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ABSTRACT Using polymer elastic theory and known RNA free energies, we construct a Monte Carlo algorithm to simulate the
single RNA folding and unfolding by mechanical force on the secondary structure level. For the constant force ensemble, we
simulate the force-extension curves of the P5ab, P5abcDA, and P5abc molecules in equilibrium. For the constant extension
ensemble, we focus on the mechanical behaviors of the RNA P5ab molecule, which include the unfolding force dependence on
the pulling speed, the force-hysteresis phenomenon, and the coincidence of stretching-relaxing force-curves in thermal
equilibrium.We particularly simulate the time traces of the end-to-end distance of the P5ab under the constant force in equilibrium,
which also have been recorded in the recent experiment. The reaction rate constants for the folding and unfolding are calculated.
Our results show that the agreement between the simulation and the experimental measurements is satisfactory.

INTRODUCTION

Ribonucleic Acid (RNA) is now known to be involved in

many biological processes, such as carriers of genetic

information (messenger RNAs), simple adapters of amino

acids (transfer RNAs), and enzymes catalyzing the reactions

in protein synthesis, cleavage, and synthesis of phospho-

diester bonds (Cech, 1987, 1993). In particular, recent

discoveries indicated that a class of RNA called small RNA

operates many of cell’s control (for a report, see Couzin,

2002). These diverse and specific biological functions of

RNA are guided by their unique three-dimensional folding.

Therefore, prediction or measurements of RNA folding and

folding dynamics becomes one of central problems in bio-

logical studies.

In addition to standard experimental methods, such as

x-ray crystallograph and NMR spectroscopy, single-mole-

cule manipulation technique developed in the past decade

provides a fresh and promising way in resolving the RNA

folding problem (Essevaz-Roulet et al., 1997; Rief et al.,

1999; Liphardt et al., 2001, 2002; Harlepp et al., 2003; Onoa

et al., 2003). As a concrete example, an optical tweezer setup,

which is also the experiment we consider in this work is

sketched in Fig. 1 (Smith et al., 1996; Wang et al., 1997):

a single RNA molecule is attached between two beads with

RNA:DNA hybrid handle; one bead is held by a pipette, and

the other is in a laser light trap. (In practice, the RNA is

attached between the two beads with two RNA:DNA hybrid

handles. To simplify simulation method, only one handle is

considered. It should not change following discussions.) By

moving the position of the pipette, the distance between the

two beads and the force acting on the bead in the light trap can

be measured with high resolution. This sophisticated setup

has shown its abilities in recording the time-traces of the end-

to-end distance of a small 22-basepair RNA hairpin (Liphardt

et al., 2001), and resolving complicated unfolding pathways

of 1540-base long 16S ribosomal RNA (Harlepp et al., 2003).

On the theoretical side, although complete three-dimen-

sional RNA folding prediction so far seems enormously

difficult (Tinoco and Bustanmante, 1999), RNA structural

prediction from a physical point of view has made great

progress on the level of secondary structure (Zuker and

Stiegler, 1981; McCaskill, 1993; Hofacker et al., 1994). The

advent of the single-molecule experiments addresses a chal-

lenging issue for theorists: whether or how can we apply the

known secondary structural RNA knowledge to explain or

predict the phenomena observed in the single-molecule

experiments? Under force stretching or twisting, the elastic

properties which were cared little about or even neglected

before now must be seriously taken into account. As an

attempt, in this work we construct a Monte Carlo simulation

method, which can uniformly investigate the RNA thermo-

dynamical and kinetic unfolding behaviors. Compared to the

enormous simulation works about force unfolding proteins,

the simulations for RNAs are few (Harlepp et al., 2003; Liu

and Ou-Yang, 2004). The work here should fill this gap. In

addition, our simulation can build a connection between the

analytical studies of force unfolding RNA and the real

experiments.

The organization of this work is as follows. In the next

section, we simply review a stochastic RNA folding algo-

rithm which was developed by Flamm et al. (2000). Then we

show how the algorithm can be extended to the force stretch-

ing case by applying a polymer elastic theory. According to

different experimental setups, two ensembles—the constant

force and constant extension ensembles—are considered,

respectively. To demonstrate the correctness of our method,

we simulate the experiment carried out by Liphardt et al.

