England). 3H-Quinidine (20 Ci/mmole) was from ICN Biomedical (Costa

Mesa, CA). Dimethylsulfoxide was from Sigma-Aldrich. Dulbecco’s modi-

fied Eagle’s medium (DMEM) was from MediaTech, VWR (Herndon, VA).

Transport medium (DMEM with 25 mM HEPES buffer, high glucose,

L-glutamine, pyridoxine hydrochloride, without sodium pyruvate, and without

phenol red) was from Gibco (Carlsbad, CA). Cholesterol and porcine brain

lipids were from Avanti Polar Lipids (Alabaster, AL). Transwell 12-well
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plates with polycarbonate inserts were obtained from Costar, (Acton, MA).

Ultima Gold scintillation cocktail was from PerkinElmer Life Sciences

(Boston, MA).

Cell line and culture conditions

The Madin-Darby canine kidney cell line, which overexpresses human

MDR1 (MDCKII-hMDR1), was purchased from the Netherlands Cancer

Institute (Amsterdam, The Netherlands). Cells were split twice a week and

maintained in culture medium (DMEM supplemented with 10% fetal bovine

serum, 50 units/ml penicillin and 50 mg/ml streptomycin). Cells were kept at

37�C in 5% CO2.

Transport assays

Cells were seeded in 12 well plates at a density of 200,000 cells per insert

and grown for 4 days in culture medium. Preliminary results using higher

and lower plating densities suggested that this density was optimal with

respect to obtaining transport stable confluent monolayers at 4 days. After

many preliminary experiments, the data presented here for amprenavir were

taken from cell passages No. 32 and No. 33 (50–90 mM), No. 34 (100 mM)

and No. 36 (1 and 10 mM). For quinidine, No. 36 and No. 37 were used, and

for loperamide, No. 39 and No. 40 were used. Cells were given fresh media

1 day after seeding.

Before the experiment, culture medium was removed and cells were

preincubated for 30 min with either transport medium alone (see above) or

transport medium supplemented with 2 mM GF120918 to inhibit P-gp.

Transport of a range of concentrations of amprenavir, loperamide, and

quinidine across the confluent monolayer of cells was measured in both

directions, i.e., apical to basolateral (A. B) and basolateral to apical (B. A)

in the presence and absence of GF120918. For incubations in the presence

of GF120918, the inhibitor was added to both chambers; 0.5 mCi/ml of
3H-amprenavir, 3H-quinidine, or 3H-loperamide was added to each respec-

tive drug concentration to allow quantification of transport from donor to

receiver chambers by liquid scintillation counting. In addition, 14C-mannitol

(0.75 mCi/ml) was added to monitor cell monolayer integrity. At the indi-

cated time points, 25 mL samples were taken from both donor and receiver

chambers, mixed with 10 ml of Ultima Gold scintillation cocktail and

counted using a Hewlett Packard Liquid Scintillation Counter. The first time

point taken was after 6 min, and we used these data at the starting point for

fitting. This eliminated the need to correct for some drug binding to the

Costar Transwell apparatus and other initial transient effects (Tran et al.,

2004). All simulations accounted for the 25 mL aliquots, since loss of

volume was not negligible, especially in the apical chamber (Tran et al.,

2004).

Cell stability and substrate metabolism

Tran et al. (2004) showed that the stability of the cell monolayer and plasma

membrane with respect to passive and active transport was not affected by

the prolonged exposure times to amprenavir for at least 6 h. It was also

shown that metabolism or decomposition of substrates was insignificant for

all drugs on this timescale using Radio HPLC (Agilent Technologies, Palo

Alto, CA).

Liposome preparation

Three liposome preparations were used to roughly mimic the lipid com-

positions of the relevant monolayers of the plasma membrane (Hill and

Zeidel, 2000), while not exceeding ternary mixtures:

1. The apical membrane outer monolayer mimic was a (1:1:1) mixture of

phosphotidylcholine/sphingomyelin/cholesterol, denoted PC/SM/chol.

2. The basolateral membrane outer monolayer mimic was a (2:1) mixture

of phosphotidylcholine/cholesterol, denoted PC/chol.

3. The plasma membrane monolayer, facing the cytosol, mimic was

a (1:1:1) mixture of phosphotidylserine/phosphatidylethanolamine/

cholesterol, denoted PS/PE/chol.

Lipid mixtures were dried into thin lipid films in round bottom flasks

(Buchi Rotavapor R-200, Brinkmann Instruments, Herisau, Switzerland),

and freeze-dried overnight on a Flexi-Dry MP freeze-dryer (Kinetics, Union

City, CA). Lipid films were suspended in phosphate buffered saline pH 7.4

(Gibco), freeze-thawed in methanol over dry ice for 20 cycles and heated to

35–40�C, and stored at 4�C overnight. Extrusion was done with a Lipex

thermal extruder (Northern Lipids, Vancouver, Canada) through two 0.08

mm Nucleopore membranes for at least seven cycles at room temperature.

For the PC/SM/chol liposomes, the first three cycles were run at 65�C. Sizes
of liposomes were measured by a NICOMP 380-Submicron Particle Sizer

(NICOMP, Santa Barbara, CA). The average diameters for all compositions

were 100 6 30 nm. The amount of lipid recovered after extrusion was

determined by the absorbance reading of rhodamine-PE, added to each lipid

mixture at 0.1 mol %. Lipid recovery as measured by rhodamine-PE was 80–

82%.

Equilibrium binding study

Binding of drugs to liposomes was determined by equilibrium dialysis using

a 20-cell equilibrium dialyzer (Spectrum, Fort Lauderdale, FL) and the

Spectra/Por 4 membrane (Spectrum), which has a 12–14 kD molecular mass

cutoff. The partitioning of 10 mM of each drug (amprenavir, loperamide, and

quinidine) into 10 mM liposomes was examined. Each half of the Teflon

cells received equimolar concentrations of the cold drug. The half cell with

liposomes received an additional 0.25mCi/ml of radiolabeled drug. The cells

were allowed to equilibrate in a 37�C water bath, and samples were taken

from both half cells at 8 h. Preliminary studies showed that partitioning was

independent of drug concentration (for the ranges used in this work), lipid

concentration (5–10 mM) and time after 6 h. At the indicated time points,

25 mL samples were removed from the donor and receiver chambers, mixed

with 10 ml of Ultima Gold scintillation cocktail and analyzed by a Packard

TriCarb 3100-RT liquid scintillation counter.

Partition coefficients were calculated as K ¼ Cm/Cw, where Cw was the

mol of drug per liter of aqueous buffer and Cm was the mol of drug per liter

of lipid using the average specific volume of 1.6 mL/mmol of total lipid

(Chen and Rand, 1997). The equilibrium partition coefficients measured are

shown (see Table 2). The molecular basis for differences is under inves-

tigation. However, they do show that for association time constants of

seconds, the time constants for release from the liposomes is on the order of

minutes, roughly validating our assumption of the partition equilibrium over

the hourly time course of transport.

Numerical integrations

We used the stiffest integrator in MATLAB, ode23s (The MathWorks,

Natick, MA). Other MATLAB integrators, although faster, were not

accurate enough at the later times of simulations. The time required for the

MATLAB subroutine fminsearch to find a local minimum depends on the

tolerances of numerical integration and minimization. Empirically, for our

data, we have found that setting the relative and absolute tolerances in

fminsearch to 10�6 was an adequate compromise between speed and

accuracy. The coefficient of variation, CV, is used to quantify the goodness

of fit. CV is defined as the root mean-square error between the data points for

a given drug concentration and the simulation generated by MATLAB,

divided by the initial substrate concentration in the donor chamber for that

data set, to normalize over all the drug concentrations. Termination of

fminsearch occurs when the routine detects a local minimum in CV. This

gives a vector of best-fitted parameters from the initial guess. That is, the

grid of initial guesses generates a set of ‘‘best fits’’, one for each initial

guess. As always, some ‘‘best fits’’ are better than others (Bentz, 2000;

Mittal and Bentz, 2001).

Elementary Parameters of P-gp Transport 717

Biophysical Journal 88(1) 715–738



KINETIC MODEL OF TRANSPORT ACROSS A
CONFLUENT CELL MONOLAYER

MDCKII-hMDR1 cells polarize with the basolateral mem-

brane attached to the polycarbonate filters (Butor and

Davoust, 1992; Tran et al., 2004). Fig. 1 is a cartoon of a

confluent cell monolayer, with P-gp (upward arrows) ex-
pressed on the apical surface. The apical and basolateral

chambers are kept separate by the tight junctions. Van Meer

and Simons (1986) showed that the tight junctions of the

MDCK cell monolayer kept the apical membrane outer

monolayer lipids separate from the outer basolateral mem-

brane monolayer lipids while there was significant lateral

diffusion throughout the inner plasma membrane, i.e., be-

tween the apical and basolateral sides. Our results quanti-

tatively confirm their results.

Active transport by P-gp occurs vectorially, with substrate

binding to a site on P-gp within the apical membrane inner

monolayer and with efflux into the apical chamber (Sharom

et al., 2001; Borst and Elferink, 2002; al-Shawi et al., 2003).

We can measure the concentration of substrate in the apical

chamber, denoted CA, and the basolateral chamber, denoted

CB. However, the concentration of substrate in the inner

plasma membrane in contact with the P-gp binding site,

denoted CPC, cannot (yet) be measured rigorously in real

time. Furthermore, CPC is related to the drug concentrations

in the aqueous cytosol, CC, and in the basolateral and the

apical membrane outer monolayers, i.e., CBO and CAO,

respectively. All these concentrations are variables of the

mass action model and fitted according to the measured

values of CB and CA over time.

Our aim is to construct a kinetic model for the overall

transport process, which contains the minimum number of

essential steps to adequately characterize the whole process

at a molecular level. The novelty of this model lies primarily

in having P-gp as an explicit chemical species, rather than

embedded within the Vmax of the Michaelis-Menten

analysis or represented by a ‘‘rate constant’’ between com-

partments. This makes the surface density of efflux active

P-gp an explicit variable of the model, to be fitted exhaus-

tively along with the elementary rate constants. Since the

fitted range for the surface density of efflux active P-gp

should be the same for all drugs, we have a concrete bench-

mark for the validity of the mass action model and the fitting

algorithm.

Another novel element of our analysis was the method for

extracting the transport due to P-gp from the total transport,

i.e., passive permeability plus active transport. We explicitly

fit passive permeability coefficients when P-gp is fully

inhibited and then use those rate constants in the fitting of the

total transport, when P-gp is active. All prior work has

simply subtracted the passive transport data curve from the

total transport data curve, and defined this difference as that

due to P-gp active transport alone. This would be correct

only if transport were irreversible, which is certainly not the

case for our experimental system. For example, when there is

active transport and the basolateral chamber is the donor,

then at any time there is a greater concentration of substrate

in the apical chamber than with passive permeation alone.

Therefore, there is greater backflow back to the basolateral

chamber. The subtraction of passive data from total data

underestimates the P-gp transport because backflow is

ignored.

Because of these novel approaches in both passive and

active kinetics, a fairly detailed description is needed here.

First the passive transport model will be constructed, fol-

lowed by the active transport model. The bottom line for the

analysis of passive permeability is to accurately remove this

transport from the total transport, so that P-gp mediated

transport is accurately estimated. To keep the terminology

straight, a glossary is included in the Appendix.

