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ABSTRACT Membrane domains known as rafts are rich in cholesterol and sphingolipids, and are thought to be thicker than the
surroundingmembrane. If so,monolayers should elastically deformsoas to avoid exposureof hydrophobic surfaces towater at the
raft boundary.We calculated the energy of splay and tilt deformations necessary to avoid such hydrophobic exposure. The derived
value of energy per unit length, the line tension g, depends on the elastic moduli of the raft and the surrounding membrane; it
increases quadratically with the initial difference in thickness between the raft and surround; and it is reduced by differences, either
positive or negative, in spontaneouscurvature between the two. For zero spontaneous curvature,g is;1pN for amonolayer height
mismatch of;0.3 nm, in agreement with experimental measurement. Our model reveals conditions that could prevent rafts from
forming, and a mechanism that can cause rafts to remain small. Prevention of raft formation is based on our finding that the
calculated line tension is negative if the difference in spontaneous curvature for a raft and the surround is sufficiently large: rafts
cannot form if g, 0 unless molecular interactions (ignored in the model) are strong enough to make the total line tension positive.
Control of size is based on our finding that the height profile from raft to surround does not decrease monotonically, but rather
exhibits a damped, oscillatory behavior. As an important consequence, the calculated energy of interaction between rafts also
oscillates as it decreases with distance of separation, creating energy barriers between closely apposed rafts. The height of the
primary barrier is a complex function of the spontaneous curvatures of the raft and the surround. This barrier can kinetically stabilize
the rafts against merger. Our physical theory thus quantifies conditions that allow rafts to form, and further, defines the parameters
that control raft merger.

INTRODUCTION

Microdomains of cell membranes that are rich in cholesterol

and sphingolipids are known as ‘‘rafts’’ (Anderson and

Jacobson, 2002; Simons and Ikonen, 1997; Simons and Vaz,

2004). Rafts are receiving increasing attention because they

contain and concentrate important proteins that must interact

with each other to carry out cellular function, such as signal

transduction (Harder, 2004). Cellular rafts are small, making

it difficult to unambiguously study their properties (Edidin,

2001; Pralle et al., 2000; Prior et al., 2003; Sharma et al.,

2004). In lipid bilayer membranes, however, large domains

form that are rich in cholesterol and sphingolipids (Baumgart

et al., 2003; Crane and Tamm, 2004; Dietrich et al., 2001;

Feigenson and Buboltz, 2001; Samsonov et al., 2001; Veatch

and Keller, 2002; Veatch et al., 2004). The large size of these

domains facilitates their study. Bilayer rafts are circular and

rapidly resume this shape after an external perturbation,

showing that a line tension (an energy per unit length of

boundary) exists at the boundary of the raft. If many small

rafts were to merge into a large one, the total length of raft

boundary would be reduced, as would the boundary’s energy.

Opposing this reduction in energy is the decreased entropy

that would result if many rafts were to become one. Because of

the competition between smaller boundary energies and

unfavorable entropy with raft merger, the raft area will be

distributed over smaller raft sizes for smaller line tension.

Because line tension controls the size distribution of rafts, it is

important to develop a theory that can explain and predict line

tension on the basis of the physical properties of the mem-

brane.

Rafts are thicker than the membrane surrounding them (the

‘‘surround’’) in lipid bilayer systems, as shown by both

atomic force microscopy (Lawrence et al., 2003; Yuan et al.,

2002) and x-ray diffraction (Gandhavadi et al., 2002). If the

orientation and length of the lipids are the same as they are at

some distance from the boundary, an abrupt ‘‘step-like’’

change in thickness would exist at the raft boundary, and this

would create a significant hydrophobic surface exposed to

water (Fig. 1 A). For a hydrocarbon-water surface tension of

50 erg/cm2, creating a step change in bilayer thickness of 0.5–

1 nm would require;5–10 kT/nm (kT� 43 10�14 erg). This

energy per unit length is equal to a line tension of 20–40 pN.

This value is unrealistically high and almost two orders of

magnitude greater than an experimentally determined value

(Baumgart et al., 2003). If lipids were to deform at the bound-

ary so as to prevent the creation of hydrophobic surfaces by

protruding rafts, the line tension would be reduced. Elastic

deformations near the boundary of the monolayers should

thus smooth out the interface and minimize the sum of the

elastic and hydrophobic energy of the interface (Fig. 1B). The

lengths of the membrane spanning domains of membrane
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proteins are generally different from the thickness of the

surrounding lipid bilayer; this is known as ‘‘hydrophobic

mismatch’’. The lipid deformations necessary to compensate

for this mismatch have been considered (Fattal and Ben-

Shaul, 1993; Harroun et al., 1999; Lundbaek and Andersen,

1999). For proteins, only the surround can deform in response

to the mismatch, whereas for rafts, both raft and surround will

deform.