(2001) in Results section. We study the force-extension

curves of three RNA molecules in equilibrium in the constant
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force ensemble and the mechanical behaviors of P5ab

molecule in the constant extension ensemble in detail. The

behaviors include the pulling speed dependence of unfolding

force, the force-hysteresis phenomenon, and the coincidence

of stretching-relaxing force curves in thermal equilibrium.

Because the molecule’s extension jumps between two values

around unfolding force, in the following part, we particularly

study the kinetics of the P5ab under the constant force. The

main reason for choosing the P5ab for study is that its

equilibrium and kinetic properties have been explored by

experimenters in great detail, which provide us a good

opportunity for testing the accuracy of our simulation. On the

other hand, the structure of the P5ab is simpler but has an

intriguing two-state folding and unfolding behavior with or

without mechanical force. It is an ideal system for further

theoretical analysis, e.g., application of the Jarzynski equality

(Ritort et al., 2002), the microscopic theory of folding and

unfolding kinetics (Hummer and Szabo, 2003; Hyeon and

Thirumalai, 2003), etc. In the final section, we compare our

method with two previous theoretical models and point out

possible extensions of this algorithm.

MODEL

RNA folding conformational space without force

A RNA sequence is denoted by a nucleotides string l ¼ (x1, x2, . . . , xn), xi 2
fA, U, C, Gg; the bases x1 and xn are the nucleotides at 5# and 3# end of the

sequence, respectively. A secondary structure S of a RNA sequence is a list

of basepairs [xi, xj] that must satisfy two conditions: every base forms a pair

with at most one other base, and if any two basepairs [xi, xj] and [xk, xl] are in

the list, then i , k , j implies i , l , j. All structures of the sequence l

comprise a set, S(l) ¼ fS0, S1, . . . , Sm, 0g, here 0 denotes the completely

open chain conformation.

To describe the folding or unfolding process as a time-ordered series of

the structures in the set S(l), a relation M which specifies whether two

structures are accessible from each other by an elementary ‘‘move’’ must be

reasonably defined. The definition is identical to specifying a metric in the

set S(l). Any secondary structure formation or dissolving hence can be

described by a succession of elementary steps chosen according to some

distributions from a pool of acceptable moves in the conformational space

C(l) ¼ fS(l), Mg. In the absence of mechanical force, two kinds of move sets

have been proposed in modeling secondary structural RNA folding: one is

the formation or decay of a single helix (Mironov and Lebedev, 1993;

Gultyaev et al., 1995; Breton et al., 1997), and the other is the removal or

insertion of single basepairs per time step (Flamm et al., 2000). We make use

of the latter, for it is the simplest move set on the level of secondary

structure. Moreover, we mainly focus on smaller RNA in present work. The

formation or removal of a helix may cause larger structural changes, whereas

its physical relevance of RNA folding or unfolding seems debatable.

RNA unfolding move set and energy model with
mechanical force

According to the difference of the external controlled parameters, the RNA

unfolding experiments can be carried out under constant extension and

constant force, i.e., the constant extension and the constant force ensembles

(Liphardt et al., 2001). The move set and the system energies mentioned

above must be extended correspondingly.

We first consider the constant extension ensemble. Fig. 1 is the sketch of

an optical tweezer setup for this ensemble. Two simplifications have been

made in our model. We suppose that changes of the extensions of RNA and

the handle proceed along one direction. Physical effects of the beads are

neglected. Consequently, any state of the system can be specified with three

independent quantities, the position of the bead with respect to the center of

the optical trap, xtw, the end-to-end distance of the handle, xds, and the RNA

secondary structure S, i.e., the system in i-state ðSi; x
tw
i ; xds

i Þ: Here we do not

include xss, the extension of the RNA for the sum of individual extensions

satisfies constraint condition, x ¼ xtw 1 xds 1 xss, where x is the distance

between the centers of the light trap and the bead held by the pipette, and it

also is the external controlled parameter in the constant extension ensemble.

