
The Dynamic Stress Responses to Area Change in Planar Lipid
Bilayer Membranes

Jonggu Jeon and Gregory A. Voth
Department of Chemistry and Center for Biophysical Modeling and Simulation, University of Utah, Salt Lake City, Utah 84112-0850

ABSTRACT The viscoelastic properties of planar phospholipid (dimyristoylphosphatidylcholine) bilayer membranes at 308 K
are studied, many of them for the first time, using the nonequilibrium molecular dynamics simulation (NEMD) method for
membrane area change. First, we present a unified formulation of the intrinsic three-dimensional (3D) and apparent in-plane
viscoelastic moduli associated with area change based on the constitutive relations for a uniaxial system. The NEMD
simulations of oscillatory area change process are then used to obtain the frequency-domain moduli. In the 4–250 GHz range,
the intrinsic 3D elastic moduli of 20–27 kbar and viscous moduli of 0.2–9 kbar are found with anisotropy and monotonic
frequency dispersion. In contrast, the apparent in-plane elastic moduli (1–9 kbar) are much smaller than, and the viscous moduli
(2–6 kbar) comparable to, their 3D counterparts, due to the interplay between the lateral and normal relaxations. The time-
domain relaxation functions, separately obtained by applying stepwise strains, can be fit by 4–6 exponential decay modes
spanning subpicosecond to nanosecond timescale and are consistent with the frequency-domain results. From NEMD with
varying strain amplitude, the linear constitutive model is shown to be valid up to 6 and 20% area change for the intrinsic 3D
elastic and viscous responses, respectively, and up to 20% area change for the apparent in-plane viscoelasticity. Inclusion of
a gramicidin A dimer (;1 mol %) yields similar response properties with possibly smaller (,10%) viscous moduli. Our results
agree well with available data from ultrasonic experiments, and demonstrate that the third dimension (thickness) of the planar
lipid bilayer is integral to the in-plane viscoelasticity.

INTRODUCTION

Phospholipid bilayers are an important structural motif of

cell membranes and serve as a model system in the study of

many cellular functions (Sackmann, 1995). They exist in

a liquid-crystalline state near physiological temperature.

Thus, they can provide a mechanical barrier in an aqueous en-

vironment and, at the same time, act as a two-dimensional (2D)

solvent accommodating biomolecules and proteins (Singer

and Nicolson, 1972). This fluid nature produces, e.g., a lateral

diffusion constant on the order of 10�12 m2/s (Almeida and

Vaz, 1995).

The elastic properties of membranes determine their

stability against, and response to, mechanical deformation,

e.g., under osmotic stress or inclusion of proteins (Evans and

Hochmuth, 1978; Bloom et al., 1991). Experimental in-

formation exists on the area compressibility, the thickness

compressibility, and the layer bending modulus (LePesant

et al., 1978; Evans and Needham, 1987; Nallet et al., 1989;

Yamamoto et al., 1992; Koenig et al., 1997; Rawicz et al.,

2000). Recently, computer simulations employing coarse-

grained or atomistic potential models have also begun to

provide information on these properties (Goetz and Lip-

owsky, 1998; Lindahl and Edholm, 2000; Ayton et al.,

2002). In contrast, the membrane viscous properties have

received very limited attention. Regarding the in-plane shear

viscosity, which is closely related to the lateral diffusion,

there exist several reports estimating its magnitude for

various lipid systems (Evans and Yeung, 1989; Weisz et al.,

1992; Dimova et al., 2000). However, the dissipative effects

of the membranes are sometimes referred to as ‘‘effective

viscosity’’ or ‘‘microviscosity’’ without a clear specification

of their nature or origin. Furthermore, partly due to ex-

perimental difficulties (Bloom et al., 1991), the viscosities

associated with the area change have rarely been quantified

(El-Sayed et al., 1986; Yamamoto et al., 1992). This state of

affairs is not optimal because the viscosity, together with

heat transport, provides a major dissipative mechanism.

Various dynamic and relaxation phenomena, such as the

propagation and attenuation of a sound wave, decay of ther-

mal shape fluctuations, and translational and rotational diffu-

sion of membrane constituents, will be closely related to the

viscous or frictional properties.

In this article, we study the viscoelastic properties of bilayer

membranes composed of dimyristoylphosphatidylcholine

(DMPC) with the nonequilibrium molecular dynamics

simulation (NEMD) method (Ayton et al., 2002), focusing

on properties related to isotropic area change in planar

membranes. We treat the elastic and viscous components on

an equal footing within the relaxation function formalism

appropriate for a system of uniaxial symmetry. Although the

underlying theoretical ingredients have been in place for quite

some time (Nye, 1985; Doi and Edwards, 1986; Tschoegl,

1989; Fung, 1993; Chaikin and Lubensky, 2000), it appears

that the dynamic formulation of the linear viscoelasticity of
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a uniaxial system has not been presented in detail previously.

The resulting three-dimensional (3D) linear constitutive

relation contains three intrinsic complex viscoelastic moduli

associated with the lateral and normal deformations and the

coupling between them. The apparent 2D moduli relevant to

many experimental situations naturally emerge from them by

imposing the condition of zero normal stress. We determine

these moduli from the NEMD simulations of the area change

process.We find a simple yet highly nontrivial cooperation of

the lateral and normal responses in producing the apparent 2D

response. For example, it is found that the 2D apparent elastic

moduli are about an order of magnitude smaller than the 3D

elastic moduli, whereas the 2D viscous moduli are similar in

magnitude to their 3D counterparts. Overall, the viscous effect

relative to the elastic one is much more pronounced when the

membrane system is allowed to adjust its thickness under

applied tension. Also, the linear viscoelastic model appears

to be valid at least up to 6% change in area for the DMPC

membrane as far as the average response to area compression

and expansion is concerned. We identify possible molecular

mechanisms responsible for the observed viscoelastic behav-

ior and make contact with various experimental results.

LINEAR VISCOELASTICITY OF A
UNIAXIAL SYSTEM

In this section, we present a dynamic formulation of the

linear viscoelasticity of membranes. We consider a hydrated

lipid bilayer membrane with a planar geometry. This system

is anisotropic with a uniaxial symmetry—the symmetry axis

is the bilayer normal. Thus, the conventional dynamic stress-

strain relation of an isotropic material (Doi and Edwards,

1986; Tschoegl, 1989; Goodwin and Hughes, 2000) needs to

be generalized as a tensorial relation (Eq. 1) reflecting the

system anisotropy and symmetry. Removing the shear

deformation components from this equation, we are left

with the 3D constitutive relation for the area and thickness

change (Eq. 5) with three relevant relaxation functions

(G?(t), Gk(t), G13(t)). The corresponding frequency-domain

expressions (Eq. 7) define three complex viscoelastic moduli

(G?*(v), Gk*(v), G13*(v)) as Fourier transforms of the

corresponding relaxation functions. These are the funda-

mental quantities characterizing the system viscoelasticity

under the area change. Since most experiments are carried

out under the ambient pressure in the normal direction, we

can further simplify our formula by imposing the zero-

normal-stress condition. This leads to the effective 2D

constitutive relation (Eq. 9) with a single apparent 2D mod-

ulus G2D*(v). The 2D and 3D moduli are related by Eq. 10.

This study is mainly concerned with determining these

2D and 3D moduli via NEMD simulations of the area change

process. This is made possible by applying the stepwise and

oscillatory area changes to an equilibrium system and then

analyzing the stress responses in the lateral and normal

directions. The details of this procedure and the required

formula for the analysis are presented in two subsections,

‘‘Stepwise strain’’ and ‘‘Oscillatory strain’’.