Three fundamental lipid monolayer deformations in

continuum elasticity theory are splay (a generalization of

bending), tilt, and area compression. The physics and equa-

tions of these deformations were first described in classical

articles (Frank, 1958; Helfrich, 1973) and are now employed

to calculate a variety of physical membrane phenomena

(Fournier, 1999; Hamm and Kozlov, 1998, 2000; MacKin-

tosh and Lubensky, 1991; May, 2002; May and Ben-Shaul,

1999; Nielsen et al., 1998). The three modes of deforma-

tion—splay, tilt, and area stretching—could be considered

together, but this would lead to unwieldy equations, neces-

sitating that physical intuition be sought by considering two

deformations at a time. We previously combined the defor-

mations of tilt and area compression, allowing the hydro-

phobic mismatch to be completely compensated by the

deformations; we calculated the line tension of such rafts

(Akimov et al., 2004). But the energy to deform a monoloyer

by area compression is significantly greater than that needed

to deform by splay and tilt. This is readily seen by using the

elastic moduli to compare the energy/area necessary for each

deformation: for compression the modulus is Ea ; 120 erg/

cm2 (Rawicz et al., 2000), for splay B=h2
m ; 10 erg=cm2 for

a monolayer thickness hm ; 2 nm (Niggemann et al., 1995;

Rawicz et al., 2000), and for tilt the modulus is K ; 40 erg/

cm2 (Hamm and Kozlov, 1998, 2000; May, 2002). Area

compression is even greater for cholesterol enriched mem-

branes, which have severalfold higher compression moduli

(Evans and Needham, 1987; Meleard et al., 1997; Needham

et al., 1988; Needham and Nunn, 1990). Thus, lipids should

deform at the boundary of a raft through splay and tilt, with

little contribution from area compression. Also, it is well

known that spontaneous curvature is a critical determinant of

splay, and in turn splay is a controlling membrane defor-

mation of several membrane processes, such as membrane

fusion (Kozlovsky and Kozlov, 2002; Kuzmin et al., 2001;

Markin and Albanesi, 2002). Splay and spontaneous cur-

vature should thus be explicitly considered to properly

describe the physics of line tension. In this article, we

systematically utilize the deformations of splay and tilt to

calculate line tension according to the theory of continuous

elastic membranes.

Statement of the problem

The model

We consider a bilayer for which mirror symmetry is main-

tained with respect to the midplane between monolayers. For

mirror symmetry, phase separation of lipids occurs at the

same transbilayer location for both monolayers so that the

raft and the surround, each separately, consist of identical

monolayers; the midplane is always flat. This allows us to

consider the deformations of only a single monolayer of the

bilayer. To describe the boundary of a raft, we introduce

a Cartesian coordinate system in which the plane z ¼ 0 is

located at the midplane of the bilayer; the x axis is per-

pendicular to the raft boundary, which is located at x¼ 0. We

approximate the boundary of the raft as a straight line. We

thus introduce an infinite monolayer that consists of two

semiinfinite stretches: each stretch (raft on the left, surround

on the right) has a different equilibrium thickness; they meet

at x ¼ 0. The geometry and mechanical deformations of a

single monolayer are treated by introducing a dividing sur-

face. We choose the neutral surface as our dividing surface;

this is defined as the surface for which the deformations of

monolayer stretching (or compression) and bending are

energetically uncoupled from each other (Ben-Shaul et al.,

1996; Kozlov et al., 1994; Leikin et al., 1996). Experiment

and theoretical analysis show that this surface is located

along the interface between the polar headgroups and the

hydrocarbon tails (Kozlov et al., 1994; Leikin et al., 1996).

The neutral surface is described by a unit vector—the normal

N, which is perpendicular to the surface—and by its distance

h from the bilayer midplane (Fig. 2). We define h as the

monolayer thickness. We show in Appendix 1 that hydro-

phobic exposure to water must be completely eliminated at

the raft boundary; the raft and the surround thus have the

same thickness at x¼ 0 and the neutral surface is continuous.