The move set for this system is extended as follow,

ðSi; x
tw

i ; x
ds

i Þ/ðSj; x
tw

i ; x
ds

i Þ; i 6¼ j

ðSi; x
tw

i ; x
ds

i Þ/ðSi; x
tw

i 6d; x
ds

i 7dÞ;
ðSi; x

tw

i ; x
ds

i Þ/ðSi; x
tw

i ; x
ds

i 6dÞ: (1)

The first kind of the moves is the removal or insertion of single basepairs

while keeping the extensions xtw and xds. The other two kinds are to

FIGURE 1 Sketch of an optical tweezer setup and the RNA molecules

studied in the work. We denote the region between the two arcs as the optical

trap. RNA molecules are attached between the two beads (larger black
points) with a RNA:DNA hybrid handle (black dash curves). In theoretical

model, the effect of the two beads has been neglected. The total extension

x¼ xtw 1 xds 1 xss is externally controlled, whereas the individual extensions,

xtw, the position of the bead with respect to the center of the optical trap; xds,

the end-to-end distance of the double-stranded DNA (dsDNA) handles; and

xss, the end-to-end distance of the single RNA are freely fluctuated. The

RNA native structures for the three small RNA sequences, P5ab, P5abcDA,

and P5abc are folded by Vienna Package 1.4.

Force Unfolding Single RNA 77

Biophysical Journal 88(1) 76–84



respectively move the positions of the bead in the light trap and the end of

the handle which connects RNA with a small displacement d, whereas the

secondary structure is fixed. Therefore, unfolding the single RNA for the

constant extension ensemble proceeds in an extended conformational space

C(l) 3 Rtw 3 Rds, where Rtw ¼ (0, 1N) and Rds ¼ (0, lds), and lds is the

contour length of the dsDNA handle. Given the system state i, we can write

its whole energy as

EiðxÞ ¼ DG
0

i 1W
twðxtwi Þ1W

dsðxdsi Þ1W
ssðxssi ; niÞ; (2)

where DG0
i is the free energy obtained from folding the RNA sequence into

the secondary structure Si, and the elastic energies of the optical trap, the

handle, and the single-stranded part of the RNA are

W
twðxtwi Þ ¼

1

2
ktwx

tw
2

i ;

W
dsðxdsi Þ ¼

Z x
ds
i

0

fdsðx#Þdx#;

Wssðxssi ; niÞ ¼ xssi f ðx
ss

i ; niÞ �
Z fðxssi ;niÞ

0

xssðf #; niÞdf #; (3)

respectively. In the expressionWds, fds(x#) is the average force of the handle
at given extension x#,

fdsðx#Þ ¼
kBT

Pds

1

4ð1� x#=ldsÞ2
� 1

4
1

x#

lds

� �
; (4)

where Pds is the persistence length, respectively. In the expression Wss,

xss(f#, ni) is the average extension of the single stranded part of the RNA

whose bases (exterior bases) is ni at given force f#,

xssðf #; niÞ ¼ nibss coth
f #lss
kBT

� �
� kBT

f #lss

� �
; (5)

where bss and lss are the monomer distance and the Kuhn length of the

single-stranded RNA, respectively (Bustamante et al., 1994; Smith et al.,

1996). Note that f ðxssi ; niÞ is the inverse function of xss(f#, ni). Similar elastic

energies have been used in dsDNA unzipping problem (Bockelmann et al.,

1998).

In the real experiments, constant force can be imposed on RNAmolecules

with feedback-stabilized optical tweezers capable of maintaining a preset

force by moving the beads closer or further apart. Including the feedback

mechanism in theoretical study is not essential now. A possible move set for

the constant force ensemble is the samewith the set for the constant extension

ensemble. The system energies in state i contain the free energy of the

secondary structure Si and the work f 3 xssi done on the single RNA by the

constant force f. (Because the handle only transfers constant force to the RNA

molecule, its contribution has been viewed as one part of the feedback

mechanism.) However, this naive extension is unreasonable for the elastic

characteristics of the single RNA cannot be correctly taken into account in

this way. A strict Monte Carlo method in studying chain molecules under

a constant force should contain complicated conformational transitions

(Zhang et al., 2001). To avoid complicated conformational description, in

this work, we propose an energy expression on the coarse-grain level for the

given secondary structure Si under constant force f,

Eiðf Þ � DG
0

i � f 3 xssðf ; niÞ: (6)