Linear viscoelastic properties of a planar lipid bilayer

system, which has a uniaxial symmetry, are characterized by

the following constitutive relations (Fung, 1993; Chaikin and

Lubensky, 2000):

sxxðtÞ ¼ G11 � _uuxx 1G12 � _uuyy 1G13 � _uuzz;

sxyðtÞ ¼ ðG11 � G12Þ � _uuxy;

sxzðtÞ ¼ G44 � _uuxz;

syyðtÞ ¼ G12 � _uuxx 1G11 � _uuyy 1G13 � _uuzz;

syzðtÞ ¼ G44 � _uuyz;

szzðtÞ ¼ G13 � ð _uuxx 1 _uuyyÞ1G33 � _uuzz; (1)

where the symmetry axis is chosen to be in the z direction,
s(t) is the stress tensor, u(t) is the strain tensor with time

derivative _uuðtÞ; and the Gij(t)’s are five unique relaxation

functions and f*g is defined as

ðf � gÞðtÞ ¼
Z t

�N

dt# f ðt � t#Þgðt#Þ: (2)

The labeling of Gij(t) in Eq. 1 follows the convention of

Nye (1985). In Eq. 1, the stress tensor s(t) is the response to
the applied strain u(t). Depending on the experimental

situation, this choice can be reversed such that u(t) is the

response to applied s(t). The response functions character-

izing these two situations (relaxation and creep) are in-

terconvertible if one is known in the entire time domain

(Chapter 8 of Tschoegl, 1989). In an isotropic system,Gij(t#)s
are reduced to combinations of the bulk (GB) and shear (GS)

relaxation functions as follows:

G11; G33/GB 1
4

3
GS;

G12; G13/GB �
2

3
GS;

G44/2GS: (3)

In this article, we are concerned with the isotropic mem-

brane area change and its coupling with the motion normal

to the membrane. Thus, we do not consider the shear strain

components, and the relevant strain tensor is given by

uðtÞ ¼
u?ðtÞ 0 0

0 u?ðtÞ 0

0 0 ukðtÞ

0
@

1
A; (4)

where the z axis is perpendicular to the bilayer membrane.

Then, Eq. 1 is simplified to

s?ðtÞ ¼ 2G? � _uu? 1G13 � _uuk; skðtÞ ¼ 2G13 � _uu? 1Gk � _uuk;

(5)

with the following definitions:
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s? ¼ 1

2
ðsxx 1syyÞ;

sk ¼ szz;

G? ¼ 1

2
ðG11 1G12Þ;

Gk ¼ G33: (6)

Here, G? and Gk represent the response perpendicular and

parallel to the symmetry axis (bilayer normal), respectively,

and G13 is the coupling between them. Hereafter, we will

refer to G? as ‘‘lateral’’ or ‘‘in-plane’’, and Gk as ‘‘normal’’

responses (with respect to the bilayer plane). As is usual in

the theory of viscoelasticity (Tschoegl, 1989), we take the sys-

tem at t ¼ 0 as the reference state such that s(t) ¼ u(t) ¼ 0

for t , 0. This makes it possible to limit our consideration

to t $ 0. Then, the generalized half Fourier transform

(GHFT, see below) of Eq. 5 yields the frequency-domain

expressions as

~ss?ðvÞ ¼ 2G
�
?ðvÞũ?ðvÞ1G

�
13ðvÞũkðvÞ;

~sskðvÞ ¼ 2G
�
13ðvÞũ?ðvÞ1G

�
kðvÞũkðvÞ; (7)

where f̃ðvÞ is the GHFT of f(t) andGa*(v) (a¼?, 13, k) are
complex moduli defined as

G
�
a
ðvÞ ¼ G#aðvÞ1 iG$aðvÞ ¼ iv~GGaðvÞ: (8)

(To ensure the existence of integral transforms, we define

f̃ðvÞ as the GHFT, lima/01

RN
0

dtf ðtÞe�ða1ivÞt: For the

stepwise strain u?(t) of Eq. 13, ũ?ðvÞ ¼ ðu0?=ivÞe�ivt0 and

for the sine strain of Eq. 20 with frequency v0, �
ũ?ðvÞ ¼ u0

?
v0=ðv2

0 � v2Þ: A cosine strain with frequency

v0 would yield ũ?ðvÞ ¼ u0
?
iv=ðv2

0 � v2Þ: See Tschoegl

(1989) for details.) Here, G#a(v), the real part of Ga*(v), is

the storage modulus representing the elastic response of the

system and G$a(v) is the loss modulus associated with

dissipation. G#a corresponds to de Gennes’ elastic constants

A, B, C for smectic A (de Gennes, 1969; de Gennes and

Prost, 1993) as follows: G#? ¼ A, G#13 ¼ A � C, G#k ¼ A1 B
� 2C. Also, the anisotropic viscosity components ha(v),

given byG$a(v)/v (a¼?, 13, k), are related to the viscosities
of a uniaxial system, h1, � � �, h5, defined by Martin et al.

(1972): h? ¼ h4, h13 ¼ h5, hk ¼ h1.

If the area change takes place while the normal pressure

is maintained at its equilibrium value ðPzzðtÞ ¼ Peq
zz ;

skðtÞ ¼ 0Þ; Eq. 7 is further simplified to

~ss?ðvÞ ¼ 2G
�
2DðvÞũ?ðvÞ ðzero normal stressÞ; (9)

in terms of the apparent 2D complex modulus G2D*,

G
�
2DðvÞ ¼ G

�
?ðvÞ �

½G�
13ðvÞ�

2

G�
kðvÞ

: (10)

Thus, the apparent 2D viscous (elastic) response depends not

only on the 3D viscous (elastic) moduli but also on the 3D

elastic (viscous) moduli. The area compressibility modulus

KA is often used to quantify the in-plane elastic properties of

membranes (Evans and Needham, 1987). Similarly, the

surface viscosity for area change kA, defined as the ratio of

the lateral tension g (¼
R
dz½s? � sk�) to the rate of the

relative area change, can be defined (Evans and Hochmuth,

1978; Bloom et al., 1991). In the linear regime and under the

condition of zero normal stress, their frequency-dependent

generalization is related to G2D*(v) as follows:

KAðvÞ1 ivkAðvÞ ¼ L
eq

z G
�
2DðvÞ ðzero normal stressÞ;

(11)

where Leqz is the equilibrium system size normal to the area

under consideration.

The apparent thickness compressibility modulus �GG�
k under

the zero lateral stress condition can also be obtained by set-

ting ~ss? ¼ 0 in Eq. 7 as follows

~sskðvÞ ¼ �GG
�
kðvÞ~uukðvÞ ðzero lateral stressÞ;

�GG
�
kðvÞ ¼ G

�
kðvÞ �

½G�
13ðvÞ�

2

G
�
?ðvÞ

: (12)

To determine the three moduli (G?, G13, and Gk) in Eq. 5

(or their frequency-domain equivalents, Eq. 7), we employ

two different boundary conditions: i), a constant system size

Lz along the normal direction (CLZ), and ii), a zero normal

stress (ZNS). Below, we describe both boundary conditions

when the stepwise and oscillatory lateral strains are applied.

Stepwise strain

If the system is expanded or contracted instantaneously at

t ¼ t0 and isotropically along the xy plane, u?(t) becomes

u?ðtÞ ¼
0 ðt, t0Þ;
u
0

? ðt$ t0Þ:

�
(13)

When the system size Lz in the z direction is kept constant

during this process (CLZ), uk ¼ _uuk ¼ 0 and Eq. 5 yields

s?ðtÞ ¼ 2u
0

?G?ðt � t0Þ;
skðtÞ ¼ 2u

0

?G13ðt � t0Þ ðstepwise strainÞ: (14)

Thus, G?(t) and G13(t) can be directly determined by mon-

itoring the two stress components. On the other hand, if

the normal pressure Pzz is maintained at the equilibrium value

Peq
zz (ZNS), the systemwill adjustLz from its equilibrium value

Leqz in response to the lateral strain u?(t), yielding the normal

strain uk(t) as

LzðtÞ ¼ L
eq

z ½11 ukðtÞ�: (15)

We introduce the ratio n(t) of uk(t) to u0? in analogy with

the Poisson’s ratio associated with uniaxial tension

(Tschoegl, 1989; Goodwin and Hughes, 2000),

nðt � t0Þ ¼ � ukðtÞ
u
0

?
ðstepwise strainÞ: (16)
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In what follows, n(t) will be referred to as the biaxial