The passive permeation kinetic model

In Tran et al. (2004), we derived an exact solution for the

passive permeation across a single permeation barrier, and

used this equation to fit the passive permeability coefficient

for drugs across the confluent MDCKII-hMDR1 cell mono-

layer in the presence of the P-gp inhibitor. That is, we

measured the overall passive permeability coefficient for

permeation from the basolateral chamber to the apical

chamber, denoted PBA, and for the opposite direction,

denoted PAB. We included the possibility of substrate loss

by a first order process, e.g., binding to receptors, the

FIGURE 1 Model of a confluent cell monolayer, with the apical

membrane on top and the basolateral membrane on the bottom, where it

binds to the polycarbonate insert. Passive permeability occurs in both

directions. P-gp expressed on the apical membrane transports drug from the

inner apical membrane monolayer into the apical chamber. There are two

kinetic barriers to transport (see Fig. 3 and accompanying text) flip-flop

across the basolateral and apical membranes, with P-gp catalyzing the latter

step. The concentration of drug in the apical and basolateral chambers, CA

and CB, are measured, while the concentration of drug in the inner plasma

membrane, CPC, and the cytosol, CC, are predicted as part of the data-fitting

process.
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experimental apparatus, hydrolysis and/or metabolism.

Although the cell monolayer clearly has at least two

permeation barriers, the apical and basolateral membranes,

the characterization as through a single barrier is adequate for

most applications, since intracellular concentrations are not

measured. Here we must expand the treatment of passive

permeability to include explicitly the apical and basolateral

membranes, since P-gp picks up drug from the apical

membrane inner monolayer (Sharom et al., 2001; al-Shawi

et al., 2003).

Our major assumption was that the substrate concentration

in an aqueous compartment is at equilibrium with the lipid

monolayer facing the compartment, i.e., we can use a par-

tition coefficient to relate the two concentrations. This is

a reasonable assumption for this system, where transport

occurs on an hourly timescale. For example, Abreu et al.

(2003) have shown that the fluorophor Rhodamine Green-

tetradecylamide associates with lipid bilayers within a few

seconds. The assumption of partition equilibrium reduces the

number of equations to be fitted by about a factor of two.

This assumption also means that drug recycling is maximal,

since drug effluxed into the apical chamber is immediately

equilibrated with the outer apical monolayer.

Equilibrium dialysis binding of drugs to intact cells cannot

estimate these individual cell membrane monolayer partition

coefficients very well because these drugs are all permeable

enough to bind throughout the cell within an hour. Therefore,

we used 0.1 mm extruded unilamellar liposomes (LUV)

whose lipid compositions mimic, in a very simple way, the

lipid compositions of the respective membrane monolayers.

For example, we use the partition coefficient for the LUV

composedof sphingomyelin/phosphatidylcholine/cholesterol

(SM/PC/chol, 1:1:1) to relate the concentration of substrate

in the apical chamber, CA, which we can measure, to the

concentration in the apical membrane outer monolayer, CAO,

which we can’t measure. We use PC/chol (2:1) as a mimic for

the outer basolateral monolayer and phosphatidylethanol-

amine/phosphatidylserine/chol (PE/PS/chol,1:1:1)asamimic

for the inner plasma monolayer, i.e.,

KAOðPC=SM=chol; 1 : 1 : 1Þ ¼ CAO

CA

KBOðPC=chol; 2 : 1Þ ¼ CBO

CB

KPCðPE=PS=chol; 1 : 1 : 1Þ ¼ CPC

CC

: (1)

KBO, KAO, and KPC denote the respective partition

coefficients, while the LUV lipid compositions used are

given in parentheses. Obviously, cell membranes have much

more complex compositions (Hill and Zeidel, 2000), but we

did not want to exceed ternary mixtures or use exotic lipids.

The moles of drug in contact with the basolateral side of

the B . C kinetic barrier are VBCB 1 VBOCBO, due to the

assumption of partition equilibrium. The standard perme-

ability equation to predict the passive transport across the

basolateral membrane is

d

dt
ðVBCB 1VBOCBOÞ ¼ �PBCABðCB � CCÞ;

or

�VVB

dCB

dt
¼ �PBCABðCB � CCÞ;

where

�VVB[VB 1KBOVBO: (2)

�VVB is simply the whole basolateral volume accessible to the

substrate, since KBOVBO is the aqueous equivalent volume of

the lipid in the basolateral side. AB denotes the area of the

basolateral outer membrane monolayer capable of perme-

ation. Note that PBCAB/�VVB has the units of a first-order rate

constant, s�1.

We assume that the passive permeability coefficient is

symmetric across the basolateral membrane into the cytosol,

i.e., PBC ¼ PCB. It is also the case that substrates can

permeate through cell monolayers between the cells, through

the tight junctions, which is called paracellular permeation

(Ho et al., 2000). Measured passive permeability coefficients

contain both terms, and perhaps others. For all our experi-

ments, radiolabeled C14-mannitol was used to estimate

paracellular permeability coefficients, which were ,3% of

the passive permeability coefficients measured for amprena-

vir, quinidine, and loperamide (Tran et al., 2004).

Following the same logic as for Eq. 2, the other mass

action equations for passive permeability are written as

�VVC

dCC

dt
¼ 1PBCABðCB � CCÞ � PACAAðCC � CAÞ

�VVA

dCA

dt
¼ 1PACAAðCC � CAÞ;

where

�VVA[VA 1KAOVAO

�VVC[VC 1KPCVPC: (3)

As with the basolateral membrane, we assume that passive

permeability across the apical membrane to the cytosol is

symmetric, i.e., PAC ¼ PCA. However, the permeability

coefficient across the apical membrane, PAC, need not equal

PBC. We cannot measure these permeability coefficients

directly in the cell monolayer, but we will account for their

effect on total transport as shown below.

When VDCD(0) is the total mols of drug initially added to

the donor side, whether basolateral or apical chamber, then

mass balance equations require at all times that

VDCDð0Þ ¼ VBCB 1VACA 1VCCC

1VBOCBO 1VAOCAO 1VPCCPC

¼ �VVBCB 1 �VVACA 1 �VVCCC: (4)

The passive mass action equations, Eqs. 2 and 3, satisfy mass

balance trivially.
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In Tran et al. (2004), we showed that loss of substrate,

defined as drug leaving the donor chamber and not arriving

in the receiver chamber in a timely fashion, could be

accounted for simply and quantitatively if loss were first

order, at least between the experimental time points. Of the

three drugs tested, only loperamide showed loss. The loss

was not due to metabolism or degradation/hydrolysis (Tran

et al., 2004), but rather due to binding to cells or the

experimental apparatus. Most importantly, the loperamide

loss was first order. The point of this correction was not to

discover the mechanism of loss, but rather to calculate the

correct passive permeability coefficients when mass balance

is a problem. We can add the substrate loss term, using kv to
denote the first order rate constant of loss:

�VVB

dCB

dt
¼ �PBCABðCB � CCÞ � kv �VVBCB

�VVC

dCC

dt
¼ 1PBCABðCB � CCÞ � PACAAðCC � CAÞ

� kv �VVCCC

�VVA

dCA

dt
¼ 1PACAAðCC � CAÞ � kv �VVACA: (5)

Whether drug loss occurs in the aqueous phase and/or in

membranes is irrelevant, due to the equilibrium partition

assumption.

When loss is first order, we can independently fit the value

of the loss rate constant using the average drug concentration

over the entire system, including cell plasma membranes.

This is defined by

ÆCðtÞæ ¼
�VVBCB 1 �VVCCC 1 �VVACA

VT

;

where

VT ¼ �VVB 1 �VVC 1 �VVA: (6)

VT is the effective whole system volume, including

partitioning into the cell membranes.

We can now show that the average concentration depends

only upon the drug loss rate constant, i.e.,

VT

dÆCðtÞæ
dt

¼ �VVB

dCB

dt
1 �VVC

dCC

dt
1 �VVA

dCA

dt

¼ �kvð �VVBCB 1 �VVCCC 1 �VVACAÞ
¼ �kvVTÆCðtÞæ; (7)

using Eqs. 5 and 6. The solution to Eq. 7 is

ÆCðtÞæ ¼ ÆCð0Þæ expf�kvtg ¼ VDCDð0Þ
VT

expf�kvtg: (8)

Thus, we can also measure total loss of substrate and correct

the estimation of passive permeability coefficients for that

loss, as done in Tran et al. (2004).

Finally, we need to consider the issue of estimating

membrane areas and the fitting of permeability coefficients.

In the passive permeation experiment, we fit the product of the

permeability coefficient and the area of membrane access. In

the preceding equations, AA and AB denoted the area of the

apical and basolateral membranes capable of permeation. The

question is: what area do we use? A morphometric electron

microscopy study has suggested that the total basolateral and

apical membranes of MDCKII cells grown on polycarbonate

filters, as we use here, have roughly the same area, and that

this area is;8 times the cross-sectional area of the cell (Butor

and Davoust, 1992). However, the actual membrane area of

access for permeation is unknown, e.g., due to apical mem-

brane invaginations and basolateral membrane tight binding to

the filter support.

It is customary to use the area of the insert onto which the

cells grow as the reference for accessible area, i.e., the

accessible area would be some multiple of this cross-

sectional area. We have assumed that both membranes had

areas of access two times that of the cross-sectional area of

the insert, i.e., like spheres attached at their equators by the

tight junctions. The reason for this choice was simply to

align the reported values of the permeability coefficients.

Typically, permeability coefficients are fitted assuming

a single barrier equation, as was done in Tran et al. (2004).

The same data fitted by a single static barrier model of area A
or by a two barrier model, each barrier with an area of 2A,
will yield the same value for the passive permeability

coefficient. Since the bottom line of the passive permeation

kinetic analysis is to subtract its contribution to the total

transport, this approach is accurate and avoids the confusion

of having the same specific permeability represented by two

different numbers. Once the issue of membrane access area is

resolved, which will not be simple, corrected passive

permeability coefficients can be easily predicted from our

fitted values. This choice has no effect on the fitting of the

active transport parameters.

The second choice we made was how to estimate the

values of PBC and PAC, given that we could not make

intracellular measurements. We fit overall PBA and PAB

coefficients using the one barrier model (Tran et al., 2004),

i.e., the average value across both cell membranes in the

B . A or A . B directions, respectively. Depending upon

drug, Tran et al. (2004) found that PBA and PAB did not have

to be time independent or equal. The overall passive perme-

ability barrier of the cells depended upon which side was

the donor. To correct the total transport for the contribu-

tion by the passive transport, which is the goal in the first

place, we have chosen to set PBC ¼ PBA and PAC ¼ PAB.

This allows the donor face to dominate the estimated

permeation of drug into the cell, as found in Tran et al.

(2004). If the passive permeability coefficients were not

constant in time, which was the case for quinidine and

loperamide, then we best fit the values for each time interval

measured and used an ‘‘appropriate’’ value for each time

interval for fitting the active transport parameters, as ex-

plained in detail below.
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The active transport kinetic model

P-gp is generally assumed to follow the standard Michaelis-

Menten reaction (Stein, 1997; Ho et al., 2000; Ambudkar

et al., 2003). This reaction takes place within the apical

membrane inner monolayer:

T0 1CPC %
k11

krl

T1 /
k21

T0 1CA; (9)

where T0 is the empty transporter, CPC the substrate in the

apical membrane inner monolayer, T1 is the transporter

bound by substrate, and CA the substrate after efflux into the

apical chamber.

The nomenclature used here, e.g., k21, is read as the second
reaction for site 1. The first reaction is association to P-gp

and the second reaction is efflux into the apical chamber.

This nomenclature was developed to allow for the possibility

of two substrate binding sites, such as has been suggested by

equilibrium dialysis binding for P-gp (Martin et al., 2000)

and for the bacterial multi-drug resistance transporter LmrA

in Lactococcus lacti (van Veen et al., 1998). More sophis-

ticated models, including explicit ATP hydrolysis steps,

have been proposed (Senior et al., 1995; van Veen et al.,

2000; al-Shawi et al., 2003), based upon equilibrium dialysis

binding studies, ATP hydrolysis, and/or Michaelis-Menten

steady-state kinetic analysis. We shall see for P-gp that the

rate constant of association, k11, is so large that whether there
is one site or two roughly identical sites, both sites would be

filled or empty. Functionally, this means that the number of

sites is not kinetically relevant for single substrate measure-

ments. Future experiments examining substrate competition

can test the number of binding sites directly. Because of the

plan to examine competition, we have retained this notation.