Here we replace the extension xssi with average extension xss(f, ni). The

physics underlying the formula is that the maximum probable conformations

are the most important for the work. Apparently, xss(f, ni) contains the elastic

characteristics of the RNA. As the formula is also used in kinetic studies,

additional requirement of the formula is that, under mechanical force the

conformational relaxation process of the single-stranded part of the RNA is

faster than the slowest process of the secondary structural arrangement. In

contrast to the constant extension ensemble, the RNA secondary structure S

can completely specify any state of the constant force ensemble. Therefore,

the move set for this ensemble is the same with the set for RNA folding

without force, i.e., its unfolding space is C(l).

Continuous time Monte Carlo algorithm

Given the move sets and the unfolding conformational spaces, the RNA

unfolding for the two ensembles can be modeled as a Markov process in

their respective spaces. After conventional stochastic kinetics of chemical

reactions, these processes are described as the master equation,

dPiðtÞ
dt

¼ +
j¼0

½PjðtÞkji � PiðtÞkij�; (7)

where Pi(t) is the probability of the system being i-state at time t, and kij is the
transition probability from i-state to j-state. The nonzero transition

probabilities satisfy the detailed balance condition,

kij
kji

¼ expð�DEij=kBTÞ; (8)

where kB is Boltzmann constant, DEij ¼ Ej � Ei. For the rates kij we assume

a symmetric rule (Kawasaki, 1966; Flamm et al., 2000)

kij ¼ t
�1

o expð�DEij=2kBTÞ; (9)

where to is used to scale time axis of the unfolding process; its value will be

determined by the kinetic experimental data. Other rules for the transition

probabilities such as Metropolis rule can be chosen. Although different rules

do not change the equilibrium and kinetic results, computer simulations show

that the symmetric rule is more efficient than the others.

The form of the master equation looks relatively simple, however it is

mathematically intractable to solve analytically for simple ‘‘reaction’’

system such as RNA P5ab. Previous work has demonstrated that

a continuous time Monte Carlo simulation is an excellent approach toward

the stochastic process described by Eq. 7 (Bortz et al., 1975; Gillespie, 1976;

Flamm et al., 2000). As a variant of the standard Monte Carlo method, the

continuous time Monte Carlo method is very efficient and fast because of

lacking of waiting times due to rejection. Here we are not ready to present

detailed knowledge about this method (Newman and Barkema, 1999). We

just point our why this method is important in RNA folding studies. One is

that the energy landscape of RNA folding is supposed to be rugged with a lot

of deep local minima, and the other is that the method provides an inner

clock to measure time.

Parameters and measurement

We simulate the single RNA folding and unfolding under mechanical force

at the experimental temperature T ¼ 298K. The elastic parameters used

are: Pds ¼ 53 nm, lds ¼ 320 nm, bss ¼ 0.56 nm, lss ¼ 1.5 nm, and ktw ¼ 0.2

pN/nm. We use the single-stranded DNA parameters for the single stranded

part of RNA because they have similar chemical structure. The displacement

d ¼ 0.1 nm. The free energy parameters for the RNA secondary structures

are from the Vienna package 1.4 (Hofacker, 2003) in standard salt concen-

trations [Na1] ¼ 1 M and [Mg21]¼ 0 M. (To account for the different ionic

conditions between the experiment ([Na1]¼ 250 mM and [Mg21]¼ 10 mM

or EDTA) and standard conditions, two simple salt corrections have been

suggested in Refs. (Cocco et al., 2003; Gerland et al., 2003). But our

calculation (see discussion) shows that such corrections might not be correct.

In this work we instead use the free energy parameters at standard

condition.) In addition to the standard Watson-Crick basepairs (AU and

CG), GU basepair is allowed in our simulation. Formation of isolated

basepairs is forbidden because of their instability. In the constant extension

ensembles, the force fi acting on the RNA molecule at i-state is calculated by
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fi ¼ ktwx
tw
i ; and the bead-to-bead distance xbb

i ¼ xds
i 1xss

i : In the constant

force ensemble, the extension of the molecule is xss(f, ni) if the secondary

structure in this step is Si at a given force f.