Poisson’s ratio. For a general form of u?(t), n(t) can be de-

fined as a convolution integral, similar to Ga(t),

ukðtÞ ¼ �ðn � _uu?ÞðtÞ: (17)

n(t) is a material function just as the relaxation functions

Ga(t). n(t) increases gradually from an initial value ng at

t ¼ 0 to its asymptotic value n0 ¼ nðt/NÞ; which is 2 for

an incompressible system. (ng can be expressed in terms

of the instantaneous relaxation functions at time t ¼ 0

(Tschoegl, 1989). The NEMD simulation results in the

‘‘Results’’ section indicate that ng ¼ 0 for the systems

studied here.) As will be shown in the section ‘‘Responses to

oscillatory strain’’, the transient behavior of n(t) is closely

related to the coupling of the elastic and viscous components

in producing the apparent 2D response under the ZNS con-

dition. In the frequency domain, we obtain

n
�ðvÞ ¼ � ũkðvÞ

ũ?ðvÞ
¼ 2

G
�
13ðvÞ

G
�
kðvÞ

; (18)

where n�ðvÞ ¼ iv~nnðvÞ; ~nnðvÞ is the GHFT of n(t), and the

relations hold for an arbitrary lateral strain ũ?ðvÞ: However,
the second identity above comes from Eq. 7 with ~sskðvÞ ¼ 0

and thus is valid only under the ZNS condition. In the static

limit, n�ðv/0Þ ¼ nðt/NÞ ¼ n0: In general, the imagi-

nary part of n*(v) is negative unlike the loss modulus

G$aðvÞ; which is always positive. This reflects the fact that

the stress leads, whereas the normal strain lags, the applied
lateral strain (Tschoegl, 1989). Despite the simple relations

of Eq. 18, the integral equation relating n(t) with Ga(t) does
not yield a simple solution in the time domain. We also

introduce the apparent 2D relaxation function G2D(t) as the
time-domain counterpart of G2D*(v). G2D(t) can be de-

termined from the lateral stress response via the relation

s?ðtÞ ¼ 2G2D � ũ? ¼ 2u
0

?G2Dðt � t0Þ ðstepwise strainÞ:
(19)

Oscillatory strain

If an oscillatory lateral strain is applied such that

u?ðtÞ ¼ u
0

? sinvt ðt $ 0Þ; (20)

Eq. 5 yields under the CLZ condition

s?ðtÞ ¼ 2u
0

?½G#?ðvÞsin vt1G$?ðvÞcos vt�1s
tr

?ðtÞ;
skðtÞ ¼ 2u

0

?½G#13ðvÞsin vt1G$13ðvÞcos vt�1s
tr

k ðtÞ; (21)

where the first term in each equation is the steady-state

oscillatory response and str
?ðtÞ and str

k ðtÞ denote transient

terms present before the steady state is established. (Note that

we apply the strain u?(t) at t ¼ 0.) Since we observe that the

transient effects are smaller than the uncertainties of the

computed moduli already in the first cycle of the applied

strain at the highest frequency studied (v ¼ 251 GHz), we

will ignore them hereafter. (If this condition is not met, it is

necessary to model the transients explicitly or apply multiple

cycles of strain and take the steady-state limit.) Then,

G?*(v) andGk*(v) can be determined from the in-phase and

out-of-phase components of the stress responses in Eq. 21.

When the same strain is applied under the ZNS condition, the

strain in the normal direction, uk(t), comes into play. Under

the steady-state assumption, we first invoke the following

ansatz for uk(t),

ukðtÞ ¼ u
0

ksin ðvt1 dkÞ; (22)

in terms of the undetermined amplitude u0k and phase shift

dk. Equation 22 simply states that, in the steady-state limit,

an oscillatory lateral strain will induce an oscillatory normal

strain of the same frequency but with a possible phase shift.

The constants u0k and dk can be determined from the time

dependence of Lz using Eqs. 15 and 22. This immediately

yields n*(v) according to the first identity of Eq. 18,

n
�ðvÞ ¼ �

u
0

k

u
0

?
ðcos dk 1 i sin dkÞ; (23)

and, in turn, Gk*(v) according to the second identity of

Eq. 18,

G
�
kðvÞ ¼ 2

G
�
13ðvÞ
n
�ðvÞ : (24)

Separately, the frequency-domain effective 2D modulus can

be determined from the s?(t) data under the ZNS condition

following the first identity of Eq. 19:

s?ðtÞ ¼ 2u
0

?½G#2DðvÞsin vt1G$2DðvÞcos vt�: (25)

We note that s?(t) under the ZNS condition is not utilized in

determining G?*, G13*, and Gk* as sketched above.

Therefore, the relation between the 3D moduli and G2D* in

Eq. 10 can be used to check the internal consistency of the

model employed.

SIMULATION DETAILS

We have performed NEMD simulation of lipid bilayer

membranes under the stepwise and oscillatory strains. A

similar approach has been taken previously in our group

(Ayton et al., 2002), and we present a brief review of the

method in the Appendix. Here, we only mention that the

NEMD method provides the time-dependent stress profiles

under the deformation (strain) of the system. In the fol-

lowing, we present the simulation parameters and details of

the systems studied.

We have studied three different systems: i), hydrated

phospholipid bilayer membranes composed of DMPC lipids,

ii), a dimer of gramicidin A (gA) peptides embedded in the

DMPC membrane in its open configuration, and iii), pure
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liquid water. Equilibrium configurations were generated as

necessary from combinations of NVT, NPnAT, i-NPT and

a-NPT simulations. The reference DMPC system (D1) was

composed of 64 DMPC lipids and 1312 water molecules in

a box with ðLx; Ly; LzÞ ’ ð47:2; 41:6; 54:9Þ Å. This yields

the average density of 1.03 g/cm3 and the area per lipid of

61.4 Å2. The reference gA system (g1) contained 1 gA

dimer, 88 DMPC, and 2514 water molecules in a box with

size ;(49.3, 59.3, 59.8) Å, giving the same density as the

DMPC system. The pure water system contained 1795 water

molecules at an average density of 0.995 g/cm3. To study the

effects of system size and composition, DMPC systems with

four times larger area (D2) and longer Lz (D3 and D4) were

also studied. Similarly, a gA system with about a twice larger

area containing 1 gA dimer, 184 DMPC, and 4998 water (g2)

was also studied. For system D3 and D4, the increased

volume was filled with water, resulting in a water concen-

tration of 41.1 and 55.7 wt %, respectively, compared to 35.3

wt % for system D1. By comparison, the water concentration

of system g1 and g2 were 41.7 and 41.2 wt %, respectively.

Interaction potentials from Jorgensen et al. (1983) (TIP3P for

water), Smondyrev and Berkowitz (1999) (for DMPC), and

AMBER 94 (for gA, Cornell et al., 1995) were employed.

All simulations were performed at a temperature of 308 K

using the Nose-Hoover thermostat with relaxation time tT
of 0.2 ps. For constant pressure simulations, the barostat

relaxation time tP of 0.25 ps was employed. We also used

tP of 1.0 ps in part of simulations to see if the barostat

relaxation interferes with the stress responses. Periodic

boundary condition was imposed, and the long-range

electrostatic interactions were taken into account by the

smooth particle-mesh Ewald method as implemented in

DL_POLY. Other parameters of the simulation are as

follows: a time step size of 2 fs, cutoff distances for screened

Coulomb and Lennard-Jones interactions of 7.0 Å, and

a precision of bond constraints (SHAKE) of 1.0 3 10�6.

Because we only consider homogeneous applied strains, all

viscoelastic moduli below should be regarded as the zero-

wavenumber limit apart from the constraints associated with

the periodic boundary condition.

RESULTS

Since our approach relies heavily on the analyses of the stress

tensor, it is important to first understand its behavior at

equilibrium. The equilibrium simulations to generate the

NEMD initial configurations show that the diagonal compo-

nents of the stress tensor are close to zero, as was intended by

the choice of barostat parameters. However, for themembrane

systems, the lateral stress tensor depends sensitively on the

area and it was found that the average lateral stress from the

NPnAT simulation is sometimes as large as 0.05 kbar even if

the area is chosen from the a-NPT runs. Therefore, all the

NEMD initial configurations should be regarded as having

zero lateral stress with the maximum uncertainty of;6 0.05

kbar. The root mean-square fluctuations in stress are found to

be anistropic:;0.3 kbar for sxx and syy and 0.4–0.5 kbar for

sk for systems D1 and g1. In contrast, the pure water system

had isotropic stress fluctuations of ;0.4 kbar. Results from

larger systems (D2–D4 and g2) confirmed that this fluctuation

decreases as the inverse square root of system size. We now

turn to the NEMD results.