In addition, functional two-site kinetics may apply to other

multi-drug resistance transporters.

When we append the active transport mass action reaction

to the passive permeability kinetics, we obtain the compre-

hensive kinetic equations for P-gp mediated transport:

�VVB

dCB

dt
¼ �PBCABðCB �CCÞ � kv �VVBCB

�VVC

dCC

dt
¼ 1PBCABðCB �CCÞ � PACAAðCC �CAÞ � kv �VVCCC

� VAOk11KPCCCT01VAOkr1T1

�VVA

dCA

dt
¼ 1PACAAðCC �CAÞ � kv �VVACA1VAOk21T1

dT0

dt
¼ �k11KPCCCT01 ðkr11 k21ÞT1

dT1

dt
¼ �dT0

dt
: (10)

Since we assume that the transporter captures the drug from

the apical membrane inner monolayer, the relevant volume is

VAO and the relevant partition coefficient is KPC. It might

appear that the volume for the receptor is 2VAO, since the

transporter crosses the membrane, but its active site is

thought to be restricted to the apical membrane inner

monolayer (Sharom et al., 2001; al-Shawi et al., 2003),

which technically has the volume of VAO. With respect to

fitting parameters, the difference is not significant.

There are several parameters here, but all are important

and necessary to obtain realistic estimates for the three

elementary rate constants (k11, kr1, k21) and the density of

efflux active P-gp in the apical membrane, denoted T(0).
Again, passive permeability coefficients and rate constants

for loss are fitted in a separate experiment using the potent

P-gp inhibitor GF120918. Partition coefficients are estimated

using liposomes whose compositions roughly mimic the cell

membrane monolayers.

We can now complete the description of correcting the total

transport curve for the effects of passive permeability and loss

of drug. Tran et al. (2004) showed for amprenavir that the

fitted passive permeability coefficients, PAB and PBA, change

up to the first half hour and then stabilize. There was no

significant loss of amprenavir, but the calculated values for kv
were noisy for the first hour. The other drugs showed different

transients for PAB, PBA, and kv. Since the purpose of these

fittings was to remove the passive permeability from the total

transport, we needed to take these transients into account.

We assume that the passive permeability is the same

whether or not P-gp is inhibited by GF120918, so the PAB

and PBA values are taken in the presence of GF120918. It is

nearly impossible to test this assumption, but it is reasonable.

During active transport, the true system average drug

concentration would have to include the term for T1, since
that is drug-bound to P-gp. When that is done in Eq. 6, then

Eq. 7 would contain dT1/dt and the sum gives the same

answer as Eq. 8. Thus, we can estimate the kv when P-gp is

active using Eq. 8. For loperamide, this makes a difference,

since Tran et al. (2004) showed that loperamide loss was

substantially greater in the presence of GF120918. The

reason for this is not known yet.

To incorporate the transients of passive permeability

coefficients and kv values requires a choice. One extreme

would be to use all of the individual measurements for PAB,

PBA, and kv for each time interval. This would be correct if

the passive permeability transients measured in the presence

of the P-gp inhibitor GF120918 were exactly the same as in

its absence, where we measure total transport. This seems

unlikely and we did not want to be fitting the noise of the

experiment. The other extreme would be to use the time

average of all of the individual measurements for PAB, PBA,

and kv. This would largely ignore the transients.

Our approach was to use the individual values until they

roughly stabilized and then use the time average from that

point on for fitting the remaining time intervals. However,

we did not want to make the decision for the stabilization

times for each data set, since that would introduce an

additional fitting decision. So we used the times found in

Tran et al. (2004). For both amprenavir and quinidine, we

used individual values for kv up to 1 h, and the average kv
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from all points after 1 h. For the passive permeability

coefficients, amprenavir was stable at half an hour, whereas

quinidine showed changes for 3 h. For loperamide, both

passive permeability coefficients and drug loss coefficients

changed for the first 3 h before stabilization.

ALGORITHM FOR HIERARCHICAL EXHAUSTIVE
DATA FITTING

We now use the fitted passive permeability parameters to

find all active transport parameter vectors (T(0), k11, kr1, k21)
that will best fit all of the data for total transport. We start by

creating a grid of initial vectors of parameter values that

spans all possible values for each of the four active transport

parameters. The problem of searching a large multi-variable

parameter space for kinetic best fits is there are likely to be

very many peaks and valleys in the CV surface, just like the

protein folding problem (Chan and Dill, 1998). Search

routines like fminsearch stop in the first valley encountered.

To illustrate this fitting surface, we use a cartoon with two

parameters and the oversimplified fitting surface in Fig. 2,

since the true fitting surface for our problem depends upon

four parameters and cannot be clearly visualized. The initial

parameter vector grid we set up can be represented by the

grid on the fitting surface, as projected up from the kinetic

parameter (X, Y) plane. For each initial vector, MATLAB

numerically integrates the kinetic equations, Eq. 10, com-

putes the CV between the data and the simulation, and then

the MATLAB function fminsearch adjusts the parameters

until a best local fit to the data is obtained. MATLAB’s

fminsearch stops when a local minimum in CV is reached

within the tolerances of the Nelder-Mead simplex (direct

search) method on which this minimization routine is based.

The consensus answer we seek will be the cluster of fit

vectors that are best fits for all drug concentrations used.

To find the best fit, i.e., the ‘‘deepest valley’’, the initial grid

point must be within the ‘‘foothills’’ of the valley with the

deepest well, shown by the deep spike in Fig. 2, which is why

an exhaustive search of the entire parameter space is

necessary. Furthermore, and just as importantly, the exhaus-

tive search will also determine whether there is more than one

‘‘deepest’’ valley, i.e., two or more widely separately sets of

parameters that fit the data equally well. A rule of thumb

appears to be that if the model is appropriate, i.e., realistic but

not overspecified, then as the fitting hierarchy proceeds, the

parameter space volume that fits the data best will decrease

until a small compact space is found. We call this box the

consensus fits, wherein any vector within the consensus space

will fit the data for all of the different substrate concentrations

equally well. Achieving smaller volumes than we reach

should be possible, but the computation time would be much

longer. We are studying this problem.

Initial parameter grid

For the rate constants, we begin with plausible ranges, but

these parameters are unconstrained, so that fminsearch in

MATLAB can move out of the initial range if there is a local

minimum for the CV out there. The rate constants are only

constrained to be positive.

The initial range for the association rate constant, k11, was
106–1012 M�1s�1, the upper bound probably being above the

lipid lateral diffusion control (Keizer, 1987; Molski et al.,

1996; Hinterdorfer et al., 1997). The initial range for the

efflux rate constant, k21, was 1–10
4(s�1), which contains the

range of currently known ATP hydrolysis rate constants

(Urbatsch et al., 2003; Loo and Clarke, 2000). The initial

range for the dissociation rate constant, kr1, was actually

fixed by the substrate binding to P-gp, given by the binding

constant KB ¼ k11/kr1, which will start in the typical range of
102–106 M�1 . Again, these are just starting ranges and the

fitting was not constrained to remain within these ranges.

The amount of P-gp per cell has been estimated for other

cell lines using quantitative Western blots (Ambudkar et al.,

1997), but not for the cells we use. Since the expression

levels of P-gp depends upon many factors, including some

that are unknown at this time, we believe that it is important

not to fix this parameter. We refer to T(0) as the density for

efflux active P-gp. The terminology used is not meant to

imply that other P-gp in the cell are misfolded or sequestered

within the cell, but our kinetic analysis only measures those

P-gp that efflux drug directly into the apical chamber. We

will refine this idea below.

On the other hand, the surface density for any membrane

protein has physical constraints. It must be less than the

FIGURE 2 The general problem of exhaustive multi-parameter fitting is

illustrated by a simple theoretical fitting surface over just two fitting

parameters, because our model has four fitting parameters and cannot be

clearly visualized. Because the fitting surface can have many local minima,

a very wide initial net of initial conditions must be cast to assure that the

global best fits are not missed. The real shape of this surface depends upon

the model and the data.
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surface density of proteins known to closely pack on the

membrane surface, e.g., influenza hemagglutinin (HA) on

a viral surface, which is a homotrimer with three trans-

membrane domains and densely covers the viral surface. In

comparison, P-gp has 12 transmembrane domains, which

clearly constrains P-gp to a smaller surface density than

influenza HA. For computational convenience, T(0) was

expressed in mols P-gp/L(apical membrane inner mono-

layer), but this can be converted to P-gp/mm2 (of apical

membrane) simply by multiplying by 1.2 3 106, which

assumes a 2 nm thick acyl chain region in the apical mem-

brane inner monolayer. For example, the surface density of

influenza HA on the virion is ;16,000/mm2 (Mittal et al.,

2002), which would mean that T(0) , 16,000/1.2 3 106 M

¼ 0.013 M. We have chosen a minimum surface density for

P-gp of four orders of magnitude smaller, which amounts to

;1 P-gp/mm2, which is very conservative. Thus, the range

for T(0) has been fixed as 10�2 M . T(0) . 10�6 M. It will

turn out that the surface density of efflux active P-gp in these

cells was smaller than the estimates of P-gp densities

obtained from other cell lines using Western blots. In the

Discussion, we will suggest why this might be a perfectly

consistent result.

These generous ranges are necessary to make sure that all

possible parameter vectors that can fit the data are dis-

covered. The problem then becomes that the ranges are so

large that the initial search space is huge and cannot be

covered in a brute force way, i.e., starting at one end and

going to the other end in some linear fashion. Each of the

parameters has a theoretical range of at least four orders of

magnitude. On a unitary log scale, each parameter generates

nine values per decade, i.e., 1–9, with four decades per

parameter, yielding (9 3 4)4 ¼ 1.7 3 106 initial vectors.

Each initial vector was the starting point for a local best fit,

which requires at least 5 min on a 2.4 GHz PC. Brute force

would require more than 15 years of computation per drug

concentration. So we must build a fitting algorithm.

The hierarchical fitting algorithm

Previous experience in fitting kinetic equations for liposome

aggregation and fusion (Bentz and Nir, 1981; Bentz et al.,

1983), showed that the fitted ranges for the ‘‘forward’’

parameters were not likely to be very sensitive to the reverse

reaction. Since those differential equations were similar to

the mass action kinetic equations for the Michaelis-Menten

reaction, we took that as the first step of the fitting algorithm.

That is, as a start, the ‘‘forward’’ B . A data could be fitted

using only the ‘‘forward’’ parameters T(0), k11, and k21, with
kr1 fixed at zero. This reduces the first search to three

parameters instead of four, which saves a lot of time since

fitting time increases roughly by the power of the number of

parameters being fitted. Once the forward parameters were

fitted to reduce their ranges, then the ‘‘reverse’’ A . B data

could be fitted using kr1 and the reduced range of values

found for T(0), k11, and k21. Of course, if this assumption

were wrong, the fit to the A . B data would find very

different parameter ranges for T(0), k11, and k21. We shall see

that this approach works very well and reduces the numbers

of initial grid vectors from more than a million to only a few

thousand, requiring ,2 weeks of computation per drug

concentration. The algorithm also produced an interesting

artifact, which we will discuss and discard below.

‘‘Model data’’ as a control

An extremely important control for fitting several parameters

to a kinetic model is to simulate ‘‘model data’’ and subject

that ‘‘model data’’ to the same analysis as the real data.

‘‘Model data’’, for the Michaelis-Menten mass action model

we have used, was simulated using a parameter vector from

the ‘‘center of the box’’ of the consensus vectors for the

amprenavir data, as obtained at the end of our data-fitting

process. If the transport of amprenavir by P-gp is modeled

adequately by the one-binding site Michaelis-Menten re-

action, then subjecting the ‘‘model data’’ to the same fitting

algorithm must yield the same basic results as observed for

the amprenavir data.