RESULTS

Force-extension curves in equilibrium
and nonequilibrium

To test the accuracy of our method, we simulate extension-

force curves of RNA molecules in the two ensembles. In

contrast to the constant extension ensemble, more theoretical

works were concerned about the constant force ensemble

(Lubensky and Nelson, 2002, and references therein). For

this ensemble, we study three small RNAs—P5ab, P5abcDA,

and P5abc in equilibrium (see Fig. 2). These molecules

represent major structural units of larger RNA assemblies:

the native state of the P5abcDA is similar with the hairpin

P5ab except for an additional helix and thus is a three-helix

junction, and the P5abc is comparatively complicated and

contains an A-rich bulge (see Fig. 1). When these molecules

are stretched by small force, their extensions increase

monotonically. However, when the force increases to

;13.3 pN, the extension of the P5ab is interrupted by an

;20-nm jump. Similar to the P5ab, the extension of the

P5abcDA also has a sharp jump at the force ;11.3 pN. These

curves show that the mechanical unfolding transitions for the

P5ab and the P5abcDA are all or none. As the two molecules

are almost the same, and the free energy of the latter is lower

than the energy of the P5ab, we conclude that the presence of

the additional helix in the P5abcDA destabilizes the

molecular structure. Compared to simple all or none

behaviors of the two molecules, the extension-force curve

of the P5abc provides more features: the extension has a large

jump (;17 nm) around the force 8.0 pN, and an inflection is

followed and the extension increases gradually to full length.

The smaller unfolding force of the P5abc shows that the

presence of th e A-rich bulge makes the molecule unstable.

Because the jump is ;2/3 of the full extension, the transition

represents unfolding of the P5a helix and parts of the three-

helix junction. All results obtained above are considerably

consistent with the experimental measurements (Liphardt

et al., 2001).

For the constant extension ensemble, we focus on the

mechanical behaviors of the P5ab, whose equilibrium

characteristics also have been studied in the previous

theoretical work (Gerland et al., 2003). At the beginning of

simulation t¼ 0, the system will be run;107 t0 under a preset

whole extension x0 to ensure that it is in equilibrium. We then

continually stretch the molecule by increasing the whole

extension dx¼ 2 nm after a dwell time dt (in unit to), or at the

time t¼ n dt, the whole extension is xn ¼ x0 1 n dx, n¼ 0, 1,

� � �. When the extension reaches a maximum value xe, where

the molecule is unfolded completely, the molecule will

continually relax by decreasing its extension dx after dt till the

origin extension x0 is reached. We periodically perform the

stretching-relaxing cycles. Average physical quantities ÆAæ at

xn observed between the times (n)dt and (n1 1)dt, such as the

average force f and the average extension xbb can be obtained

by a time-average ÆAæðnÞ ¼ dt�1
R ðn11Þdt
ðnÞdt AðtÞdt: This simu-

lation schedule is efficient, for the system will reach

equilibrium state faster than the simulation beginning at the

same initial condition at different whole extensions. In

addition, whether the system reaches equilibrium state can

be simply determined by the coincidence of the stretching and

relaxing curves. In the real experiment the same method was

used to indicate thermal equilibrium (Liphardt et al., 2001).

We simulate the stretching-relaxing curves of the hairpin

P5ab; the results are shown in Fig. 3. When the dwell time is

short, the stretching-relaxing extension-force curves are

incoincident; see the inset in Fig. 3 a, where dt ¼ 105. It

indicates that the loading rate of force is faster than the

slowest relaxing process of the P5ab, or the presence of

force-hysteresis phenomenon. The average unfolding force

fu as function of the dwell time is calculated. We find that fu
is a linear function of the logarithm of the dwell time