We assign at every point on the surface a unit vector director,

n, that indicates the average direction of the asymmetric lipid

molecule at that location (Fig. 2). Our approximation that the

raft boundary is a straight line is strictly valid if the radius of

FIGURE 1 A schematic representation of the raft boundary. The raft, on

the left, is thicker than the surround on the right. (A) A step in monolayer

thickness creates a large hydrophobic surface. (B) Monolayer deformation at

the raft boundary alleviates any creation of hydrophobic surfaces exposed to

water.
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the raft is much greater than the characteristic length over

which the deformations decay. Because the system is

invariant along the raft boundary, our system is essentially

one-dimensional, and all deformations vary along an axis

perpendicular to the raft boundary. We assume that a mono-

layer is volumetrically and laterally incompressible. Lipids

must be transferred from the interior of the raft and/or

surround if the length of the boundary is to increase. We

calculate the work required to create the additional boundary

that smoothly connects the raft and surround as the energy

necessary to elastically deform it. We refer to our calculated

elastic energy of deformation per unit length of interface as

‘‘line tension’’.

The deformations of splay and tilt

Any arbitrary small perturbation of the monolayer from the

flat state (Figs. 2 A and 3 A) can be described by a com-

bination of three independent deformations: tilt, splay, and

area compression. In tilt, the director deviates from the

normal to the neutral surface (Figs. 2 B and 3 D). Quanti-

tatively, the tilt vector is defined by t¼ n/(n�N)� N (Hamm

and Kozlov, 2000; MacKintosh and Lubensky, 1991). Tilt is

completely described by the local director and the normal. t
is perpendicular to N (t�N ¼ 0) and parallel to the neutral

surface. The magnitude of t is tanu, where u is the angle

between N and n. For small perturbations, t ¼ n � N. When

lipids tilt, the area per lipid remains constant and the acyl

chains elongate as they incline, so as to maintain lipid

volume. Tilt, therefore, does not alter monolayer thickness

(Fig. 3 D). In splay, adjacent directors are no longer parallel

to each other but always lie in a single plane. This plane,

however, can change with splay (Figs. 2 C and 3, B and C).

Splay is quantitatively the first derivative of the director

along the neutral surface (i.e., div n). Defining the geometric

curvature, J, of the neutral surface by J[ �div N yields, for

small deformations, the relation div n ¼ �J 1 div t. This

shows that for small deformations, splay is a combination of

monolayer bending (div N) and nonuniform tilt (div t). In

this article, we use equations that apply to small deforma-

tions.

By definition, the direction of N points from headgroup

toward the hydrocarbon core (Fig. 2) and thus positive cur-

vature corresponds to negative divergence of N. Because the

directors are not parallel to each other in splay, splay alters

monolayer thickness. We illustrate by considering the acyl

chains of a lipid (Fig. 3). To conserve volume, the chains

must elongate if they incline toward each other (Fig. 3 B) and

must shorten if they incline away from each other (Fig. 3 C).

Negative splay thus increases (Fig. 3 B) and positive splay

decreases (Fig. 3 C) the monolayer thickness. In area com-

pression (expansion), the area per lipid molecule changes;

the thickness changes accordingly because of volume incom-

pressibility. The characteristic energy of monolayer area

compression (elastic modulus Ea ; 120 erg/cm2) (Rawicz

et al., 2000) is considerably larger than those of splay

(B=h2
m ; 10 egr=cm2) and tilt (K ; 40 erg/cm2) (Hamm and

Kozlov, 1998, 2000; May, 2002), and the difference be-

comes greater at higher cholesterol concentrations. This is

the reason we assume that the neutral surface is not laterally

compressible (or stretchable). We describe all deformations

by a combination of tilt and splay. (On first principles, there

is a fourth deformation, twist, in which the directors do not

remain in the same plane. It is quantitatively proportional to

n�curl n. For an isotropic, homogeneous raft and surround

with a laterally invariant straight boundary, it is readily

shown that curl n ¼ 0, and thus we do not consider twist.)