RESULTS

The passive and active transport of 90 mM amprenavir across

the MDCKII-MDR1 cell monolayers is shown in Fig. 3. The

FIGURE 3 Passive and active transport of amprenavir across the mono-

layer of confluent MDCK cells is shown by nmol in the receiver chamber

over 6 h when the donor side begins with 90 mM amprenavir. The solid

symbols show passive permeability across the cell monolayer when the

basolateral chamber was the donor side B. A (¤) and when the apical side
was the donor A . B (d). The active transport by P-gp was completely

inhibited by preincubation with 2 mM GF120918 added to both chambers.

The open symbols show the effect of P-gp on transport of amprenavir across

the cell monolayer, which occurs in the absence of GF120918. The fact that

the activation of transport in the B . A direction (e) over the passive

transport by P-gp, indicated by the up arrow, is greater than the inhibition in

the A . B direction (O), indicated by the down arrow, proves that there are

only two kinetic barriers to transport, as explained in the text.
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passive permeability was determined in the presence of

2 mM GF120918, a potent inhibitor of P-gp (Hyafil et al.,

1993; Polli et al., 2001; Tran et al., 2004), shown by solid

symbols. The nmol transported is symmetric over time, i.e.,

the same for B. A and A. B, which would be expected for
a static passive barrier. That was not the case for quinidine

and loperamide (Tran et al., 2004). The open symbols show

the total transport, when P-gp is active (i.e., without

GF120918), with triangles showing the P-gp mediated activ-

ation of transport in the B . A direction and the inhibition

of transport in the A . B direction. For amprenavir, the

passive permeability coefficients were symmetric and con-

stant in time after ;15 min, i.e., PBA ¼ PAB � 200 nm/s.

Amprenavir had no significant loss of substrate, i.e., kv ,

1 3 10�6 s�1.

Above, we have claimed there are only two kinetic

barriers for transport of the drugs studied here, i.e., the

basolateral and apical membranes. This means that a third

kinetic barrier between the apical and basolateral chambers,

e.g., through the cytosol, is kinetically irrelevant for these

drugs. We can now prove this assertion.

Relative to passive permeability, the activation of B . A
transport by P-gp, i.e., from the basolateral chamber to the

apical chamber, illustrated in Fig. 3 by the length of the

arrow aimed up, was always greater than the inhibition of

A. B transport by P-gp, i.e., from the apical chamber to the

basolateral chamber, illustrated by the length of the arrow

aimed down. Remarkably, this simple test is diagnostic for

there being only two barriers to active transport. If there were

an additional kinetic barrier between the basolateral

membrane inner monolayer and the apical membrane inner

monolayer, e.g., substrates following a path through the

cytosol, then the predicted shape of Fig. 3 would be just

the opposite. The activation arrow would be shorter than the

inhibition arrow (simulations not shown). The reason for this

is that the additional barrier slows access of substrate to P-gp

from the basolateral side, reducing activation, whereas

transport from the apical side is hardly affected, since drug

escape from P-gp into the apical membrane is rate limiting

anyway. Other drugs have shown this ‘‘two-barrier’’ shape

(Troutman and Thakker, 2003). Of course, this diagnostic

can identify substrates for which there is a third barrier.

Thus, it appears that the nearly all of B . A transport of

amprenavir, as well as loperamide and quinidine, follows the

path of binding to outer basolateral monolayer, flip-flopping

across the bilayer, and then rapid lateral diffusion within the

lipids to the apical membrane inner monolayer, where it

binds to P-gp, in a highly reversible way, and is effluxed out

into the apical chamber. A . B transport is simply the

opposite.

Passive and active transport data were collected for 100,

80, 70, 60, 50, 10, and 1 mM amprenavir, just as was done

for 90 mM amprenavir in Fig. 3. We did not use the data from

1 and 10 mM amprenavir for fitting parameters and they

became a tester data set at the end. The first fitting step is

a coarse fitting the B . A data using only the ‘‘forward’’

parameters, with kr1 ¼ 0. We set up a grid of initial vectors

covering a four-order of magnitude range for each parameter.

The grid and tolerance is shown in Run I of Table 1. All

possible combinations of the three parameters were used as

initial vectors, 729 in all.

Separate fitting runs were carried out for each substrate

concentration. Then, for each concentration, the fitted

parameters for each of the 729 fits were sorted by the

coefficient of variation. As an example, Fig. 4 shows the CV

as a function of CV rank order for 90 mM amprenavir, which

is the substrate concentration we will follow through the

analysis; ;609 of the fits had the same CV ; 0.03, which

TABLE 1 Hierarchical fitting ranges, tolerances, and outcomes

Run

Data

fitted*

Integration

tolerancey
Points per

decadez

Initial range for each parameter

T(0) (M) k11 (M
�1s�1) k21 (s

�1) KB (M�1)

I Forward coarse B . A 10�8 2 (1 and 3) 10�6–10�2 107–1011 10�–104 kr1 [ 0§

II Forward fine B . A 10�9 3 (1, 2, and 5) Same as Run I Same as Run I Fixed by fit of k21T(0)

from Run I

kr1 [ 0§

III Forward last B . A 10�10 9 (1, 2,. . ., and 9) 3 3 10�6 – 4 3 10�4 108–1010 Fixed by fit of k21T(0)

from Run I

kr1 [ 0§

IV Reverse low A . B 10�7 2 (1 and 3) 3 3 10�5 – 3 3 10�4 108–1010 Fixed by fit of k21T(0)

from Run I

102–106

V Reverse last A . B 10�8 9 (1, 2,. . ., and 9) 4 3 10�5 – 4 3 10�4 109–1010 Fixed by fit of k21T(0)

from Run I

Fixed by outcome

of Run IV

*Transport data direction. B . A means basolateral donor and apical receiver. A . B means apical donor and basolateral receiver.
yTolerance setting in MATLAB for numerical integration in ode23s for both relative error and absolute error. Settings lower than 13 10�10 did not converge

in a reasonable time, i.e., .1 h per fit. Tolerance for the fminsearch routine, which determines when the fit is ‘‘close enough’’, was always set to 10�6 for

both TolX and TolFun tolerances.
zNumbers in parentheses are those chosen within each decade tested. For example, in Run II for the decade of 10�3 for T(0), the initial points were 13 10�3,

2 3 10�3, and 5 3 10�3.
§All B. A data were fitted assuming irreversible binding of drug to P-gp, i.e., kr1 [ 0. The A. B data were used to fit KB, and refit k11 and T(0) to affirm the

validity of separating the fits.
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gives a very good fit visually. The larger rank orders had

progressively worse fits. Thus, we discarded those fits with

CV . 0.03.

We will now look at the remaining fitted parameters to see

if good fits to the data, for 90 mM amprenavir in the example

being followed, reduce the fitting volume or show any

correlations that would reduce the number of parameters to

be fitted. Fig. 5 shows the plot of the fitted values for P-gp

density, T(0), and the association rate constant, k11. Fits are
found over the entire input range, showing that there has

been no reduction in the fitting volume. For some amprenavir

concentrations, including 90 mM, a few correlated points

were observed forming a straight line with the negative slope

of almost exactly �1. These points are an artifact of the

fitting algorithm applied to the Michaelis-Menten mass

action reaction, which we will address in detail below with

the last forward fit, i.e., Run III.

Fig. 6 shows the plot of the fitted values for P-gp density,

T(0), and the efflux rate constant, k21. Although it is clear that
there has been no reduction in the fitting volume, the more

startling point was that fitted values for these two parameters

are essentially perfectly correlated. Each fitted value of T(0)
defines the fitted value of k21 � 0.01/T(0) s�1. Thus, these

two parameters need not be independently fitted. This is

shown as the outcome of Run I in Table 1.

Why would these two parameters be correlated? Obvi-

ously, in terms of the classical Michaelis-Menten analysis,

k21T(0) is ‘‘Vmax’’. The correlation implies that the fit to the

whole time course for a single substrate concentration

contains an extrapolation to the k21T(0) anticipated at high

substrate concentrations.

To show that this correlation is not an artifact of the fitting

algorithm, we tested it with the ‘‘model data’’. We generated

computer-simulated data using a parameter vector within the

set of best fits for amprenavir, as defined in Table 4 below.

These ‘‘model data’’ represent perfect data for the case that

P-gp is a single site Michaelis-Menten type transporter and

there is no experimental error. We note here that the ‘‘model

data’’ for P-gp with one or two binding sites were the same,

assuming both sites had to be filled for one drug molecule

to be effluxed. This is because association was so rapid

(simulations not shown). The ‘‘model data’’ for all drug

concentrations were then fitted with the algorithm being

followed here. For each concentration of substrate, the fitting

gave a constant value for k21T(0), which is shown as the solid
hyperbolic line in Fig. 7. Interestingly, the small substrate

concentrations predict a k21T(0) product that is smaller than

the value of k21T(0) used to simulate the data in the first

FIGURE 4 Coefficients of variation between the data, CV, and the 729

Run I fits to the 90 mM amprenavir data are plotted in a rank order, from

best, CV ; 0.03, to worst, where CV . 0.4. Fits with a CV , 0.05 are

visually very good. The rank-ordered first 609 fits essentially give the same

curve, but from a wide range of parameters. Subsequent rank-ordered fits

tracked increasingly worse fits, because MATLAB fminssearch was stuck in

a local minimum. Fits to the right of the cut were discarded.

FIGURE 5 Fitted pairs of the association rate constant, k11, and P-gp

density, T(0), for 90 mM amprenavir remaining after the cut in Fig. 4 are

graphed here. The range of the parameters has not been reduced in the fitting

and they are uncorrelated, except for a small trend line at the bottom, which

is examined in Fig. 8.

FIGURE 6 Fitted pairs of the efflux rate constant, k21, and the P-gp

density, T(0), for 90 mM amprenavir remaining after the cut in Fig. 4 are

graphed here. The possible range of these parameters has not been reduced

in the fitting, but there is essentially complete correlation. Thus, for 90 mM

amprenavir, the product of k21T(0) ; 0.01 M/s.
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place, i.e., 9 3 10�3 M/s. However, as the substrate con-

centration increased, the predicted k21T(0) becomes equal to

the correct value. Thus, even with model data, the correct

k21T0 value is obtained only when the substrate concentra-

tion is large enough. This fit was the outcome of Run I in

Table 1.

Fig. 7 also shows the k21T(0) values fitted from the

different amprenavir concentrations as diamond symbols.

We take the average of the highest three concentrations,

which is ;k21T(0) ¼ 9 3 10�3 M/s, which was the value

used to simulate the ‘‘model data’’. In terms of final

fitted values, whether we take k21T(0) ¼ 0.012, 0.009, or

0.006 M/s will be insignificant, since we are aiming for the

final parameter ranges to be within an order of magnitude

box. It is important to note here that we use the same average

value for k21T(0) ¼ 9 3 10�3 M/s for all subsequent fits,

rather than the individual values shown in Fig.7.

The second or fine fitting comes next. As explained in the

Fitting Algorithm section, this is a two-parameter fit to the

B . A data using T(0) and k11, with the parameter range of

the first, or coarse fit, but with a finer grid. Also, kr1 ¼ 0 and

k21 ¼ 0.009/T(0) s�1. A higher stringency is used with

ode23s; relative and absolute tolerances were set at 10�9.

The grid and tolerance is shown in Run II of Table 1. All

possible combinations of the two parameters were used as

initial vectors, 132 ¼ 169 in all. For economy, these fits are

not shown. The parameter ranges were reduced to 3 3 10�6

, T(0) , 3 3 10�4 and 108 , k11 , 1010, as shown as the

initial range of Run III in Table 1.

This brings us to the final forward fit, with the most

stringent tolerances on ode23s, relative and absolute at

10�10, and a unitary grid, i.e., 1, 2, . . . , 9, 10, 20, . . . . We use

the consensus box of the fine fit, but the exact boundaries are

not that crucial since this is an open fit, i.e., fminsearch can

find fits outside of the initial box. The grid and tolerance is

shown in Run III of Table 1. All possible combinations of the

two parameters were used as initial vectors, 18 3 19 ¼ 342

in all.