Responses to stepwise strain

The response of the DMPC system D1 to the stepwise strain

is shown in Fig. 1, a–c. In the simulation, the abrupt jump in

strain was approximated by a linear increase from t ¼ 1.95

to 2.00 ps and u0? ¼ 0:015 was used (cf. Eq. 13). This

corresponds to the expansion of the membrane area by;3%.

The raw data used in the plots were averages over 16

independent NEMD runs. First, Fig. 1 a compares the lateral

stresses under the ZNS and CLZ conditions. For the ZNS

system, the large initial stress of ;2.6 kbar decays to ,1

kbar within 0.1 ps, and then slower decay mechanisms take

over. There was no noticeable decay after 500 ps according

FIGURE 1 Responses of the reference DMPC system to the stepwise lateral strain (u0? ¼ 0:015). (a) The lateral stresses under the ZNS (thin solid line) and

CLZ (short-dashed line) conditions. (b) The system size in the normal direction under the ZNS condition. (c) The normal stress under the CLZ condition. The

thick smooth solid lines in each plot are numerical fit to the multi-exponential function (Eq. 26).
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to block averages, and the asymptotic stress measured by the

average over the 500–1000 ps period was �0.02 kbar,

indicating that the lateral stress completely relaxes to

equilibrium after ;500 ps. The initial stress response under

the CLZ condition is similar. However, its asymptotic

behavior is quite different, with a residual stress of 0.50 kbar.

The latter value will be close to the new equilibrium lateral

pressure corresponding to the increased volume under the

CLZ condition. Similar decay is observed for Lz under the
ZNS condition in Fig. 1 b. We note that the decrease in Lz
almost completely compensates for the stepwise increase in

lateral area, resulting in the final volume after 1 ns within

0.1% of the initial value. Therefore, the DMPC membrane

behaves as an incompressible system at nanosecond time-

scales. Fig. 1 c shows the normal stress response under the

CLZ condition with a relaxation behavior similar to the

lateral stress under the same condition. The average normal

stress for the 500–1000 ps period was 0.53 kbar.

We have modeled the decay of all three stresses in Fig. 1

with a multi-exponential function of the form

sðtÞ � s
N ¼ +

10

n¼1

sn expð�t=tnÞ; (26)

where sN is the asymptotic stress, and similarly for Lz(t). A
stable and reproducible fit could be obtained by excluding

sN and LNz from the fitting parameter space. These as-

ymptotic values were separately determined as the average

over the 500–1000 ps period and supplied to the fitting

program. The lmder routine from the minpack package was

used in the numerical fit (Garbow et al., 1980). The fit

results, shown in Fig. 1 as thick solid lines, were then

converted to relaxation functions and biaxial Poisson’s ratio

using Eqs. 14–16. They are summarized in Table 1 for the

water, DMPC (D1), and gA (g1) systems. Also shown there

is the apparent 2D response to the stepwise compression,

Gco
2DðtÞ; with u0? ¼ �0:015: We first note that the ultrafast

components (tn & 0:5 ps) there carry uncertainties due to the
finite lateral strain ramp-up time of 0.05 ps and the barostat

relaxation time tP of 0.25 ps for the normal pressure under

the ZNS condition. In addition, the asymptotic values G0 and

n0 carry uncertainties related to the equilibrium stresses and

Lz, respectively. For example, as mentioned above, the equi-

librium stress components are uncertain by &0.05 kbar

about its intended average of zero and it is transferred to Gn

as 0:05=ð2u0?Þ or 1.67 kbar. The actual asymptotes of G2D

(�0.704 and �0.203 kbar for the DMPC and gA systems,

respectively) are well within this uncertainty. Similarly, n0 is

affected by the uncertainty in Leqz and thus slightly larger than

2 for all three systems in Table 1. Transient terms with

tn * 0:5 ps are not affected by these uncertainties. With this

caution, we note the following points: i), the stress relaxation

of water is biexponential with the fast mode corresponding to

one-half cycle of water librational motion and the slow mode

twice faster than the single-molecule dipole relaxation (Jeon

et al., 2003); ii), the distribution of relaxation times are wider

for the DMPC and gA systems and the slowest modes extend

to 100–200 ps; iii), Gex
2D has more decay components than

Gex
? or Gex

13 but is comparable to nex—whereas Gex
? and Gex

13

TABLE 1 Relaxation times and their amplitudes in the multi-exponential approximations to the time-domain 2D and 3D

relaxation functions and the biaxial Poisson’s ratio

Gex
? Gex

13 nex Gex
2D Gco

2D

n Gn tn Gn tn nn tn Gn tn Gn tn

Water

0 - - - - 2.18 - 0.117 - - -

1 - - - - �1.63 0.0395 98.3 0.0238 - -

2 - - - - �0.0237 0.401 3.51 1.82 - -

3 - - - - �0.422 1.22 - - - -

DMPC

0 16.6 - 17.7 - 2.06 - �0.704 - �0.704 -

1 76.6 0.0145 70.3 0.0157 �0.0723 0.00347 69.1 0.00933 71.6 0.00811

2 19.6 0.219 20.2 0.222 �0.530 0.0805 10.6 0.151 24.4 0.177

3 5.16 0.561 1.43 34.3 �0.433 0.607 8.77 0.854 5.17 1.22

4 5.84 22.1 - - �0.421 16.9 3.27 4.05 4.31 9.72

5 - - - - �0.121 57.6 6.05 16.9 4.05 10.4

6 - - - - - - 1.58 201 4.98 2080

gA

0 15.3 - 15.9 - 2.03 - �0.203 - - -

1 79.2 0.0106 80.4 0.0188 �0.542 0.105 88.6 0.00959 - -

2 19.7 0.225 9.85 0.110 �0.287 1.14 11.0 0.397 - -

3 4.44 4.84 3.30 20.1 �0.382 3.11 3.46 3.98 - -

4 1.96 121 - - �0.0723 52.3 3.76 4.47 - -

5 - - - - �0.125 276 2.94 95.7 - -

The superscripts ‘‘ex’’ and ‘‘co’’ denote responses to expansion and compression, respectively. GðtÞ ¼ G01+
n¼1

Gn expð�t=tnÞ and

nðtÞ ¼ n01+
n¼1

nn expð�t=tnÞ: Units: Gn in kbar and tn in picoseconds.
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are determined from the lateral stress alone, Gex
2D and nex

have contributions from both lateral and normal responses;

iv), n0 is close to 2 for all three systems, i.e., they are

incompressible in the static limit, although it takes;1 ps and

100–200 ps for the water and membrane systems, re-

spectively, to achieve that limit; and v), the response to

a lateral expansion, Gex
2DðtÞ; is smaller than the response to

a lateral compression, Gco
2DðtÞ—this difference is likely due

to the excluded volume effect important only under

compression. Also, Gco
2DðtÞ has an additional slow decay

component with t ; 2 ns. The difference between the

expansional and compressional responses is further demon-

strated in Fig. 6 in the frequency domain via a GHFT of

Gex
2DðtÞ andGco

2DðtÞ: There, the much larger elastic response to

compression than to expansion is clearly seen. On the other

hand, the difference in the loss modulus is smaller and more

complicated than in the elastic modulus.

The observed relaxation modes for the membrane systems

mainly reflect internal motions of lipid molecules. For

example, the subpicosecond modes likely arise from molec-

ular vibrations of lipid (Mendelsohn and Snyder, 1996) and

intermolecular vibrations of water and lipid. At longer

timescales, possible molecular motions contributing to the

observed stress relaxations include the headgroup rotation

(correlation time t ; 400–700 ps from 31P NMR of DMPC

(Dufourc et al., 1992)), choline segment reorientation (t ;

70–200 ps from molecular dynamics (MD) simulation of

dioleoylphosphatidlcholine (Mashl et al., 2001)), acyl chain

isomerization (t ; 7–48 ps from MD of DMPC and

dipalmitoylphosphatidylcholine (DPPC) (Venable et al.,

1993; Lindahl and Edholm, 2001); ;10 ps from 2H and 13C

NMR of DPPC (Brown et al., 1983; Weisz et al., 1992)). In

addition, the rotation of lipids about its long axis (t ¼ 2.6 ns

from MD of DPPC (Lindahl and Edholm, 2001); t ; 1–2 ns

from 2H and 31P NMR of DMPC (Weisz et al., 1992; Dufourc

et al., 1992;Nevzorov et al., 1998)) seems to be responsible for

the observed 2-ns component of the compressional relaxation.