The free elastic energy of a monolayer

Monolayers are planar (with zero geometric curvature)

within the interior of both the raft and the surround, and

hence all directors are parallel to each other and perpendic-

ular to the neutral surface. For small perturbations, the elastic

energy of a deformed monolayer is a quadratic function of

the deformations of splay and tilt. t, N, and n are char-

acterized by their projections, t ¼ tx, N ¼ Nx, and n ¼ nx,

onto the x axis. In the initial flat state, these three projections

are zero everywhere. For small deviations from a flat mono-

layer, div n ¼ dn/dx, and the free energy per unit area is

given by

FIGURE 2 An illustration of tilt and splay. (A) In the unperturbed flat

monolayer, the normal N and director n are parallel. (B) Lipid tilt is

illustrated. The tilt vector is parallel to the neutral surface. Tilt does not alter

monolayer thickness. (C) Splay is illustrated. In splay, adjacent directors are

not parallel to each other and monolayer thickness changes. The direction of

the x axis is indicated.

FIGURE 3 Monolayer deformations. (A) Undisturbed monolayer, (B)

negative splay, (C) positive splay, and (D) tilt. The sketch illustrates why

splay changes the monolayer thickness (B and C) whereas tilt (D) does not.

The volume per lipid is not altered by any of the deformations.
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w ¼ B

2

dn

dx
1 J0

� �2

1
K

2
t
2 � B

2
J

2

0 ; (1)

where B is the splay elastic modulus (i.e., the bending

modulus), K is the tilt modulus, and J0 is the spontaneous

curvature of the monolayer. Equation 1 is a one-dimensional

version of that derived by Hamm and Kozlov (1998, 2000).

The first term is the energy of splay and the second term is

the energy of tilt. The ‘‘1’’ sign between dn/dx and J0 is

consistent with the standard sign convention that at equi-

librium, a monolayer having positive spontaneous splay (or

curvature; e.g., a lysolipid) bends toward the hydrocarbon

core. A monolayer of nonzero spontaneous curvature is

stressed within a flat bilayer and hence stores elastic energy

relative to the unstressed monolayer. The work necessary to

bend a monolayer from its spontaneous curvature to the flat

reference state is subtracted in the third term.

The total elastic energy of the system is the integral of the

energy density, w, over the area of the neutral surface. Be-

cause w does not depend on y, the free energy of the mono-

layer W per unit length of boundary is

W ¼
Z

B

2

dn

dx
1 J0

� �2

1
K

2
t
2 � B

2
J

2

0

" #
dx: (2)

The lateral and volumetric incompressibility assumptions

can be written as

hðxÞ ¼ hm � h
2

m

2

dn

dx
; (3)

where hm is the thickness of the flat monolayer. Equation 3

provides the quantitative relation between splay and the

change in monolayer thickness.

Solution of the problem

Elastic free energy of a monolayer with fixed
boundary conditions

We determined the deformations at the raft boundary and

their energies by minimizing the energy in Eq. 2 with respect

to n(x) and t(x). The minimization was subject to the con-

straint of Eq. 3, to the boundary condition that at x ¼ 0 the

thickness and directors are the same for the raft and surround

stretches of the monolayer, and to the boundary condition

that the two stretches are unperturbed at x¼6N. We denote

whether a parameter (e.g., elastic moduli, spontaneous cur-

vature, equilibrium thickness) is associated with a raft or a

surrounding monolayer by utilizing the subscript r for the

raft and s for the surround.

We illustrate our method of calculation by considering a

surround stretch (a semiinfinite monolayer, x . 0) of equi-

librium thickness hs. After deformation, the thickness of this

stretch of monolayer is h(x). We utilize the deviation of the

neutral surface from its flat, undisturbed state by defining

jðxÞ ¼ hs � hðxÞ: (4)

Replacing hm by hs, Eq. 3 acquires the form

j ¼ h
2

s

2
n#; (5)

where n# ¼ dn

dx
: Using Eqs. 4 and 5, we may rewrite t in

terms of n as:

t ¼ n� N ¼ n� h# ¼ n1 j# ¼ n1
h

2

s

2
n$: (6)

This yields the elastic free energy of a semiinfinite mono-

layer as

Ws ¼
Ks

2

Z N

0

l
2

s ðn#1 JsÞ2
1

h
2

s

2
n$1 n

� �2

�l
2

sJ
2

s

" #
dx; (7)

where ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Bs=Ks

p
is an elastic length constant. Equation 7

can be expanded to yield

Ws ¼
Ks

2

Z N

0

l
2

s ðn#Þ
2
1

h
2

s

2
n$1 n

� �2
" #

dx

1BsJsnðNÞ � BsJsnð0Þ: (8)

We minimized Ws with respect to n(x), yielding the fourth-

order differential equation

h
4

sn
ð4Þ
1 4ðh2

s � l
2

s Þn
ð2Þ
1 4n ¼ 0: (9)

Because only the integral appearing in Eq. 8 depends on

n(x) and it is independent of Js, Eq. 9 is independent of Js.