Fig. 8 A shows the outcome of this fitting in terms of the

graph T(0) and k11 from the best fits for all fitted amprenavir

concentrations, which are color coded, as shown in the

legend. The initial grid for T(0) and k11 is shown by the box

with a dashed line border. This plot shows that some fits

ended far away from the initial grid. With the smallest grid

and the highest stringency on the numerical integrations,

many possible fits still show up. We can reject the fits that lay

against the constraints on T(0) as being unphysical, as

explained above. Within the box labeled consensus fits, we

find the fit vectors for all amprenavir concentrations, which

is what we will use to complete the fitting process using the

A . B data.

Before proceeding, though, we need to explain the distinct

sets of fits at the bottom of the graph of Fig. 8 A, which we

have labeled the correlated fits, one of which was seen even

in the coarse fits shown in Fig. 5. For most of the amprenavir

concentrations, there was a distinct line of correlated fits with

a slope of ;�1, i.e., for the points on this line k11T(0) ¼
constant. The MATLAB search function fminsearch has

found a good fit for the data for some (T(0), k11) pair and that
the same curve can be retraced using a slightly larger T(0)
and slightly smaller k11, and vice versa, over the entire fitting
range.

What is the origin of the correlated fits, and why are their

predicted k11 values so much smaller than those for the

consensus fits? To answer this question, we continued to use

the ‘‘model data’’, introduced at Fig. 7 for amprenavir. Even

though the model data were without error, the exact values

used in the simulation were not uniquely found; rather there

was a box of consensus fits that contained the ‘‘right an-

swer’’ (data not shown). More remarkably, a series of cor-

related fits were found as well, orders of magnitude below

the consensus fits and the values of k11 used to simulate the

model data, just like in Fig. 8 A. The only difference was that
all of the correlated fits for the ‘‘model data’’ lay on the same

straight line of slope �1, regardless of drug concentration.

This suggests that the offset y-intercepts seen in Fig. 8 A for

amprenavir were simply due to experimental error.

In Bentz and Nir (1981) and Bentz et al. (1983), we fitted

the aggregation and fusion kinetics of liposomes, which fol-

low similar differential equations, but found no ‘‘correlated

FIGURE 7 Fitted values of k21T(0) for 50–100 mM amprenavir, (d), and

predicted from simulated ‘‘model data’’ (solid line). Model data were

simulated for the Michaelis-Menten reaction model for P-gp, without

experimental error, using the parameters given in Table 4 for amprenavir. At

each concentration, a predicted k21T(0) is found, just like in Fig. 6. The solid

hyperbolic line is the predicted k21T(0) for all the model data. At high

substrate concentrations, the k21T(0) used to simulate the model data was

recovered. However, at low concentrations, the predicted k21T(0) was

smaller than the correct value. The k21T(0) values predicted for each

concentration of the amprenavir data are shown by solid circles. For each

concentration, the best 300 fits gave the same value for k21T(0), i.e., the
standard deviation for each point is much smaller than the size of the

symbols. The average of the higher amprenavir concentrations was roughly

k21T(0) ¼ 0.009 M/s, which is the value shown in Tables 2 and 4 as k21T(0)

¼ 180 (1/s) 3 50 (mM) ¼ 0.009 M/s. Thus, for all subsequent fittings for

amprenavir, for each value of T(0) tested, we fixed the value of k21¼ (0.009

M/s)/T(0).
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fits’’. Because of this, we suspected that the differential

equations of the Michaelis-Menten reaction generated this

fitting artifact. We have done detailed mathematical analysis

of classical Michaelis-Menten kinetics, i.e., as a solution

enzyme, and found correlated fits when ‘‘kcat’’, which is k21
here, was fixed by the ratio of Vmax/total enzyme concen-

tration, and substrate binding was defined to be irreversible,

i.e., the same protocol used to fit the P-gp transport data.

When the best fits for the fitted substrate-enzyme rate constant

and the total enzyme concentration were plotted like Fig. 8 A,
the slope was always�1 and the y intercept depended only on
a ratio of all the true total enzyme concentration and the true

rate constants (J. Bentz, unpublished data). So, in addition to

the consensus fits, our fitting algorithm generated these cor-

related fits as an artifact. This analysis is beyond the scope of

this article and will be published separately.

In any case, it is clear that these correlated fits are not

realistic solutions to the data and can be discarded, which is

good since they show no reduction in the parameter ranges.

These outcomes are shown in Run III of Table 1. Below, we

will see that when the A. B data are fitted using kr1, k11, and
T(0), no correlated fits are found.

Fig. 8 B shows a blowup of the consensus fits in Fig. 8 A.
Within the box of 40 mM , T(0) , 400 mM and 1 3 109

M�1s�1 , k11 , 1 3 1010 M�1s�1, the best fits for all

concentrations are found, except 50 mM amprenavir, which

had only correlated fits. Both 1 and 10 mM amprenavir had

only correlated fits, i.e., correlated fits are more prevalent at

low substrate concentrations. Below, we will see that a pa-

rameter vector chosen from the ‘‘center’’ of the consensus

box gives excellent fits to all amprenavir concentrations,

even the low concentrations.

This completes the fitting of the B. A data. Now it is time

to test the assumption that the fitted values of the forward

parameters using the B . A data, with kr1 ¼ 0, will not

change much upon fitting the A . B data with kr1, T(0), and
k11. We will search over the binding constant KB, since kr1 ¼
k11/KB. The grid and tolerance is shown in Run IV of Table

1. All possible combinations of the three parameters were

used as initial vectors, i.e., 53 63 10¼ 300 initial points in

all. Empirically, we have found that the relative and absolute

tolerances on ode23s must be .10�8 to achieve reasonable

fitting speeds. This is likely due to the low amplitudes of

change for the A . B transport curves. These tolerances are

sufficient to give excellent reliability in the numerical

integrations.

Fig. 9 shows the outcome of this fitting of the A . B data

in terms of the graph T(0) and k11 from the best 300 fits for

each of the amprenavir concentrations, color coded by the

legend as in Fig. 8. The initial grid for T(0) and k11 is shown
as a box with a dashed line border. The crucial point is that

very few of the final fitted (T(0), k11) points moved out of the

box of initial grid points, i.e., changes in T(0) or k11 did not

strongly affect the fit. Fitting the A . B data comes almost

entirely from KB, or equivalently kr1. The fitted range was

250, KB , 15,000 M�1. This outcome is shown in Run IV

of Table 1.

With this assumption satisfied, we refit the A . B data

with the unitary grid for KB. The fits for T(0) and KB are

shown in Fig. 10. The average estimate for 1–100 mM

amprenavir was KB ¼ 13006 600 M�1. It is also interesting

that the estimated binding constants did not depend upon

amprenavir concentration, unlike the fitting of k21T(0). We

note that no correlated fits were found here, as expected,

since they were an artifact of imposing irreversible

association in the forward fits. All of the fitted parameter

ranges for amprenavir are shown (see Table 3).

FIGURE 8 Final forward fits for the amprenavir data. Panel A shows all

pairs of T(0) and k11 that best fit the final fitting of the forward B . A

amprenavir data, Run III. The initial grid for T(0) and k11 is the box with

a dashed line border. The amprenavir concentrations are color coded, as

shown by the legend. The box labeled ‘‘consensus fits’’ contains pairs from

all amprenavir concentrations, except 50 mM, which had only correlated fits.

Thus, any pair within the box gives essentially the same best fit to all

amprenavir concentrations. There is also a series of fits labeled ‘‘correlated

fits’’, the straight lines at the bottom. These fits are different for each

amprenavir concentration and show no reduction in volume. As explained in

the text, these fits are artifacts from applying the fitting algorithm to the mass

action kinetics of the Michaelis-Menten reaction. These fits may be

discarded. Panel B is a blowup of the consensus fits, showing the distribution

of fitted pairs. We shall see in Fig. 11 below that using parameter values in

the center of this box gives good fits to all amprenavir concentrations,

despite the fact that 1, 10, and 50 mM amprenavir yielded only correlated fits

(data not shown).
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For convenience, we note that the dissociation constant for

amprenavir measured from the aqueous phase, which is the

typical expression used, would be KD,Aq ¼ 1/(KB 3 the

partition coefficient to the PS/PE/chol LUV)¼ 1/(13003 228)

¼ 3.4mM.This value is listed below theKB value in Table 3 as

3 mM, since it is not more accurate than one significant digit.

We have found that KD,Aq is not the same as the steady-state

Km, which would be fitted from a standard steady-state

analysis (J. Bentz, unpublished), but that work is beyond the

scope of this article and will be published separately.

To prove the generality of this analysis, we have also

examined two other P-gp substrates: quinidine, which is

a Na1 channel blocker, and loperamide, which is an

antidiarrheal drug. These drugs were chosen because they

are good substrates for P-gp and are of pharmaceutical

significance (Tran et al., 2004). After preliminary studies, we

used 0.3, 1, 3, 10, 20, and 30 mM quinidine and loperamide,

since these two drugs have nearly identical concentration

dependencies with respect to overall transport. We followed

the same fitting algorithm as used with amprenavir and,

overall, the fits followed the same basic pattern as for

amprenavir. We show the fitted parameters for quinidine and

loperamide in Table 3.

We are now in a position to see how the fits to the data

look when consensus values, over the three drugs, for

the parameters are used. We chose a single vector from the

‘‘center’’ of the parameter consensus box to simulate the

curves for all of the drugs. These consensus values are shown

in Table 4. Many parameters were specific to the drug.

However, for all drugs, k11 was set to 3 3 109 M�1s�1 and

the density of efflux active P-gp was set to 50 mM (in the

apical membrane inner monolayer), i.e., 40 P-gp/mm2. This

assumes that these three drugs encounter P-gp identically,

which would be the simplest and least flexible case. These

overall consensus values for k11 and T(0) for all three drugs
are not in the ‘‘center of the box’’ for amprenavir shown in

Fig. 8 B, due to the fitted ranges of quinidine and loperamide.

However, any values within that consensus box for

amprenavir will fit all of the data equally well, as we will

now see.

Fig. 11 A shows the comparison of the simulation and the

data for 100 mM amprenavir. There are four data sets per

amprenavir concentration, which were fitted simultaneously,

shown by symbols with standard deviations from triplicate

runs, from top to bottom over 6 h:

1. A:B . A, denoting amprenavir arriving in the apical

compartment when the basolateral chamber is the donor.

2. A:A . B, denoting amprenavir remaining in the apical

compartment when the apical chamber is the donor.

3. B:B . A, denoting amprenavir remaining in the

basolateral compartment when the basolateral chamber

is the donor.

4. B:A . B, denoting amprenavir arriving in the basolateral

compartment when the apical chamber is the donor.

All four data sets were fitted by the hierarchical analysis, so

all of the fits have equal weight. Clearly, all fits are quite good

over the entire 6 h time course. Representative fits for other

concentrations of amprenavir are shown, 10 mM in Fig. 11 B,
and 1mM in Fig. 11 C, neither of which were part of the data
set used to fit the parameters, so they are a small tester set.

If there is any systematic deviation in the fits, it is in some of

the A:B. A curves. For some cases, there was a slight under-

estimate at the early time points and/or a slight overestimate at

the long time points. We could have made the fits look even

better, if for each drug concentration we had used its indi-

vidual fitted value of k21T(0), Fig. 7, and its fitted value ofKB,

FIGURE 9 Final reverse fits, A. B, for the amprenavir data, Run V. The

300 best-fitting pairs of T(0) and k11 are shown. The initial grid for T(0) and
k11 is shown as a box with a dashed line border. The amprenavir

concentrations are color coded as in Fig. 8. The initial pairs of (T(0), k11)

were uniformly distributed within the dashed line box, showing that fits for

these forward parameters to the A. B data did not change significantly, and

no correlated fits were found. This proves that our separation of the forward

and reverse fits did not affect the final fitted ranges for the forward

parameters.