Responses to oscillatory strain

We have carried out NEMD simulations applying the

oscillatory lateral strain of Eq. 20 with different u0?; v; and
boundary conditions in the normal direction (ZNP and CLZ).

The resulting stress responses s?(t) and sk(t), and the system
size variation Lz(t), give us full information on the relevant

viscoelastic moduli as described in the section, ‘‘Oscillatory

strain’’. Fig. 2 shows responses from the reference DMPC

system (D1) with u0? ¼ 0:015 and the period of oscillation

T ¼ 2p/v ¼ 400 ps. s?(t) obtained with two different

boundary conditions are compared in Fig. 2 a.We observe the

lateral stresses generally following the applied strain but with

a phase shift, as expected from a viscoelastic material.

However, the two boundary conditions yield quite different

responses in terms of the magnitudes of the amplitude and

phase shift. The ZNS data provide the apparent 2D moduli

G2D*(v) via fitting to Eq. 25. TheCLZdata, on the other hand,

give G?*(v) after fitting to the first identity of Eq. 21. The fit

results are shown in the figure as thick solid lines. As

mentioned in the section ‘‘Oscillatory strain’’, the steady state

is established quickly and the agreement of the fitwith the data

is already excellent in the first cycle. The variation of Lz under
the ZNS condition is shown in Fig. 2 b, together with

its numerical fit to the following expression obtained from

Eqs. 15 and 22:

LzðtÞ ¼ Leq

z ½11 u
0

k sinðvt1 dkÞ�: (27)

As noted in the section ‘‘Stepwise strain’’, the fit produced

a negative phase shift dk and, thus, negative imaginary part

Im[n*] of the biaxial Poisson’s ratio (cf. Table 2). The

excellent agreement between the data and fit justifies the

ansatz of Eq. 22. Fig. 2 c shows the normal stress response

under the CLZ condition. A numerical fit of the data to the

second member of Eq. 21 (solid line) determines G13*(v).

This, together with u0k and dk, yields Gk*(v) according to

Eqs. 23 and 24.

FIGURE 2 Responses of the reference DMPC system to the sine strain (u0? ¼ 0:015) with period T ¼ 400 ps. (a) The lateral stresses under the ZNS (thin

solid line) and CLZ conditions (short-dashed line). (b) The system size in the normal direction under the ZNS condition. (c) The normal stress under the CLZ

condition. The raw data were obtained by averaging results of 16 independent trajectories. The smooth solid lines in each plot are numerical fits to phase-shifted

sine functions. See text for details.
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The results of the analyses are summarized in Tables 2 and

3 and Figs. 3–5 for the water, DMPC (D1), and gA (g1)

systems. From the 3D moduli in Table 2, we first note that

each 3D storage modulus is about an order of magnitude

larger than the corresponding loss modulus. Also, the

membrane systems show a substantial frequency dispersion

unlike the water system (cf. Fig. 3). The 3D moduli in Table

2 can be tested against various stability conditions: i), elastic

stability requires G#? $ 0 and G#?G#k $ (G#13)
2, (Nye, 1985);

ii), hydrodynamic stability requires G?$; G$k$0 and

G?$G$k$ðG$13Þ2; (Martin et al., 1972); and iii), from the

fact that the normal strain would lag the applied lateral strain

(cf. section ‘‘Stepwise strain’’) and vice versa, G$13/G#13 ,

G$k/G#k and G$13/G#13 , G?$=G#? (Tschoegl, 1989). These

conditions are satisfied for all entries in Table 2 except for

the water system. We note that, for liquid water, the shear

elasticity G#S is expected to be very small and thus all 3 3D

elastic moduli will become identical to each other according

to Eqs. 3 and 6. The small differences among the three elastic

moduli can then be regarded as numerical errors, leading

to the violation of the above conditions. This, together with

the weak frequency dependence of water elastic moduli,

suggests that the static limit of water bulk modulus G#B is

;17 kbar. Thus, the TIP3P water model seems to un-

derestimate the static bulk storage modulus compared to the

experimental value of 22.3 kbar at 303 K (Lide, 2002).

Similarly, the loss moduli of water are estimated asG$B; 0.2

and 0.7 kbar andG$S; 0.2 and 1.9 kbar at 15.7 and 251 GHz,

respectively (cf. Eq. 3). Although these are less reliable than

the elastic moduli, the loss moduli at 15.7GHz yield

viscosities of the same order of magnitude as the experi-

mental static bulk (2.13 3 10�3 Pa s) and shear (7.97 3

10�4 Pa s) viscosities (Guo and Zhang, 2001).

The DMPC and gA systems exhibit a quite different

viscoelastic behavior (Fig. 3): both the storage and loss

moduli are significantly larger and the frequency dispersion

is stronger than those for liquid water. According to Eqs. 3

and 6, the criterion for anisotropy is 2(G#? �G#13)/(G#k �G#13)
6¼ 1 and similarly for the loss modulus. For the elastic

modulus, this ratio decreases with increasing period—the

membranes become more compressible laterally than

normally in the static limit. On the other hand, the ratio for

the loss modulus did not show any consistent behavior as

a function of frequency. Fig. 3 also shows that the gA system

exhibits consistently smaller moduli than the DMPC system.

However, this difference cannot be simply attributed to the

presence of gramicidin A because the gA system has ;5 Å

thicker water layer than the DMPC system. This point will be

further discussed below in relation with the system-size

dependence. The biaxial Poisson’s ratio in Table 2 and Fig. 4

also reflects the different responses between the water and

lipid systems. For water, the real part Re[n*] exhibits the

asymptotic value n0 ¼ 2 already at the highest frequency

studied (v ¼ 251 GHz). On the other hand, for the DMPC

and gA systems, this limiting value is not achieved even at

the lowest frequency of 3.93 GHz. This is consistent with the

time-domain results in the section ‘‘Responses to stepwise

strain’’. As expected, the negative Im[n*], which represents

the delay of the Lz response to the lateral strain, tends to zero
as v decreases.

The apparent 2D moduli in Table 3 and Fig. 5 reveal quite

different aspects of the water and membrane systems. First,

assuming that the shear elastic modulus G#S is negligible for
water, it can be shown thatG#2D; 4(G$S)

2/G#B; 0 andG$2D;

3G$S—the bulk viscosity of water does not come into effect

under the ZNS condition. Therefore, the small negative G#2D
values for water in Table 3 are likely due to numerical errors.

On the other hand, G$2D for water directly yields the shear

viscosity of water. At the largest period of T ¼ 800 ps, we

obtain the shear viscosity hS;G$2D/(3v); 7.23 10�4 Pa s,

in excellent agreement with the static experimental value

mentioned previously. For the membrane systems, the 2D

TABLE 2 Three-dimensional viscoelastic moduli and biaxial Poisson’s ratio of the water, DMPC, and gA systems from NEMD

simulations with oscillatory strain (u0
?50:015 and varying period T)

T G#? G$? G#13 G$13 G#k G$k Re[n*] Im[n*]

Water

25 16.55 (0.73) 1.43 (0.97) 16.68 (1.23) 1.01 (1.29) 16.05 (0.74) 2.50 (1.30) 2.037 (0.104) �0.192 (0.163)

100 16.77 (0.41) 0.29 (0.61) 17.18 (0.93) � 0.04 (0.39) 17.01 (0.88) 0.40 (0.20) 2.020 (0.045) �0.052 (0.019)

400 16.75 (0.56) 0.14 (0.25) 16.89 (0.69) � 0.08 (0.05) 16.86 (0.79) � 0.05 (0.13) 2.005 (0.025) �0.003 (0.014)

DMPC

25 26.17 (1.59) 5.06 (1.29) 21.78 (1.75) 3.23 (2.11) 27.39 (2.79) 8.50 (2.79) 1.515 (0.088) �0.239 (0.108)