Four boundary conditions must be specified. Two of them

follow from the requirement that the monolayer far from the

boundary is undisturbed. Because the director is constant and

perpendicular to the plane z ¼ 0 far from the boundary, its

projection on the x axis is zero, yielding

nðNÞ ¼ 0; n#ðNÞ ¼ 0: (10)

For the last two boundary conditions, the most general ex-

pression is obtained by setting the values of the monolayer

thickness and directors at x ¼ 0:

nð0Þ ¼ ns; jð0Þ ¼ h
2

s

2
n#ð0Þ ¼ js: (11)

The solution of Eq. 9, subject to the boundary conditions

of Eqs. 10 and 11, is

nðxÞ ¼ exp �lsx

h
2

s

� �

3
nsls12jsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2h
2

s �l
2

s

q sin
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h

2

s �l
2

s

q
h

2

s

1ns cos
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h

2

s �l
2

s

q
h

2

s

0
B@

1
CA

if 2h
2

s .l
2

s ; (12)

or
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nðxÞ¼ exp �lsx

h
2

s

� �

3
nsls12jsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2

s �2h
2

s

q sinh
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2

s �2h
2

s

q
h

2

s

1ns cosh
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2

s �2h
2

s

q
h

2

s

0
B@

1
CA

if 2h
2

s ,l
2

s : (13)

As seen from either Eq. 12 or Eq. 13, the decay length of

the deformation is h2
s=ls: Substituting either Eq. 12 or Eq. 13

into Eq. 7 yields the minimum elastic free energy of the de-

formed monolayer as

Ws ¼
ffiffiffiffiffiffiffiffiffi
BsKs

p

2
n2

s 1
2j

2

s

h
2

s

�2ns

ffiffiffiffiffi
Bs

Ks

r
Js

� �
: (14)

Either Eq. 12 or 13 is physically appropriate, depending

on the sign of l2
s � 2h2

s : Using the standard values for

the bending modulus Bs ¼ 4 3 10�13 erg ¼ 10 kT and the

tilt modulus Ks ¼ 40 erg/cm2 ¼ 10 kT/nm2, yields

l2
s ¼ Bs=Ks ¼ 10�14 cm2 ¼ 1nm2: Because 2h2

s is ;5–

10 nm2 . l2
s ; Eq. 12 is the physically valid solution for

n(x), and thus we use it in all calculations that follow.

Line tension

We join the raft stretch of equilibrium thickness hr and the

surround stretch of equilibrium thickness hs, side by side,

into one monolayer, and match their thickness and directors

at the boundary (x¼ 0). The monolayer thickness is matched

via j from the physical necessity (see Appendix 1) that the

system must deform at the raft boundary so that the lipids do

not expose hydrophobic surfaces to water. We thus set the

raft and surround thickness equal at the raft boundary, and

make the monolayer thickness h(x) a continuous function

along the entire neutral surface. The value of n for the two

monolayers is matched at the boundary (x ¼ 0) via con-

tinuity. The matching conditions are

hr �jr ¼ hs �js; ns ¼ nr; (15)

at the boundary (x¼ 0), where nr and ns are the projections of

the directors onto the x axis and jr and js (Eq. 4) are the

deviations of the deformed neutral surface from the

unperturbed, flat one; Eq. 15 is equivalent to hr � hs ¼
jr � js ¼ d, where d is the hydrophobic mismatch. Making

the replacements of ns / �nr, js / jr, Bs / Br, Ks / Kr,

Js / Jr, and hs / hr in Eq. 14, we obtain that the total elas-

tic free energy is

W¼
ffiffiffiffiffiffiffiffiffi
BsKs

p

2
n

2

s 1
2j

2

s

h
2

s

�2ns

ffiffiffiffiffi
Bs

Ks

r
Js

� �

1

ffiffiffiffiffiffiffiffiffi
BrKr

p

2
n2

r 1
2j

2

r

h
2

r

12nr

ffiffiffiffiffi
Br

Kr

r
Jr

� �
: (16)

Because lipids in a raft are more ordered and the raft firmer

than the surrounding monolayer (Ipsen et al., 1987; Veatch

et al., 2004; Vist and Davis, 1990), we differentiate between

the elastic moduli of the raft and surrounding bilayer. The

signs within the parentheses of Eq. 16 correspond to a raft

on the left (x , 0) and a surround on the right (x . 0).