FIGURE 10 Best-fit values for KB as a function of amprenavir

concentration. The error bars are the standard deviation over the calculated

KB for the best 300 fits, i.e., each concentration has a very tight fit for its

predicted KB. The overall average for all amprenavir concentrations was

KB ¼ 1300 6 600 M�1.
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Fig. 10. That could have been justified on the grounds that the

cell monolayers are certainly not physically identical from

plate to plate and day to day.However, that is the kind of curve

fitting we avoid. If there is an underlying cause, e.g., multiple

binding sites on P-gp or a second transporter, as we will

discuss below for the drug loperamide, it is too slight to be

further analyzed for amprenavir.

We now turn to the fits for the second drug, quinidine. In

general, the fitting results for quinidine follow the same

pattern as we saw for amprenavir. For economy, we show

only three final fits for quinidine—10 mM in Fig. 12 A, 1 mM
in Fig. 12 B, and 0.3 mM in Fig. 12 C—in the same format as

Fig. 11 for amprenavir. The fits for 20 and 30 mM quinidine

were of the same quality as 10 mM. The fit for 1 mM

quinidine shows a small underestimate of the fitted curve; the

fit for 3 mM quinidine was similar. However, the good fit for

0.3 mM quinidine A:B . A curve shows that the under-

estimate for the 1 mMdata is just random error and would not

have been noticed without the predicted curves.

This is an important point. Before the analysis and the

plotting of the fits, all of the data looked fine. Here, for 1 mM

quinidine, because of the predicted curve for the A:B . A
data, we can see some systematic deviation. We have done

these experiments many times, and it is typical for

amprenavir and quinidine for one or two concentrations

out of 6–9 total concentration tested to show a small

deviation, like 1 mM quinidine. But it was never the same

concentration each time. The confluent cell monolayers are

not identical, and to just repeat the 1 mM quinidine case until

it looked better misses one of our most important points. We

want to fit the average value of the parameters on the average

day. In any case, like amprenavir, if there is any systematic

deviation in the quinidine curves, it is too slight to be

analyzed further.

The third drug was loperamide. For economy and to com-

pare with quinidine and amprenavir, we show only three final

fits for loperamide: 10 mM in Fig. 13 A, 1 mM in Fig. 13 B,
and 0.3 mM in Fig. 13 C.
In Fig. 13 A, the fit to 10 mM loperamide is good enough,

although the A:B . A data are slightly underestimated. Fits

for 20 and 30 mM loperamide were similar. In Fig. 13 B, the
fit for 1 mM loperamide underestimates the A:B . A data

substantially. The B:A . B data are substantially under-

estimated, because the loperamide binding constant was

fixed at the ‘‘high’’ concentration value shown in Table 3.

The deviations were less for 3 mM loperamide, but worse for

0.3 mM loperamide, Fig. 13 C. Clearly, some other transport

process is occurring for loperamide. The slight deviations for

FIGURE 11 Amprenavir data and the fits data and the fits (using the

single-parameter vector in Table 4) are shown. Panel A shows the fit for all

four data sets from 100 mM amprenavir. The B:B . A curve denotes the

concentration of drug in the basolateral chamber when the donor chamber

was the basolateral chamber, i.e., transport runs B . A. A:B . A would be

the concentration in the apical chamber when the basolateral chamber is the

donor. All B . A data are shown by squares: solid when the basolateral

chamber was sampled, i.e., B:B. A, and open when the apical chamber was

sampled, i.e., A:B . A. All A . B data are shown by triangles: solid when

the basolateral chamber was sampled, i.e., B/A . B, and open when the

apical chamber was sampled, i.e., A:A . B. The fits for the basolateral data

are shown by the solid line, i.e., both B:B . A and B:A . B. The fits when

the apical chamber is sampled are shown by the dotted line, i.e., both A:B.

A and A:A . B. This format is also used for Figs. 12 and 13. Data shown

were the average of triplicates, with standard deviation error bars. Panel B

shows the data and fits for 10 mM amprenavir. Panel C shows the data and

fits for 1 mM amprenavir. Note that 10 and 1 mM data sets were not used for

fitting parameters. Similar quality fits for 90, 80, 70, 60, and 50 uM

amprenavir are not shown.
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the amprenavir and quinidine fits are very different from this

across the time range underestimate for the low loperamide

concentrations. This is not a failure of the model or the fitting

process, but rather it shows the sensitivity of the kinetic

analysis as an analytical tool. The nature of this additional

transport process will be discussed in detail below

DISCUSSION

The clinical and biological relevance of P-gp is clear; the

question is how to elucidate the mechanism of action of this

complex membrane transporter. Mechanistic models for

FIGURE 12 Quinidine data and the fits (using the single-parameter vector

in Table 4) are shown with the same format as Fig. 11. Panel A shows the fits

for 10 mM quinidine, panel B for 1 mM quinidine, and panel C for 0.3 mM

quinidine. Other quinidine concentrations—1, 2, 5, and 20 mM—showed

essentially the same quality fits (data not shown).

FIGURE 13 Loperamide data and the fits (using the single-parameter

vector in Table 4) are shown with the same format as Fig. 11. Panel A shows

the fits for 10 mM loperamide, panel B for 1 mM loperamide, and panel C for

0.3 mM loperamide. In panels B and C, the A/B . A data are connected by

a dashed line to guide the eye, and the fit is shown by the lower dotted lines.

The vertical arrows connect these two curves to show the extent of the

model’s underestimate of these data. See text for a discussion of possible

explanations; 3 and 20 mM loperamide showed essentially the same quality

fits as 10 mM (data not shown).
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P-gp activity, and similar multi-drug transporters, have been

proposed based upon ATPase activity, Michaelis-Menten

steady-state analyses, and equilibrium binding studies of

purified/lipidated reconstitutions of P-gp and/or of plasma

membrane vesicles (Senior et al., 1995; van Veen et al.,

2000; Qu et al., 2003; al-Shawi et al., 2003; Loo et al., 2003;

Urbatsch et al., 2003). The confluent monolayer system that

we use is a better physiological model system of in vivo P-gp

activity, but it is more difficult to use. It requires a more

sophisticated kinetic analysis to extract the elementary rate

constants and the surface density of efflux active P-gp. The

confluent monolayer of cells does not readily permit

transport/ATP hydrolysis stoichiometric studies. Neverthe-

less, we believe that resolution of differences in parameter

estimates between the different expression systems will be

required to elucidate the in vivo activity of P-gp.

Our kinetic analysis was the unavoidable consequence of

not imposing the steady-state Michaelis-Menten equations

onto the data. P-gp active transport has (at least) four

kinetically important parameters, which become convolved

into the Vmax and Km of the Michaelis-Menten equation.

We felt that this convolution would hinder the resolution of

P-gp mechanism. This meant we had to simultaneously fit

the four most important kinetic parameters of P-gp transport.

Our kinetic data cannot address the question of multiple

substrate binding to P-gp, since the association and

dissociation kinetics for all drugs tested were so rapid that

any number of postulated binding sites on P-gp would be

empty or filled together. The predicted transport kinetics are

essentially identical (simulations not shown). Future work

involving substrate competition can address these issues

directly.

The two main questions we could address were: 1), would

the physiologically relevant polarized monolayer of

MDCKII-hMDR1 cells yield adequately precise data for

a rigorous analysis, and 2), was the simplest Michaelis-

Menten one-site mass action reaction adequate to fit the data

generated? The answer was yes, for both questions.

Simultaneous fitting of all parameters to all data was

attempted, but was too slow, i.e., after weeks only a small part

of the search space was covered. A much more sophisticated

search programwould be needed. However, the algorithmwe

constructedworked.A complete fit for one drug concentration

required;7–9 days on a 2.8 GHz PC. The keys to the success

of the fitting algorithm used here were:

1. The validity of the assumption that the data could be

fitted in two stages. First, the B . A forward data could

be used to yield good fits for the surface density of efflux

active P-gp, T(0), and the forward rate constants, k11 and
k21, even though kr1 was fixed at zero for these fits to

reduce computation time. Second, the A . B reverse data

would be fitted essentially only by the dissociation rate

constant kr1, since the forward rate constants only weakly

affect the A . B fits. The correlated fits were unexpected,

but now it is known that they are artifacts for this fitting

algorithm used on the Michaelis-Menten mass action

reaction and can be discarded.

2. The unexpected, but understandable, finding that the

best fits to the B . A forward data had the product of

k21T(0) ¼ constant, like Vmax in the Michaelis-Menten

analysis, even though no steady-state assumption had

been imposed. This allowed us to reduce the dimensions

of the more refined forward fits to only T(0) and k11,
thereby markedly accelerating the last fitting of the

‘‘forward’’ parameters.

The final fitted parameter ranges for all three drugs are

shown in Table 3. Clearly, the benchmark column was the

predicted surface density of efflux active P-gp on the apical

membrane. The independent analyses of each of the three

drugs yielded overlapping ranges. This overlap would not

occur if the model had ‘‘excess’’ parameters. There are just

too many different ways for different ranges to have been

chosen. Of course, the overlap does not prove that the fitted

values are accurate. There could be an unknown systematic

error that shifts the range from the ‘‘true’’ value. However,

the analysis of the model data, generated by simulations,

found the correct value of T(0), once the correlated fits were

discarded. This shows that the analysis, per se, was not

introducing any systematic error. There was no significantly

different outcome between the analysis of the model data and

that of the drug transport data. If there is a systematic error,

then it appears to be relatively minor.

So how do these fitted values for T(0) compare with

estimates for the amount of P-gp per cell made by quantitative

Western analysis? This has not been done with this cell line,

but has been done with similar cell lines (Ambudkar et al.,

1997; Ito et al., 1999). As stated above, since the expression

levels of P-gp depend upon many factors, not all of which are

necessarily known, we treated it as a fitted parameter.

However, it appears that the fitted value range for the surface

density of efflux active P-gp is at least 10 times smaller than

the total P-gp estimated inAmbudkar et al. (1997) for a similar

cell line. Because of the differences in cell systems, this

quantitative difference could be argued several ways, but we

speculate that both estimates are probably essentially correct.

So, how can more than 90% of P-gp in the confluent

monolayer not be efflux active? It is believed that most

expressed P-gp is in the plasma membrane, not sequestered

inside the cell, and we have no reason to believe that a large

fraction of the P-gp is misfolded. This is where the

appreciation of the interplay between the essential transport

parameters of P-gp and the details of the expression system

becomes important. By definition in the kinetic model, the

P-gp that are efflux active are those that send their drug

directly into the apical chamber, where it equilibrates

‘‘instantly’’, according to the partition coefficients, between

the sampling volume of the apical chamber and the outer

apical monolayer.
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Fig. 14 shows our hypothesis about why only the P-gp at

the tips of the microvilli will be efflux active. The microvilli

on the apical membrane ofMDCK II cells are columns longer

than the aqueous space between them (Butor and Davoust,

1992). The random walk of drug released from P-gp at the

base of a microvillus will almost certainly encounter the same

or a neighboring microvillus rather than release into the apical

chamber. Flip-flop would put the drug in the inner apical

monolayer, where the cycle would be repeated. Only those

drug molecules that are released from P-gp at the tip of the

microvillus would have a reasonable probability of escaping

directly into the apical chamber. As an illustration only,

a cartoon path is indicated in the figure. Interestingly, the

surface area of a microvillus tip is ;10% of the total

microvillus surface area, crudely estimated from the micro-

graphs of Butor and Davoust (1992). Quantitative studies of

this hypothesis are ongoing.

Avery interesting corollary to this hypothesis is that the cell

could substantially alter its P-gp transport by fairly subtle

changes in the protein spindles that create the microvilli.

Almost any change in dimension would have an effect on the

density of efflux active P-gp.