(between 106 and 104). As predicted by Evans and Ritchie

(1997), for the intermediate pulling speed the fu linearly

grows with the logarithm of the force loading rate g ¼ ktwv,

fu ; ln(g). In our case, the pulling speed is v � dx/dt. Hence

fu ; � ln(dt). When the dwell time is longer (here ;106), or

the pulling speed is sufficiently slow, however, the linear

relation is no longer satisfied. At this loading rate, the

average stretching-relaxing curve is coincident, or the system

is thermodynamical equilibrium. We find that the force-

extension curve is interrupted at 13.0 pN by an ;20-nm

FIGURE 2 Extension-force curves for the P5ab, P5abcDA, and P5abc

molecules in the constant force ensemble. The foldings and unfoldings for

the P5ab and P5abcDA under the constant force are all or none around the

transitions 13.3 pN and 11.3 pN, respectively, whereas the extension-force

curve for the P5abc has an intermediate between 8.0 and 11.0 pN. The

symbols are the results from the Monte Carlo simulation, and the lines are

obtained from exact numerical calculation.
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plateau (see Fig. 3 b). In the several stretching curves the

extensions of the P5ab around the unfolding force jump from

the folded to unfolded state and then turn back, though the

whole extension increases after a longer dwell time (see the

inset in Fig. 3 b). The quantitative and qualitative results of

the simulation for the P5ab agree with the experiment quite

well (Liphardt et al., 2001).

Kinetics of folding and unfolding at constant force

Compared to the general thermodynamics of RNA under

force in equilibrium, single-molecule methods are more

interesting in kinetic folding and unfolding studies. With the

single molecule experiments we can follow the actual fold-

ing or unfolding trajectories of single molecules on high

resolution even when they occur in equilibrium state, which

will shed light on the difficult kinetic folding problem. We

mentioned above that the extension of the P5ab in the constant

extension ensemble may hop back and forth between two

states. To investigate this bistability, Liphardt et al. (2001)

imposed a constant force on the P5ab and P5abcDA. They

found that, when the force was held constant at the transition

within ;1 pN, the P5ab and P5abDA switched back and forth

with time from the folded hairpin (hp) to the unfolded single

strand (ss). A two-state kinetics was proposed to explain the

intriguing phenomenon. The rate constants for unfolding

reaction can be fit to an Arrhenius-like expression of the form

kuðf Þ } expðfDxzu =kBTÞ; where Dxzu is the thermally aver-

aged distance between the hairpin state and the transition state

along the direction of force. A similar expression also holds

for the folding rate kf(f). Apparently, this description can not

clarify the physics underlying the folding and unfolding

reactions.

Because our simulation is based on the microscopic

interactions, we are interested in whether the similar time

traces can be obtained by simulation. The question is relevant

to the correctness of the move set we designed. Same with the

experiment, we record the extension-time traces of the RNA

molecules at different constant forces in equilibrium. For

example, one extension-time traces for the P5ab is shown in

Fig. 4 a. The extension of the molecule jumps between two

values, ;5 nm and ;22 nm around the transition force.

Because the jumps are extremely rapid with respect to the

lifetimes of the molecule in the two states, we simply classify

the states whose extensions are larger than 15 nm as the single

stranded states, and the others as the hairpin states. In addition,

there are significant fluctuations about the two states. Around

the transition the frequencies of the different lifetimes at the

single stranded state and the hairpin state can be obtained by

a long time simulation (to get enough data, the simulation time

is 109t0 after equilibrium). Fig. 4 c shows the frequency dis-

tributions ofa typical simulationat a force 12.90pN.Thesedis-

tributions can be fit to an exponential function } exp(� t/Ætiæ)
very well, where Ætiæ, i ¼ u, f denote the force-dependent

average lifetimes at the two states, respectively. For example,

the average lifetimes in this simulation are Ætuæ� 3.4 3 104to

and Ætfæ� 3.13 104to. We calculate all average lifetimes near

the transition force of the P5ab, and their corresponding

values with different forces are shown in Fig. 5 a. We find that

the logarithms of the lifetimes for the two states are strikingly

consistent with linear functions of the forces. Because the

reaction rate constants are the inverse of the average life-

times, we fit to by making Ætuæ(f*) ¼ Ætfæ(f*) equal to the

experimental value 1/k*, where k* [ ku ¼ kf, and had

t�1
o ¼ 2:23105 s�1:Using the same method, the reaction rate

constants for the P5abcDA also are calculated. A comparison

of the simulation results and the experimental data is listed in

Table 1. Because our simulation does not need additional

fitting parameters, the striking consistence of our results with

the experiment assures us that the RNA folding and unfolding

model proposed here has grabbed the main physics.