Minimization of Eq. 16, subject to the boundary values of

n and j, yields the line tension

g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BsKsBrKr

pffiffiffiffiffiffiffiffiffi
BrKr

p
1

ffiffiffiffiffiffiffiffiffi
BsKs

p d
2

h
2

0

�1

2

ðJsBs �JrBrÞ2ffiffiffiffiffiffiffiffiffi
BrKr

p
1

ffiffiffiffiffiffiffiffiffi
BsKs

p ; (17)

where h0 ¼ (hr 1 hs)/2. The first term of Eq. 17 shows that

line tension increases quadratically with increased height

mismatch d. The second term depends on the spontaneous

curvatures. Because the second term is positive and sub-

tracted from the first term, nonzero spontaneous curvature,

for either the raft or the surround, will reduce line tension. It

is notable that g depends quadratically on both hydrophobic

height mismatch (d) and spontaneous curvature difference

(DJ ¼ Js � Jr), independently of each other. Physically, one

might expect a cross-term (dDJ) to contribute to the energy

of the boundary because the smooth curving boundary

creates, both within the raft and within the surround, splay

deformations that depend linearly on d. The energy of these

deformations would contribute terms ;dJs and ;dJr to the

total energy of the boundary. However, as we now show, the

monolayer thickness does not change monotonically over

the interface, but rather, the thickness oscillates. Because

monolayer thickness and splay are related (by Eq. 3), the sign

of the splay changes along the boundary region of the

monolayer and, as it does so, the contribution of the cross-

term to energy also changes sign. In fact, for our semiin-

finite raft and surround monolayers, calculation shows that

the energies in regions of positive and negative splay

precisely cancel each other out, leading to the absence of

a cross-term in the final expression of line tension, as given

by Eq. 17.

Monolayer shape

We analytically obtained the shape of the neutral surface in

the transition zone of the raft boundary by determining the

boundary values of each director, n, and height deviation, j,

that minimize the elastic free energy (Eq. 16). These values

are

nr ¼ ns ¼
BsJs �BrJrffiffiffiffiffiffiffiffiffi
BrKr

p
1

ffiffiffiffiffiffiffiffiffi
BsKs

p ;

jr ¼
ffiffiffiffiffiffiffiffiffi
BsKs

pffiffiffiffiffiffiffiffiffi
BrKr

p
1

ffiffiffiffiffiffiffiffiffi
BsKs

p d; js ¼�
ffiffiffiffiffiffiffiffiffi
BrKr

pffiffiffiffiffiffiffiffiffi
BrKr

p
1

ffiffiffiffiffiffiffiffiffi
BsKs

p d: (18)

Substituting Eq. 18 into Eq. 12 and using the definition of

j (Eq. 4), we obtain the equilibrium profile of the neutral

surface for the monolayer of the surround (x . 0) as
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hðxÞ¼ hs �exp �ls

h
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q
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1ns
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2h

2
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s

q
h

2

0

x

3
75; (19)

where ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Bs=Ks

p
: The profile of the neutral surface

within the raft monolayer (for x , 0) is

hðxÞ¼ hr �exp 1
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where lr ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Br=Kr

p
: Thus the monolayer thickness varies

nonmonotonically over the interface.

Interaction of two parallel straight boundaries

When two rafts come into proximity, their boundaries

interact. We approximate the apposed boundaries as two

parallel, straight lines that are separated by a strip of surround

of width L¼ 2d. We place the origin of the coordinate system

in the middle of the strip, locating the boundaries of the two

rafts at x¼6d. We assign the equilibrium thickness hr to each

of the rafts and the equilibrium thickness hs to the intervening

surround. We determine the interaction energy by first

calculating the energy of the finite strip of surround between

rafts subject to general boundary conditions. We add to this

the energy of the semiinfinite rafts (Eq. 14), also subject to

arbitrary boundary conditions. We then match the boundary

values of n and h for the rafts and surround at x¼6d and then

minimize the total energy. The analytical expression for the

energy of interaction, derived through symbolic manipulation

software (Maple 7, Ontario, CA), is extremely long and not

particularly helpful. We therefore illustrate in Results the

salient features of the interaction energies graphically.

RESULTS

Values of the elastic moduli for the raft and
the surround

Line tensions and director fields depend on the elastic moduli

and the spontaneous curvatures of the raft and the surround.