The estimated ranges for the association rate constants, k11,
were the same for all three drugs and were very large. This

suggests that association is rate-limited by lateral diffusion

through the inner monolayer of the plasma membrane. This

also suggests that the drug binding site in P-gp is essentially

open to the apical membrane inner monolayer. Studies have

suggested that the binding site involves the inner apical

portions of the transmembrane domain helices 4–6 and 10–12

(Loo and Clarke, 1999; Loo et al., 2003). If the other six

transmembrane domain helices were surrounding and block-

ing those comprising the binding site, then such rapid ingress

would not be expected.

No atomic level crystal structure for P-gp has been

published to date. The best guesses about its structure in the

membrane come from mutational and cross-linking studies

on P-gp (Gottesmann and Pastan, 1993; Loo and Clarke,

1999, 2000, 2001; Stenham et al., 2003), electron diffraction

of two-dimensional crystals (Rosenberg et al., 1997, 2001,

2003, 2004), and the crystal structures of the bacterial

homologs MsbA and BtuCD (Chang and Roth, 2001; Locher

et al., 2002; Chang, 2003). Remarkably, all nucleotide bound

structural models or homologs show open access to the

center of P-gp from the apical membrane inner monolayer.

Thus, there appears to be an agreement between the very

large kinetic association rate constants we have measured

and the predicted openness of the structure of P-gp within the

plasma membrane.

We allowed our fitting program to seek rate constants

without constraints, which led to some very large fitted values

for k11. The maximum value for the association rate constant

is not known. The classical Smoluchowski solution for

diffusion controlled on-rate constant in three dimensions does

not work in two dimensions, making a maximal value

dependent upon two-particle correlation functions (Keizer,

1987;Molski et al., 1996;Hinterdorfer et al., 1997). However,

assuming that the lateral diffusion coefficients of these drugs

in bilayers are similar to that of ibuprofen (Gaede and

Gawrisch, 2003), we can use the simplified approximate sol-

utions to the two-dimensional diffusion equation to estimate

that the upper bound for k11. We found that it should be of

the order of 109–1010 M�1s�1 (Keizer, 1987; Hinterdorfer

et al., 1997). Thus, the lower range of the estimates for k11
appears to be the right answer. Better estimates for the upper

bound for k11 are being pursued by more rigorous calcu-

lations.

The estimated efflux rate constants, k21, were also very fast.
Although it is believed that ATP binding, per se, provides the

energy for transport (Rosenberg et al., 2001), ATP hydrolysis

is required for the efflux cycle to be completed (Urbatsch et al.,

2003). To date, the maximal ATP hydrolysis rates found for

detergent solubilized and lipid reconstituted P-gp are on the

order of 10–20 s�1 (Urbatsch et al., 2003; Loo and Clarke,

2000). The estimated efflux rate constant, k21, for quinidine
and loperamide are at or just below the limit of these published

ATP hydrolysis rates for other drugs.

For amprenavir, the estimated efflux rate constant exceeds

these ranges by more than 10-fold. This difference is not due

to the fitting process. A simple calculation based solely on

the nmol of drug transported per well shows that the efflux

rate constant for amprenavir must exceed that of quinidine by

10-fold or more. As an example, we use the 1-h time point to

compare the B . A transport with 20 mM quinidine, where

P-gp transport is nearly saturated, with 100 mM amprenavir,

where P-gp transport shows no signs of saturation (data not

shown). These data are like that shown in Fig. 3. Subtracting

FIGURE 14 Blowup of the model of an apical membrane showing

microvilli, roughly to scale. The figure qualitatively illustrates that the

random-walk pathway of drug released at the base of a microvillus will be

tortuous, involving many subsequent interactions with the same or

a neighboring microvillus and the P-gp they contain. Only the P-gp at the

tips of the microvilli can efflux the drug directly into the apical chamber

where it can be measured. The hypothesis is that the efflux-active P-gp

would be at the top of the microvillus.
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the nmol transported without inhibitor (17.3 for amprenavir

and 3.3 for quinidine) from the nmol transported with

inhibitor (8.2 for amprenavir and 2.0 for quinidine) yields the

transport due to P-gp (ignoring the backflow), i.e., 9.1 nmol

for amprenavir and 1.3 nmol for quinidine. Thus, per hour

per well,;9.1/1.3 ¼ 7 times more amprenavir is transported

than quinidine. Since P-gp is not saturated in 100 mM

amprenavir, a .10-fold higher efflux rate constant for

amprenavir over quinidine is clearly required, even by this

crude calculation. The same comparison between 20 mM

quinidine and 20 mM loperamide, both of which show close

to saturation for P-gp, yields .0.3/1.3 ; 0.23 times less

loperamide transported per well than quinidine. This is

essentially the same ratio shown by the efflux rate constants

in Table 3. Choosing other times or concentrations gives

comparable results.

The relationship between P-gp transport and its ATPase

activity remains quantitatively unclear. ATP hydrolysis has

always been measured in reconstituted systems and, recently,

Modok et al. (2004) showed that lipid composition matters.

This is a new variable for P-gpATPase activity.Weworkwith

P-gp in the asymmetric apical membrane of a living cell. In

addition, there is coupling between ATPase activity and drug

binding (al-Shawi et al., 2003; Omote et al., 2004). It seems

reasonable to suggest that the maximal ATPase activity of

P-gp has not yet been measured. The ATPase activity caused

by these drugs will be examined, as a function of recon-

stitution conditions to more clearly mimic the intact mem-

brane. This is one focus of our work on comparing different

P-gp expression systems: to learn from their differences.

Weak substrate binding and rapid efflux had been

speculated as an important element in P-gp broad substrate

specificity and its primary job of not allowing xenobiotics

into the cell cytoplasm (Seelig and Landwojtowicz, 2000; al-

Shawi et al., 2003; Seelig and Gatlik-Landwojtowicz, 2004).

Our predicted binding constants confirm the speculation.

Interestingly, although loperamide and quinidine show P-gp

transport in the same aqueous concentration range, this

appears to be due to loperamide’s larger partition coefficient

for all the LUV compositions (Table 2), since it has the

weakest binding constant to P-gp of the three drugs we

tested. Although our partition coefficients are based upon

model lipid compositions, they are likely to be reasonable in

a relative sense and perhaps in an absolute sense. So P-gp

‘‘specificity’’ is due to the independent contributions of

partition coefficient and specific binding to P-gp.

Our kinetic analysis has provided a means to estimate the

free energies of P-gp interaction with these drugs. When we

choose amprenavir as a norm, then estimates for differences

in free energy of binding, roughly given by DDG ¼
RTln{KB(Drug)/KB(AMP)}, is about (2.6 kJ/mol) 3

ln{6000/1300) � 3.9 kJ/mol for quinidine and (2.6 KJ/mol)

3 ln{150/1300)��5.5 kJ/mol for loperamide at 37�C. If we
assume that H-bonds range from 5–10 kJ/mol (Seelig. and

Gatlik-Landwojtowicz, 2004), then there appears to be ,1

H-bond difference for all three drugs at the binding site. Of

course, hydrophobic interactions could also be the cause of

the difference. On the other hand, for the efflux rate constant,

k21, the rough values for transition state free energies, given

by DDGz ¼ RTln{k21T(0)(Drug)/k21T(0) (AMP)}, is about

(2.6 kJ/mol)3 ln{0.0008/0.009)��6.3 kJ/mol for quinidine

and (2.6 kJ/mol) 3 ln{0.0002/0.009) � �9.9 kJ/mol for

loperamide, at 37�C. This assumes that the density of efflux

active P-gp is the same. Thus, relative to amprenavir, this

suggests that efflux could involve breaking one more

hydrogen bond for quinidine and 1–2 H-bonds more for

loperamide. Other weak interactions are certainly possible.

Whatever the case, our data suggest that the binding and the

efflux sites are not identical, as has been proposed from

equilibrium binding studies (Martin et al., 2000), but neither

binds these drugs particularly strongly.

This leads us to the last fitted parameter, the dissociation

rate constant kr1. Often, reverse rate constants aremeasured by

preloading a systemwith substrate, then diluting the sample or

competing the bound substrate off. Fitting the release of

substrate to a log plot, appropriate for first-order release, gives

an estimate for the dissociation rate constant. This is

straightforward when used with molecules in solution.

However, with membrane systems, which have bilayers and

internal compartments, there is reason to believe that the

safest way tomeasure a reverse rate constant, like kr1, is as part
of the process of fitting all the rate constants (Bentz and Nir,

1981; Bentz et al., 1983). This reduces the possibility of

barriers, other than the expected one, being responsible for the

release of the substrate. However,measuring all rate constants

as part of the same experimental design is rarely done in

macroscopic systems, aswe have done here, simply because it

is so hard to obtain unambiguous answers (Bentz et al., 1983).

The Michaelis-Menten steady-state analysis used for en-

zymes and membrane transport (Stein, 1997) irretrievably

subsumes the reverse rate constant into the Km.

In part, the confluent cell monolayer system was

competent to allow fitting of the dissociation rate constant

kr1 because the forward association rate constant was so fast.
This caused the fitting of the forward B. A data to be rather

insensitive to the value of the dissociation rate constant kr1.
From computer simulation, it was clear that given the large

TABLE 2 Drug equilibrium partition coefficients (v/v) with LUV

PC/SM/chol (1:1:1) PC/chol (2:1) PS/PE/chol (1:1:1)

Quinidine 68 6 7 112 6 9 717 6 28

Amprenavir 148 6 12 205 6 22 228 6 17

Loperamide 671 6 23 1045 6 122 3138 6 624

Extruded 0.1 mm LUV of the prescribed lipid composition at 10 mM total

lipid concentration was incubated with drug at 10 mM concentration for 6 h.

Partition coefficients (mol drug per liter of LUV bilayer/mol drug per liter

buffer) were calculated as described in Materials and Methods. Preliminary

studies established that equilibrium was reached under these conditions.

Mean 6 SD of four replicates for each drug are shown.
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forward rate constants, the fact that there was any A . B
transport in the face of active P-gp could only mean that

binding of the drugs to P-gp was weak.

Dissociation rate constants have been reported for the

P-gp substrates vinblastine and XR9576, using cell mem-

brane vesicles preloaded with these drugs (Martin et al.,

2000). The aqueous KD values reported for these drugs were

10 and 3 nM, respectively. From the KD,Aq values shown in

Table 3, it is clear that they bind much more strongly than the

drugs used here, from 20 times (vinblastine versus quinidine)

to 1000 times (XR9576 versus amprenavir). However, the

reported rate constant for substrate release from these

vesicles into the medium are .6 orders of magnitude

smaller than what we found for kr1 for these drugs. This

difference cannot be explained by the difference in binding

constants. The barriers cannot be the same, but a direct

comparison will be needed to resolve this problem.

We can estimate the average number of drug molecules

that visit the binding site before one of them is effluxed using

the ratio of the dissociation rate constant and the efflux rate

constant, kr1/k21. From Table 4, we find that for each

amprenavir effluxed into the apical chamber, ;10,000

amprenavir molecules bind to P-gp and escape back to the

apical membrane inner monolayer. The ratio for quinidine is

;1:30,000 and for loperamide is;1:5,000,000. This picture

of the process is quite different from that derived from

equilibrium binding studies, which typically show a substrate

binding to P-gp, then moving to the efflux site and then being

effluxed. The rate constants predict that the vestibule of P-gp

is quite busy, with substrate molecules binding briefly and

then diffusing out, with only the occasional bound substrate

being effluxed.