DISCUSSION AND CONCLUSION

It is noteworthy to compare our method with two recent

theoretical works. One is the direct numerical method

FIGURE 3 Extension-force curves

for P5ab molecule in the constant

extension ensemble. (a) The average

unfolding force fu as a function of the

dwell time; here dx ¼ 2 nm. The dash

line is the fitting function of fu with

respect to the logarithm of dt. (Inset)
force hysteresis phenomenon at dt¼ 105

(in unit t0). (b) The average stretching-

relaxing force-extension curves in ther-

mal equilibrium, where the dwell time

5 3 106. (Inset) a force-extension trace

showing hopping.
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proposed by Gerland et al. (2003). Their method was an

extension of the partition function method in predicting

secondary structure; the partition function over all secondary

structures were calculated by dynamic programming

(McCaskill, 1993). The simulation for the constant extension

ensemble in equilibrium in a sense can be viewed as a Monte

Carlo implement of the integral equation (Eq. 4) in their

work. The numerical method therefore provided a good test

for our simulation. But compared to their method, our

simulation is more important in study of nonequilibrium

phenomena, such as the extension jumps, stretching-relaxing

hysteresis, and the time traces of the extension of the

molecules, which are beyond the scope of thermodynamic

equilibrium.

FIGURE 4 Extension versus time traces of

the P5ab molecule at constant forces in

equilibrium: (a) the dynamics proposed by us

and (b) the fork dynamics proposed by Cocco

et al. (2003). The frequency distributions of the

lifetimes of the single strand and hairpin states:

(c) the dynamics proposed by us and (d) the

fork dynamics. The average lifetimes of the two

states in simulations can be obtained by fitting

to exponential functions.
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The other interesting work was given by Cocco et al.

(2003). They proposed a simple dynamical model to explain

the slow folding and unfolding kinetics of the small RNA

molecules under constant force. There are several differences

with our method. First is the expression of the work done by

force. They suggested that its formula is the free energy of

force, nikBTbss=l ln½sinhðuÞ=u�; where u ¼ lssf / kBT. Our

simulations, however, show that it cannot solve the

unfolding forces which are consistent with the experimental

measurements even if an ionic correction is applied. To

precisely calculate the unfolding forces due to the different

works, we develop a numerical method which can exactly

calculate RNA unfolding in equilibrium by constant force

(Liu and Ou-Yang, in preparation). This method is based on

the same idea proposed by Gerland et al. (2003). We are not

ready to present it here, but only show the relevant results.

We calculate unfolding behaviors of six different RNA

sequences in different experimental conditions with the

works proposed by Cocco et al. (2003) and us, respectively

(the sequences and the conditions are listed in the caption of

Fig. 6). Three extension-force curves for the P5ab, P5abcDA,

and P5abc molecules using the work proposed by us are

shown in Fig. 2, and the unfolding forces of them and their

respective experimental measurements are shown in Fig. 6.

We can get the following conclusions from the calculation.

First our simulation is successful for the agreement of the

two different methods is striking. Second, precision of the

work formula we proposed is satisfactory. Using the pre-

vious work formula, the discrepancies between the theoret-

ical predictions and experimental measurements cannot be

eliminated even if a reasonable ionic correction is in-

troduced. Of course, we cannot exclude a possibility that the

free energy parameters of RNA are not precise enough in the

force stretching cases.

Then is the choice of the move set. Cocco et al. (2003)

restricted the formation or removal basepair just proceeding in

the ‘‘fork’’ location (fork dynamics). Their consideration was

that pairing of the two distant bases is inhibited by a kinetic

FIGURE 5 Log of the average lifetimes of the

single stranded and hairpin states for the P5ab

molecule at different forces around the transitions:

(a) dynamics proposed in this work; (b) fork

dynamics. The time is in unit to, which can be

obtained by fitting with experimental data. Note the

slopes of ln Ætfæ and ln Ætuæ are independent of the

value to.