The presence of a high concentration of cholesterol increases

the moduli of stretching a bilayer three- to fivefold (Evans

and Rawicz, 1990; Needham et al., 1988; Needham and

Nunn, 1990) and increases the bending modulus two- to

threefold (Evans and Rawicz, 1990). In contrast, for lipids in

the HII phase, high cholesterol increases the bending

modulus by only 30–50% (Chen and Rand, 1997). It is

thus not entirely clear whether the bending modulus of the

raft is the same or much larger than that of the surround.

Because of this, we consider the behavior of line tension for

a firm (Br . Bs ¼ 10 kT) and a flexible (Br ¼ Bs ¼ 10 kT) raft.

The effect of cholesterol on tilt modulus has not yet been

addressed by experiment. The tilt modulus K may be less

sensitive to cholesterol content than the other moduli.

Theoretical estimations indicate that tilt modulus is roughly

equal to the surface tension, s ; 40 dyn/cm (Rawicz et al.,

2000), between the monolayer hydrocarbon core (at the

neutral surface) and water (Cohen and Melikyan, 2004;

Hamm and Kozlov, 1998; Kuzmin et al., 2001; May, 2002).

Cholesterol probably does not affect s to a great extent.

However, as the effect of cholesterol on the tilt modulus is

not known, we consider the case of a firm raft for tilt mod-

ulus greater (Kr . Ks ¼ 10 kT/nm2) or the same (Kr ¼ Ks ¼
10 kT/nm2) as that of the surround.

Line tension depends on spontaneous curvature

The dependence of line tension, g, on height mismatch, d, is

shown (Fig. 4) in the case of Jr ¼ Js ¼ 0, for a flexible raft

having the same tilt moduli as the surround (curve 1), and

a firm raft with the same (curve 2) and larger tilt moduli

(curve 3) than the surround. Line tension is also shown for

a perfectly firm raft, one with infinitely large bending and tilt

moduli (dotted curve). As the elastic moduli become greater,

so does g. The line tension between rafts and liquid-dis-

ordered domains has been estimated as ;1 pN ¼ 0.25 kT/nm

(horizontal line in Fig. 4) by analyzing the shape of budding

of liquid-ordered sphingomyelin/cholesterol regions in giant

unilamellar vesicles (Baumgart et al., 2003). This line ten-

sion corresponds to a monolayer thickness mismatch of

;2–4 Å if spontaneous curvature is zero everywhere; the

mismatch is larger for nonzero spontaneous curvatures.

The influence of monolayer spontaneous curvature on g is

illustrated in Fig. 5. For a firm raft (Fig. 5 A), line tension is

greatest if Jr ¼ 0 (curves 1–3). Here, Js has almost no effect

on g: The three curves almost lie on top of each other: the

curves for Js ¼60.1 nm�1 (curves 2 and 3) are identical and

the line tension is only slightly greater for Js ¼ 0 (curve 1).

For Jr 6¼ 0 (curves 4, 5, and 6) however, the situation is

different and a potentially profound effect that may be of

great biological significance appears. When Jr 6¼ 0 (Jr ¼ 0.1

nm�1 for the illustrated curves), g is negative for sufficiently

small (but hardly vanishing) d. Rafts would be unstable if

g , 0, and thus, under such conditions, would not form in

the first place. Whenever our model yields g , 0, rafts will
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not form unless molecular interactions, not incorporated in

our model, were sufficiently strong so as to make the total

line tension positive. In the case of Jr 6¼ 0, the spontaneous

curvature of the surround affects g. Line tension is greatest

when Js and Jr have the same sign (curve 4), and is smallest

for Js and Jr of opposite sign (curve 6); line tension is

intermediate for Js ¼ 0 (curve 5).

For a flexible raft (Fig. 5 B), g depends on (Jr � Js)
2 (see

Eq. 17). As a consequence g is the same for Jr ¼ 0 and Js ¼
60.2 nm�1 as it is for Jr ¼60.2 nm�1 and Js ¼ 0 (curve 2).

For small d, g , 0. As is the case for a firm raft, g for a

flexible raft is never negative for Jr ¼ Js ¼ 0 (curve 1).

Because variables such as spontaneous curvature and height

mismatch depend on lipid composition, we expect that

experimentally determined values of g will vary greatly with

membranes of differing lipids.