100 23.10 (1.32) 2.96 (0.85) 20.69 (1.76) 1.86 (0.94) 24.10 (2.34) 4.89 (1.85) 1.676 (0.083) �0.185 (0.106)

400 20.83 (1.30) 1.55 (0.63) 19.72 (1.66) 0.18 (0.55) 21.86 (1.82) 1.43 (1.34) 1.797 (0.090) �0.100 (0.072)

1600 19.93 (1.27) 0.88 (0.34) 19.64 (0.98) 0.33 (0.51) 20.67 (1.46) 1.24 (0.66) 1.898 (0.063) �0.080 (0.047)

gA

25 24.65 (1.07) 4.80 (0.75) 21.92 (2.05) 1.78 (1.42) 27.43 (2.80) 5.82 (2.42) 1.553 (0.043) �0.201 (0.060)

100 21.34 (1.19) 2.64 (0.73) 19.98 (1.14) 1.32 (0.90) 22.84 (1.46) 3.71 (1.48) 1.722 (0.075) �0.163 (0.072)

400 20.11 (0.90) 0.99 (0.45) 19.31 (1.07) 0.49 (0.62) 21.05 (1.28) 1.66 (0.85) 1.828 (0.068) �0.099 (0.059)

1600 19.23 (0.95) 0.79 (0.27) 18.98 (0.98) 0.23 (0.49) 20.27 (1.01) 0.75 (0.82) 1.870 (0.053) �0.048 (0.058)

The averages of data from multiple trajectories (4 for water, 16 for DMPC, and 8–19 for gA) are shown. The SD are indicated in parentheses. Units: T in

picoseconds and G in kilobars.
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moduli are much larger than the water values. Also,G#2D are at
least several times smaller than the 3D storage moduli and

G$2D are somewhat larger than any of the 3D loss moduli. As

a result, G#2D and G$2D are now of comparable magnitude.

Therefore, the lateral stress response of the membrane system

becomes about as equally viscous as it is elastic, if we allow

the normal system size to adjust to lateral area change (the

ZNS condition). However, we note that this does not change

the validity of the previous elastic modulus calculations

(Ayton et al., 2002) thanks to the linear independence of the

viscous and elastic responses to the oscillatory strain.

Turning to the frequency dependence of apparent 2D

moduli in Fig. 5, the good agreement between the predicted

2D moduli from Eq. 10 (entry B in Table 3 and solid symbols
in Fig. 5) and the direct values (entry A in Table 3 and open
symbols in Fig. 5) show that the anisotropic linear vis-

coelastic model employed here is internally consistent. This

can be better understood by the following analysis: since the

3D loss moduli are about an order of magnitude smaller than

the storage moduli, we can ignore the terms with the highest

order in loss moduli in the right-hand side of Eq. 10 and

obtain

G#2DðvÞ ’ G#?ðvÞ �
½G#13ðvÞ�2

G#kðvÞ
;

G$2DðvÞ ’ G$?ðvÞ1
G#13ðvÞ
G#kðvÞ

� �2

G$kðvÞ � 2
G#13ðvÞ
G#kðvÞ

G$13ðvÞ:

(28)

Thus, G#2D, given as the difference between two terms of

similar magnitude, is much smaller than the 3D storage

moduli. On the other hand, G$2D is determined from three

terms of similar magnitude. In both cases, the anisotropy of

three storage and loss moduli plays a crucial role in

determining the 2D moduli. The stability conditions men-

tioned above guarantee that G#2D and G$2D are finite and

positive, as can be seen in Table 3. Conversely, the good

prediction of G$2D in Table 3 and Fig. 5 indicates that the loss

moduli in Table 2 are more reliable than their large SD

suggests. One important consequence of the large 2D

viscous effect is that the energy loss due to dissipation is

of comparable magnitude to the elastic energy stored during

area change since the ratio of the two is given by 4pG$2D/G#2D
(Goodwin and Hughes, 2000).

In principle, the response to the oscillatory strain gives the

same information as that to the stepwise strain. However, as

mentioned above, the latter response is quite different

between compression and expansion, whereas the former is

an average over the two. This is highlighted in Fig. 6: at

a given frequency, the elastic moduli from oscillatory

FIGURE 3 Frequency dependence of 3D viscoelastic moduli of the water (solid line), DMPC (long-dashed line), and gA (short-dashed line) systems. The

data are from Table 2, and the SD there are shown as error bars.
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NEMD (solid circles) are bounded by the compressional and

expansional moduli determined from stepwise NEMD. On

the other hand, the viscous moduli from the oscillatory

NEMD are much closer to both the stepwise NEMD results.

We can compare the computed moduli of the membranes

with a few existing experimental results. First, from the

Brillouin scattering measurement of sound velocity, LeP-

esant et al. (1978) reported G#? ; G#k ¼ 22 kbar and G#2D
below their detection limit of 5 kbar at T ; 100 ps for

a multilamellar DPPC at 25 wt % water in the liquid

crystalline phase. Second, El-Sayed et al. (1986) used the

laser-induced phonon spectroscopy to obtain G#? ¼ 22 kbar

and h11 [ G$11/v ¼ 0.016 Pa s (cf. Eq. 1) at T ; 1 ns for

a fully hydrated multilamellar DPPC system at 47.5�C. We

note that DPPC bilayer has a gel-to-liquid-crystal phase

transition temperature of 41�C, compared to 24�C for

DMPC. Thus, the good agreement of these results with our

DMPC moduli at 35�C is encouraging. Also, Yamamoto

et al. (1992) report the thickness compressibility modulus
�GG#k;0:1 kbar (cf. Eq. 12) in the static limit for multilamellar

hydrated DMPC in the liquid-crystalline La phase at 39.5�C
and relative humidity of 82%. This value is about an order of

magnitude smaller than our result of 1.3 kbar at T ¼ 1600 ps

calculated from data in Table 2. Incidentally, Yamamoto

et al.’s result at lower humidity (;1 kbar at 40.7�C and

relative humidity of 54%), which they attributed to the more

ordered Lb# phase, is much closer to our result. We believe

that this agreement is fortuitous and our approach will yield
�GG#k closer to 0.1 kbar at lower frequencies once the slower

relaxation modes are taken into account. See the ‘‘Discus-

sion’’ section for further discussions on the possible

relaxation modes not captured in this study and the static

limits of the viscoelastic moduli.

The results presented above show that, under the applied

lateral strain, the membrane system behaves as a linear

viscoelastic material with anisotropy and frequency disper-

sion. To understand the extent to which the linear model is

valid, we have repeated the calculations for a smaller set of

configurations and frequencies with varying strain amplitude

FIGURE 4 Frequency dependence of the biaxial Poisson’s ratio of the

water (solid line), DMPC (long-dashed line), and gA (short-dashed line)
systems. (a) The real part and (b) the imaginary part are shown. The data are

from Table 2.

FIGURE 5 Frequency dependence of the apparent 2D (a) storage and (b)

loss moduli of the water (solid line), DMPC (long-dashed line), and gA

(short-dashed line) systems. The open symbols connected with lines are

direct fit results (entry A of Table 3). The prediction from 3Dmoduli (entry B

of Table 3) is shown as solid symbols with the same shape.
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u0? (see Figs. 7 and 8 for the results from the DMPC system

D1.). We first note that the smallest amplitude employed

(u0? ¼ 0:005) suffers from noise, as indicated by its large SD,

and will be disregarded. With this provision, the 3D storage

moduli for the DMPC system in Fig. 7 remain fairly constant

up to u0? ¼ 0:030; corresponding to area change of ;6%,

and then begin to increase at larger amplitudes. That figure

also shows the SD decreasing with increasing amplitude. On

the other hand, the 3D loss moduli are largely independent

of the amplitude in its entire range. We therefore conclude

that the 3D elastic and viscous behaviors are linear up to 6%

and 20% changes in area, respectively. The apparent 2D

moduli from system D1 in Fig. 8 are even less sensitive to

u0?: This indicates that the effects of large lateral strain

perturbations are relieved by the interplay of the lateral and

normal motions and, as a result, the lateral stress response

remains linear at higher amplitude. In this context, the large

difference between the direct and predicted G#2D of the

DMPC system at u0? ¼ 0:10 (the right-most data points in
Fig. 8 a) probably signals the breakdown of the linear model

for the full 3D response. We mention here that the gA system

(g1) exhibits a similar behavior (not shown).