TABLE 1

Molecule ÆDxæ(nm) f* (pN) ln kf(f)(s
�1) ln ku(f)(s�1)

P5ab, Mg12 19 6 2 14.5 6 1 41 6 1.9 � (2.8 6 0.1)f �39 6 2.3 1 (2.9 6 0.2)f
P5ab, by Cocco et al. (2003) 15.1 27.5 � 2.74f �42.9 1 1.93f

P5ab, EDTA 18 6 2 13.3 6 1 37 6 4.0 � (2.7 6 0.3)f �32 6 4.8 1 (2.6 6 0.4)f

P5ab, by us 20.0 12.9 6 0.5 36.1 6 1.4 � (2.7 6 0.1)f �31.5 6 0.7 1 (2.6 6 0.1)f

P5ab, fork dynamics 20.0 12.6 6 0.3 16.8 6 0.2 � (1.1 6 0.0)f �26.7 6 0.2 1 (2.3 6 0.0)f
P5abcDA, Mg12 22 6 4 12.7 6 0.3 58 6 7.5 � (4.2 6 0.5)f �39 6 9.3 1 (2.7 6 0.7)f

P5abcDA, by Cocco et al. (2003) 12.9 9.4 � 2.05f �43.8 1 2.06f

P5abcDA, EDTA 23 6 2 11.4 6 0.5 31 6 6.0 � (2.6 6 0.5)f �31 6 11 1 (2.5 6 0.3)f
P5abcDA, by us 25.0 11.3 6 0.6 36.2 6 1.8 � (3.4 6 0.2)f �27.8 6 0.8 1 (2.3 6 0.1)f

Simulation results for the P5ab and P5abcDA compared to the experimental data from Liphardt et al. (2001) (in bold). Cocco et al. (2003) have studied the

rate constants of folding and unfolding in the presence of Mg12. However, they did not give any results in the absence of the ion about which we concern

here. We list their results as a comparison. Note in our model the to value of the P5ab is the same with the value of the P5abcDA, but it does not equal to the

to in the fork dynamics.
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barrier. The folding and unfolding rate constants solved by

their numerical method also agreed with the experiment; see

Table 1. We simulate the fork dynamics for P5ab molecule to

quantitatively understand the differences between their move

set and ours. The results are shown in Fig. 4, b and d, and Fig. 5

b. We find that the fluctuations of the fork dynamics at the

hairpin state and the single stranded state are smaller.

Although in the fork dynamics the logarithms of the lifetimes

for the two states are also consistent with linear functions of

the forces (see Table 1), the value of to in the dynamics is one

order of magnitude smaller than the value in our model, i.e.,

t�1
o ¼ 3:73106 s�1: Why do the two move sets result in

distinct folding and unfolding dynamics? We give a qualita-

tive interpretation. In our dynamic model, because the bases

can freely form pairs with other bases, the energy landscape

should be very rugged compared to the landscape of the fork

dynamic model; whereas the ruggedness is responsible for the

larger extensional fluctuations and slower diffusion rate or

smaller t�1
o : As a proof, we show their free energy landscapes

in Fig. 7. Recent theoretical analysis also supports our

explanation (Hyeon and Thirumalai, 2003). Therefore, the

fork dynamics loses the important physics in RNA folding

and unfolding. Finally the fork dynamics must preset the RNA

native structure. It is only available for unzipping simpler

RNA hairpins. Their dynamics is not suitable for studying

general RNA unfolding by force. On the contrary, because our

model is based on a general RNA folding algorithm, and the

kinetic inhibition effects are naturally taken into account by

the entropy term in RNA free energy (McCaskill, 1993), we

do not need to preset a molecular native state.

Several improvements can be added in the algorithm, e.g.,

adding the effects of Mg12, or uniforming the two different

ensembles into one by including force feedback mechanism.

But how to extend of our method to include complicated

tertiary interactions should be the main task in following

theoretical studies (Liphardt et al., 2001; Onoa et al., 2003).

Recent works have shown that the inclusion of pseudoknots is

possible (Rivas and Eddy, 1999; Isambert and Siggia, 2000).
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