We now turn to the deviation from predictions found at

low concentrations of loperamide. The higher concentrations

of loperamide, $10 mM, fit the data well, just like

amprenavir and quinidine, suggesting that at the higher

concentrations, the active transport was due to P-gp, since

that is the overexpressed transporter. At low concentrations

of loperamide, at and below 3 mM, the A:B . A data were

significantly larger than the predicted values. Part of the

TABLE 3 Parameter estimates from exhaustive fitting

Drug

‘‘Vmax’’
k21T(0) (M/s)*

Active P-gp

density T(0)
(per mm2)y

Association to

P-gp k11
(M�1s�1)z

Binding constant

KB (M�1)§

‘‘KD,Aq’’

Efflux to

apical chamber

k21 (s
�1){

Dissociation

to bilayer

kr1 (s
�1)k

AMP (n ¼ 8) 9 3 10�3 32–320 2 3 109–2 3 1010 (1.3 6 0.6) 3 103

‘‘3 mM’’

20–200 .1 3 1016

QND (n ¼ 6) 8 3 10�4

(No fit for 1 mM)

8–80 2 3 108–1010 (6 6 3) 3 103

‘‘0.2 mM’’

8–80 .2 3 1014

LPM (n ¼ 6) 2 3 10�4

[LPM] ¼ 3–20 mM

8–80 108–1010 100–200 [LPM] $ 10 mM

‘‘2 mM’’

2–20 [LPM] $ 10 mM .5 3 1015

(No fit for 0.3 mM) 1000–3000 [LPM ]# 1 mM

‘‘0.2 mM’’

.3 3 1014

*For amprenavir, the average value for 60–100 mMwas k21T(0)¼ 93 10�3 M/s, as shown in Fig.7. For quinidine, the asymptote for 0.3–20 mMwas k21T(0)

; 8 3 10�4 M/s. At 1 mM quinidine, no stable value for k21T(0) was found. At 30 mM quinidine, the value was much smaller, due to the very small

contribution of P-gp to overall transport because of saturation binding. For loperamide, the asymptote for 3–20 mM was roughly k21T(0) ; 2 3 10�4 M/s. A

value as large as k21T(0) ¼ 3 3 10�4 M/s was possible, but subsequent fits were not significantly sensitive to this choice. At 0.3 mM, there was no

convergence to a single k21T(0) value. At 30 mM, the value was smaller, likely due to the very small contribution of P-gp to overall transport, as was the case

for quinidine. The k21T(0) values shown were fixed by at least the first 250 best fits, which all have the same CV, i.e., these are robust fits at each

concentration.
yEfflux-active concentration of P-gp in the inner apical monolayer was bounded by T(0) ¼ (4–40) 3 10�5M for amprenavir, Fig. 9. For quinidine and

loperamide, slightly lower ranges were found, (1–10) 3 10�5M (data not shown), but there is substantial overlap. These units have been converted to a more

typical form, assuming a 2 nm lipid monolayer thickness for the acyl chain region. T(0) (Pgp/mm2) ¼ 0.8 3 T(0) (mM, inner apical monolayer). The ratio of

apical membrane to the insert cross-section area is irrelevant, since it cancels out in this calculation.
zRange for k11 found in the final forward fit. As shown for amprenavir in Fig. 8, the range was k11 ¼ (1–10) 3 109 M�1s�1. For quinidine and loperamide,

the range was broader, k11 ¼ (0.2–10) 3 109 M�1s�1 (data not shown).
§Binding constant between P-gp and the inner apical monolayer shown is the average of the best fits (.160 for each drug concentration) as shown in Fig. 10

for amprenavir. For quinidine, the value for 30 mMwas omitted due to active transport saturation, as noted above for k21T(0). For loperamide, there were two

ranges of binding constants. At 10 and 20 mM, the binding constant to P-gp was in the range of 100–200 M�1. The fit at 30 mM was not used due to active

transport saturation. At 0.3 and 1 mM, the binding constant was in the range of 1000–3000 M�1. For 3 mM loperamide, the binding constant was an

intermediate value of ;600 M�1. Since all A . B flux was fitted to a single binding constant, a better deconvolution of this parameter is not yet possible.

Below each binding constant, we show in parentheses the appropriate dissociation constant for each drug relative to the aqueous phase, calculated as KD,Aq ¼
1/(KB 3 drug partition coefficient{PS/PE/chol}), the liposome mimic for the inner apical monolayer. These aqueous dissociation constants are given only to

a single significant digit, and no error bars were calculated. These are intrinsic dissociation constants and are not the same as those derived from a steady-state

Michaelis-Menten analyses.
{Estimate for the efflux rate constant k21, from P-gp into the apical chamber, given by the ratio of the fitted k21T(0) for each drug and the center-of-the-box

value of T(0) ¼ 5 3 10�5 M. See text and second footnote (y) above.
kEstimate for the dissociation rate constant kr1, given by the ratio of the center-of-the-box value of k11 ¼ 3 3 109 M�1s�1 and the fitted KB ¼ k11/kr1 for each

drug. See text and third footnote (z) above.
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deviation was due to using the binding constant for the larger

loperamide concentrations, Table 4, but in addition we do

not have an estimate for the appropriate k21T(0) for the low
loperamide concentrations. Further studies will be required

to fully understand the cause of the deviation. However,

since the passive transport was symmetric (Tran et al., 2004),

showing that the extra transport was inhibited by GF120918,

the deviation appears to be due to a transporter inhibited by

GF120918.

If this is the case, then the likely choice is the endogenous

canineMDR transporter, since the parentMDCKII cell line to

the cell line we use here has MDR-like transport activity,

including inhibition by GF120918 (Evers et al., 2000; Tang

et al., 2002a,b). The fact that the endogenous transporter

appears only at low loperamide concentrations suggests that it

has a higher affinity for loperamide than P-gp. In Table 3, we

show that the loperamide binding constant to P-gp at high

concentrations was 100–200 M�1, whereas at the lower

concentrations it was an order of magnitude larger. The

endogenous transporter would be predicted to have a much

lower expression level than P-gp, both because P-gp is

overexpressed and because the model to fit the data at higher

loperamide concentrations. If this is correct, the endogenous

transporter would have an affinity for quinidine that is equal to

or less than P-gp, since that data were well-fitted down to

0.3 mM quinidine.

Although this explanation makes sense, what are the

alternatives? If the excess transport observed at low

loperamide concentration were attributed to the proposed

second site on P-gp (Martin et al., 2000), then the binding of

loperamide to the second site at higher concentrations must

inhibit transport. The model underestimates transport as the

loperamide concentration decreases. If this were correct, then

quinidine and loperamide must have qualitatively different

interactions with P-gp, since the model fits the quinidine data

from 0.3 to 30 mM. Although this is also a hypothesis, it

requires that P-gp loses transport activity as the concen-

trations of the xenobiotic goes up, which is counterintuitive at

this time. We are studying this question to determine which

hypothesis works better.

In principle, another hypothesis would be that the partition

coefficients for loperamide increase at low concentrations,

which would increase transport. The LUV showed no

concentration dependence for the partition coefficient, but

cell monolayers could change, theoretically. However, by

simulations, we found that 10-fold changes in any or all

partition coefficients could increase loperamide transport by

only 30%, whereas the underestimate in Fig. 13 C is over

100%. So this hypothesis cannot readily explain the devia-

tion.

Actually, this deviation illuminates the power of the model

as an analytical tool. It showed where the transport is

augmented by something outside of the model used, e.g., an

additional transporter or an additional binding site on P-gp. It

is useful to note here that the appearance of a second

transporter does not affect the fitted parameters in Table 3.

That is, there is no reason to put a second transporter into the

kinetic model and reanalyze all of the amprenavir and

quinidine data, because only one transporter was needed to fit

those data. No parameter estimates would change. The kinetic

analysis cannot identify the transporter for amprenavir or

quinidine, but it is commonly believed that it is P-gp. For the

loperamide data, we already know how a model with two

transporters would fit. It would give the parameters listed in

Table 3 for [LPM] . 10 mM for high concentrations and the

parameters for [LPM] , 3 mM for low concentrations. The

values for those parameters would not change significantly.

We are pursuing this question in the context of competition by

two different drugs.

In conclusion, the single site mass action Michaelis-

Menten reaction for P-gp was exhaustively fitted to transport

data from polarized cell monolayers of MDCKII-hMDR1

cells. The results show that this reaction is adequate to explain

the data, although the fits do not rule out multiple sites. We

have shown for three drugs that there are only two kinetic

barriers to passive transport across the polarized cell mono-

layers, i.e., the basolateral and the apical plasma membranes.

This implies that although there is certainly transport through

the cytosol, it is a minor kinetic pathway. The fitted

elementary rate constants provide a deeper description of

TABLE 4 ‘‘Center-of-the-box’’ parameter values for all simulations

Drug

Active P-gp

density T(0) (mM)*

Association to

P-gp k11 (M
�1s�1)y

Binding constant

KB (M�1)z
Efflux to apical

chamber k21(s
�1)§

Dissociation to

bilayer kr1 (s
�1){

AMP 50 3 3 109 1300 180 2 3 106

QND 50 3 3 109 6000 16 5 3 105

LPM 50 3 3 109 150 4 2 3 107

*Simple center-of-the-box value from the consensus range for the three drugs for the concentration of efflux active P-gp in the apical membrane inner

monolayer was about T(0) ¼ 5 3 10�5 M, which will be used for all three drugs.
ySimple center-of-the-box value from the consensus range for the three drugs was k11 ¼ 3 3 109 M�1s�1, which will be used for all three drugs.
zBinding constants were taken as the average value from Table 3, using the high concentration values for loperamide, since that should be due to P-gp.
§Efflux rate constant k21, from P-gp into the apical chamber, was calculated by the ratio of the fitted k21T(0) for each drug and the center-of-the-box value of

T(0) ¼ 5 3 10�5 M.
{Dissociation rate constant kr1 was calculated by the ratio of the fitted KB ¼ k11/kr1 for each drug and the center-of-the-box value of k11 ¼ 3 3 109 M�1s�1.
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the function of P-gp than steady-state or compartmental

analysis, since the interaction of the drug with the protein is

the focus. The finding that the most physiologically relevant

expression system for P-gp, the confluent cell monolayer that

requires hours to reach steady state without loss of function

(Tran et al., 2004), allows the measurement of very fast rate

constants of association and dissociation. This is due to the

fact that the amount of efflux-active P-gp expressed per entire

1.13 cm2 cell monolayer is extremely small, #0.5 pmol.

Reconstituted systems typically have such high concentra-

tions of protein that the on and off rates of binding would be

too fast to measure reliably. Functional analysis of mutations

can now be attributed to the proper rate constant, developing

much more rigorous structure/function relationship for P-gp.

APPENDIX: GLOSSARY

Units for all concentrations are molar, either in the aqueous media or the

lipid bilayer; all volumes are liters; all times are seconds; and all partition

coefficients are v(lipid)/v(aqueous), unless otherwise specified.

CB, concentration of drug in basolateral chamber.

CC, concentration of drug in cytosol.

CPC, concentration of drug in cytosolic side of plasma membrane, mols

per liter of inner monolayer.

CA, concentration of drug in apical chamber.

KPC, equilibrium partition coefficient to the plasma cytosolic monolayer.

KBO, equilibrium partition coefficient to the basolateral membrane outer

monolayer.

KAO, equilibrium partition coefficient to the apical membrane outer

monolayer.

kv, first order rate constant for drug loss from aqueous chambers (s�1).

PBCAB, permeability coefficient across the basolateral membrane times

its area (L/s).

PACAA, permeability coefficient across the apical membrane times its

area (L/s).

T(0), total concentration of transporter in apical membrane inner

monolayer.

T0, concentration of transporter with no bound drug.

T1, concentration of transporter with one bound drug molecule.

VB, volume of Costar Transwell basolateral chamber (1.5 mL).

VA, volume of Costar Transwell apical chamber (0.5 mL).

VC, volume of entire cell monolayer cytosol (;1 mL).

VAO, volume of entire cell monolayer outer apical membrane facing the

Costar apical chamber (0.5 nL used here, but perhaps as much as 2

nL due to microvilli).

We thank Dr. Avi Ghosh (Drexel University) for comments on an early

draft of the manuscript.
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