We next turn to the system size dependence of the

viscoelastic properties. First, Table 4 shows that the systems

with larger area but with the same Lz (D2 and g2) produce 2D
moduli comparable to their reference values (D1 and g1). On

the other hand, the DMPC systems with larger Lz (D3 and

D4) produce significantly smaller moduli. This difference

can be attributed to the stoichiometric effect arising from the

thicker water layer of systems D3, D4, and g2. However, we

cannot rule out the effects arising from the modified lipid

structure and interaction due to higher hydration. To resolve

this, we consider the area compressibility modulus KA and

surface viscosity kA (cf. Eq. 11). Because these quantities are

defined in terms of the lateral tension, the direct effect of

isotropic water layer is largely eliminated, and any observed

dependence on water concentration can be attributed to the

structural modification of the bilayer region. They are plotted

in Fig. 9 for all systems studied as a function of the water

concentration. First of all, we note that KA and kA show

much weaker dependence on water concentration than G*2D
in Table 4. The 4 DMPC systems in Fig. 9 (open symbols
connected with lines) show a sign of decreasing modulus

with increasing water content, especially for KA at T ¼ 100

FIGURE 6 Comparison of the time- and frequency-domain NEMD

results for the apparent 2D viscoelastic moduli of the DMPC system (D1).

The GHFT of the expansional relaxation function Gex
2D (solid line) and the

GHFT of the compressional relaxation functionGco
2D (dashed line) are shown

(cf. Table 1). The solid circles are from the oscillatory strain NEMD (cf.

Table 3).

TABLE 3 Apparent 2D viscoelastic moduli determined directly

from the lateral stress response under the ZNS condition (entry

A) and the predicted values from the 3D moduli according to Eq.

10 (entry B)

A B

T G#2D G$2D G#2D G$2D

Water

25 0.40 (0.64) 2.19 (0.47) �0.54 (1.95) 1.90 (2.44)

100 0.06 (0.59) 0.54 (0.39) �0.58 (1.11) 0.77 (0.20)

200 �0.40 (0.14) 0.25 (0.26) - -

400 �0.04 (0.26) 0.22 (0.24) �0.18 (0.38) 0.25 (0.32)

800 �0.02 (0.00) 0.17 (0.16) - -

DMPC

25 9.84 (1.32) 6.29 (1.26) 9.29 (2.39) 5.16 (1.88)

100 5.37 (1.07) 3.92 (1.19) 5.59 (1.33) 3.30 (1.94)

200 3.73 (0.65) 3.40 (0.70) - -

400 3.07 (0.82) 2.36 (0.77) 3.09 (1.35) 2.42 (0.96)

800 2.48 (0.78) 1.89 (0.82) - -

1600 1.11 (0.64) 1.59 (0.41) 1.29 (1.10) 1.36 (0.62)

gA

25 8.04 (1.13) 5.95 (1.28) 7.43 (0.90) 5.58 (1.17)

100 4.25 (0.73) 3.28 (0.84) 4.01 (1.21) 3.14 (0.93)

200 3.35 (0.70) 2.80 (0.74) - -

400 2.29 (0.47) 1.92 (0.51) 2.43 (1.14) 1.49 (0.73)

800 1.43 (0.61) 1.37 (0.38) - -

1600 1.18 (0.53) 1.04 (0.42) 1.46 (0.68) 1.02 (0.68)

The amplitude of lateral strain u0? was 0.015 in all cases. All entries are

averages of data from multiple trajectories. SD are indicated in parentheses.

8–19 independent trajectories were used in all entries except for T ¼ 200

and 800ps, where 2–4 trajectories are used. Units: T in picoseconds and G

in kilobars.
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ps and kA at T ¼ 400 ps. However, kA at T ¼ 100 ps is

virtually independent of water concentration. Overall, the

increase in water concentration from 35% (D1) to 56% (D4)

seems to reduce the elasticity of bilayers by ;20% and the

viscosity by,10%. Also included in Fig. 9 are values for the

two gA systems (g1 and g2) with almost identical water

content (solid symbols). For KA, they show slightly smaller

values than the DMPC system at T ¼ 400 ps but no

difference at T ¼ 100 ps. In contrast, kA for the gA systems

are distinctly smaller by;10% at both T. Thus, we conclude
that the inclusion of gramicidin A at the mole fraction of

0.5–1% reduces the area viscosity by a small degree (&10%)

and has a negligible effect on the bilayer elasticity.

To assess the effects of the thermostat and barostat on the

calculated viscoelastic properties, we have carried out

additional NEMD simulations with four independent

trajectories using different extended system parameters.

First, adiabatic simulations with tT $ 10 ns yield G#2D and

G$2D that are 27 and 6% smaller, respectively, than the

corresponding isothermal values at period T ¼ 100 ps, and 8

and 13% smaller at T¼ 400 ps. Thus, it seems that the Nose-

Hoover thermostat somewhat increases the viscoelastic

moduli. This is apparently at odds with Evans and Holian

(1985), who show that Nose-Hoover thermostated NEMD

produces the linear susceptibilities identical to the adiabatic

ones in the thermodynamic limit. It is possible that the

number of adiabatic trajectories (four) is not sufficient and its

full resolution requires a further study. However, the

observed differences are within SD of the average values

and does not change the semiquantitave and qualitative

pictures presented above. Similarly, the change in barostat

relaxation time does not affect the response significantly in

the studied frequency range: with tP ¼ 1 ps instead of 0.25

ps, G#2D and G$2D were ,10% different from the standard

results at T ¼ 25 ps and the difference was even smaller at

T ¼ 100 ps.

Major findings of this study can be summarized as

follows:

i. The lipid bilayer membranes behave as a viscoelastic

material with anisotropy when stretched or compressed

laterally on the nanosecond timescale.

ii. The stress response is significantly larger under the

compression of membrane area than under expansion.

Also, the membrane response is much larger and slower

than the response of liquid water.

iii. Membranes behave as an incompressible system on the

nanosecond timescale, adjusting their thickness in re-

sponse to the area change. However, the thickness read-

justment takes 100–200 ps, and this delay produces a

large viscous modulus comparable in magnitude to the

elastic modulus.

iv. The timescales of the membrane response correlate well

with those of the internal or individual motions of lipid

FIGURE 7 Strain amplitude dependence of the frequency-domain 3D moduli of the DMPC system. Results with two different periods, T ¼ 100 ps (solid

line) and 400 ps (dashed line), are shown. The averages of data from four independent trajectories are shown.
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molecules determined experimentally or from simula-

tions.

v. The membrane stress response is linear up to 20%

change in the area, if the membrane thickness is allowed

to readjust accordingly.

vi. The multi-exponential model (generalized Maxwell

model) provides an excellent description of themembrane

viscoelastic behavior. It produces a good fit of the time-

dependent stress responses, and the viscoelastic moduli

thus obtained are consistent with the direct frequency-

domain simulation results.

DISCUSSION

Since our NEMD study captures stress relaxation in the

nanosecond or shorter timescales, the question may arise as

to the existence of slower relaxation mechanisms. A recent

dielectric spectrum study on the DMPC vesicle solution

(Schrader and Kaatze, 2001) shows that the dielectric

relaxation in the microsecond to nanosecond range is mainly

due to the headgroup rotation with timescale t ¼ 2.6 ns at

31�C, similar to that of the rotational diffusion (see the

section ‘‘Responses to stepwise strain’’). A similar decay

mode was also identified as solely responsible for the

ultrasonic attenuation in the microsecond to nanosecond

range (t ; 2.4 ns at 32�C) (Schrader et al., 2003). Since the
slowest relaxation mode of G2D(t) is ;200 ps for the

expansion and;2 ns for the compression (Table 1), it is very

likely that the lipid overall and headgroup rotations are the

only significant stress relaxation mechanism under a micro-

second timescale that is not fully captured in this study. As

mentioned above, the compressional relaxation component

with t ; 2 ns will be closely related to this mode. We also

note that the apparent 2D moduli in Figs. 5 and 6 still exhibit

a frequency dispersion near the period of 1 ns, and the data in

Table 3 yield an apparent divergent behavior of the 2D

viscosity h2D(v) ¼ G$2D(v)/v with decreasing v in the

studied frequency range (not shown). This apparent di-

vergence will disappear at a smaller frequency than is

covered in our simulation, once the slower relaxation

mechanisms mentioned above are taken into account.

Assuming that the missing relaxation mechanisms have

timescales t ; 2–3 ns as discussed above, we expect the

static limit to be reached at v& 1/t ; 0.4 GHz or T* 16 ns.

The apparent 2D elastic modulus can be translated to the

area compressibility modulus KA via Eq. 11. We have used it

in Fig. 9 to eliminate the direct water layer effect. KA is also

one of the key quantities characterizing membrane elasticity

and has been extensively studied. The currently accepted

value of KA (Nagle and Tristram-Nagle, 2000) for a DMPC

bilayer is 0.234 N/m (Rawicz et al., 2000) obtained from

micropipette aspiration of vesicles. This represents the

elastic response to local area expansion after the thermal

FIGURE 8 Strain amplitude dependence of the apparent 2D (a) storage
and (b) loss moduli of the DMPC system. Results with two different periods,

T ¼ 100 ps (solid line) and 400 ps (dashed line), are shown. The open

symbols connected with lines are direct fit results. The prediction from 3D

moduli is shown as solid symbols with the same shape. All entries are

averages of data from four independent trajectories.

TABLE 4 System size dependence of the apparent 2D

viscoelastic moduli (u0
?50:015)

T ¼ 100 ps T ¼ 400 ps

System Leqz fw G#2D G$2D G#2D G$2D

DMPC

D1 54.9 35.3 5.37 (1.07) 3.92 (1.19) 3.07 (0.82) 2.36 (0.77)

D2 54.5 35.3 5.01 (0.48) 3.41 (0.49) 2.51 (0.41) 2.63 (0.15)

D3 58.7 41.1 4.36 (1.37) 3.78 (0.58) 2.43 (0.25) 2.09 (0.28)

D4 83.0 55.7 2.70 (0.33) 2.72 (0.39) 1.68 (0.27) 1.38 (0.40)

gA

g1 59.8 41.7 4.25 (0.73) 3.28 (0.84) 2.29 (0.47) 1.92 (0.51)

g2 59.9 41.2 4.36 (0.62) 3.39 (1.36) 2.09 (0.36) 1.88 (0.20)

The systems are: the reference DMPC (D1), four times the area (D2), 7%

larger Lz (D3), 51% larger Lz (D4), the reference gA (g1), and twice the area

(g2). fw is the water concentration in wt%. The reference system data (D1 and

g1) are averages over 16–19 independent trajectories from Table 3. For the

larger systems, averages of data from four independent trajectories are shown.

SD are indicated in parentheses. Units: Lz in angstroms, fw in weight percent,

and G in kilobars.
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bending undulation effects are separated, and thus is about

twice larger than the apparent modulus, which is not

corrected for the undulation effect. (A recent reexamination

of this method (Henriksen and Ipsen, 2004) resulted in

a smaller bending modulus but a similar area compressibility

modulus compared to the values in Rawicz et al., 2000.)

Still, this is ;2.6 times smaller than our result (KA ¼ 0.609

N/m for system D1 at period T ¼ 1.6 ns (v ¼ 3.93 GHz)).

This difference is partly attributed to the different responses

to compression and expansion: the micropipette aspiration

experiment measures only the expansional response, which

is softer than the response to compression, whereas our

NEMD results from oscillatory strains are averages of the

two. In addition, the value of KA in the static limit, as

discussed above, would be considerably smaller than at T ¼
1.6 ns.

In conclusion, we have presented a unified formulation of

the phenomenological linear viscoelastic properties of

a planar biomembranes. The relevant viscoelastic moduli

were quantified with NEMD simulations of the area change

process. We have found a close coupling between the area

and thickness variations, and it plays a critical role in the

apparent in-plane viscoelastic behavior, which is surpris-

ingly linear up to 20% area change. In addition, this coupling

results in large in-plane viscous moduli of membranes

comparable in magnitude to the corresponding elastic

moduli. This will have a significant influence on many

dynamic and relaxation processes occurring in lipid bilayer

membranes. The quantitative information on the membrane

viscoelastic properties obtained in this study is also expected

to be useful in various efforts to model meso- to macroscale

biomembrane systems (Ayton and Voth, 2002).

APPENDIX: THE NEMD SIMULATION METHOD

In the NEMD simulation method, the external perturbation is homoge-

neously reflected in the equations of motion of the individual atoms in a way

consistent with the concomitant change in the boundary conditions. For the

simulation of lateral area change, which incurs the system size change in the

x and y directions, Ayton et al. (2002) devised the following equations of

motion:

_rri ¼
1

mi

pi1 _uu?½ðxi� xCMÞe11ðyi� yCMÞe2�1fðzi� zCMÞe3;

_ppi ¼ f i� _uu?½px

i e11p
y

i e2��fp
z

i e3�api;

_LLx;y ¼ Lx;y _uu?; _LLz ¼ Lzf;

_ff¼ 1

NkBT
0
t
2

P

ðPzz�P
0

zzÞVðtÞ;

_aa¼ 1

t
2

T

T

T
0�1

� �
; (29)

where mi, ri, pi, and fi are, respectively, the mass, position, peculiar

momentum (difference between the lab-frame and streaming momenta), and

force of particle i; rCM is the center of mass of the particles in the simulation

box; La (a ¼ x, y, z) is the box size in the a direction; Pzz and T are

instantaneous normal pressure and temperature of the system determined

from the peculiar momentum; ei (i ¼ 1, 2, 3) is the unit vector in each

Cartesian direction; N is the number of particles; kB is the Boltzmann

constant; and f and a are the barostat and Nose-Hoover thermostat

variables, respectively. The time evolutions of f and a are controlled by the

imposed normal pressure P0
zz and temperature T 0, and by the relaxation

times tP and tT of the barostat and thermostat, respectively. Finally, _uu? is

the rate of the lateral strain given by Eq. 13 or 20. In the former, the jump in

u? at t ¼ t0 was approximated by a linear function of short duration (0.05

ps). Although Eq. 29 is not a unique representation of microscopic motions

under the given strain and boundary conditions, it has the major advantage of

simplicity and intuitive appeal. In addition, it is closely related to equations

of motion for many equilibrium isobaric ensembles as shown below.

Moreover, on theoretical grounds (Evans and Holian, 1985), the linear

susceptibilities obtained from the above equations of motion are expected to

be free from uncertainties related to thermostat. For these reasons, its

variants have been used extensively to study the viscoelastic behavior of

fluids (Hoover et al., 1980b,a; Evans and Morriss, 1990).

We have implemented Eq. 29 in the DL_POLY molecular dynamics

simulation package version 2.12 (Smith and Forester, 1999). In the ZNS

condition simulations, the normal stress was maintained close to zero by

FIGURE 9 Plots of (a) the area compressibility modulus KA and (b) the

surface viscosity for area change kA as a function of water concentration of

the system. Results with two different periods, T ¼ 100 ps (solid line) and

400 ps (dashed line), are shown. The four connected open symbols

correspond to the DMPC systems D1–D4, from left to right. The solid

symbols of the same shape represent the gA systems g1 and g2. The data

were obtained from Table 4 using Eq. 11.
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setting P0
zz ¼ 0: In the CLZ condition simulations, we simply used a very

large value of tP with the initial condition f(t ¼ 0) ¼ 0 to suppress the

change in Lz. By proper choice of _uu?; Eq. 29 also generates several

equilibrium isobaric ensembles. First, when _uu? ¼ f; we obtain the NPT
ensemble with isotropic volume fluctuation (i-NPT, Melchionna et al.,

1993). If, instead of f, three independent variables are used for each

Cartesian components, we have the NPT ensemble with anisotropic system

size variations (a-NPT, Melchionna et al., 1993). Another useful equilibrium

ensemble derived from Eq. 29 is that of constant lateral area and normal

stress, usually referred to as the NPnAT ensemble (Zhang et al., 1995). This

ensemble is obtained by setting _uu? ¼ 0 in Eq. 29.
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