The critical spontaneous curvature of rafts

Consider the critical spontaneous curvature, J*, that yields

g ¼ 0. For an extremely firm raft, Br � Bs, Eq. 17 can be

written in the form

g¼
ffiffiffiffiffiffiffiffiffi
BsKs

p d
2

h
2

0

�
ffiffiffiffiffiffiffiffiffi
BrKr

p ðJrlrÞ2

2
: (21)

Equation 21 explicitly shows that g of an extremely firm

raft depends on the elastic moduli of the surrounding

monolayer but is independent of Js. For a raft that is not as

firm (e.g., Br ¼ 4Bs), Eq. 21 is still valid for large g, but the

entire Eq. 17 must be used in the vicinity of g ¼ 0. (An

additional term ;JrJs now appears.) For these moderately

firm rafts, g depends on Js if Jr 6¼ 0, as can be seen from Fig. 5

A. For extremely firm rafts, Eq. 21 shows that if

ffiffiffiffiffiffiffiffiffi
BsKs

p d
2

h
2

0

,
ffiffiffiffiffiffiffiffiffi
BrKr

p ðJrlrÞ2

2
; (22)

g becomes negative. Experimentally, if a raft is to form for

jJrj. jJ�j; contributions from interactions not captured by

a continuum elastic model must be great enough to generate

a positive total line tension. We estimate J* for the typical

values of Bs ¼ 10 kT, Ks ¼ 10 kT/nm2, h0 ¼ 2 nm, Br ;

4Bs ¼ 40 kT, and d ¼ 0.5 nm. Because g varies with the

square root of the elastic moduli, the uncertainty in the ratio

FIGURE 4 Dependence of bilayer line tension, 2g, on equilibrium

thickness mismatch d for Jr ¼ Js ¼ 0. Curve 1 is a flexible raft for Kr ¼
10 kT/nm2, curve 2 is a firm raft for Kr ¼ 10 kT/nm2, and curve 3 is a firm

raft for Kr ¼ 40 kT/nm2. The dotted curve is drawn for a perfectly firm raft

(Br / N and Kr / N). For this and all subsequent figures, h0 ¼ 20 Å.

FIGURE 5 Dependence of bilayer line tension, 2g, on equilibrium

thickness mismatch d for nonzero-spontaneous curvature. (A) A firm raft.

Jr ¼ 0 for curves 1, 2, and 3; Js ¼ 0 (curve 1), Js ¼�0.1 nm�1 (curve 2), Js ¼
10.1 nm�1 (curve 3). Jr ¼ 0.1 nm�1 for curves 4, 5, and 6; Js ¼ 0.1 nm�1

(curve 4), Js ¼ 0 (curve 5), Js ¼ �0.1 nm�1 (curve 6). Elastic moduli for

the raft are Br ¼ 40 kT and Kr ¼ 10 kT/nm2, d ¼ 5 Å; all other parameters

are as in Fig. 4. (B) A flexible raft. Jr ¼ 0, Js ¼ 0 for curve 1; Js–Jr ¼ 60.2

nm�1 for curve 2. The elastic moduli are Bs ¼ Br ¼ 10 kT and Ks ¼ Kr ¼
10 kT/nm2.
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between the tilt moduli, Kr and Ks, does not seriously

impede a meaningful estimation

J
� ¼

ffiffiffi
2

p
d

lrh0

BsKs

BrKr

� �1=4

: (23)

This yields J* ; 1/5 nm�1 for Kr ¼ 4Ks, and J* ; 1/8

nm�1 for Kr ¼ Ks. By comparison, the spontaneous curvature

of cholesterol is ;�1/2.5 nm�1, lysophosphatidylcholine is

;1/3.8 nm�1, and dioleoylphosphatidylethanolamine is

;�1/2.8 nm�1 (Fuller and Rand, 2001). Thus, differences

in spontaneous curvature of cholesterol/sphingolipid rafts

and surrounds may be larger than J* for plasma membrane

lipid compositions. Therefore, from the perspective of mem-

brane mechanics, raft size, and/or shape in a region of a

plasma membrane should depend not only on cholesterol and

sphingolipid content, but on compositions of the other lipids

in the region as well.

For a flexible raft, the line tension can be written as

g¼
ffiffiffiffiffiffiffi
BK

p d
2

2h
2

0

�DJ
2
l

2

4

� �
; (24)

where DJ ¼ Js � Jr. If DJ 6¼ 0, g can become , 0. The

critical difference in spontaneous curvature for the flexible

raft, DJ*, is

DJ
� ¼

ffiffiffi
2

p
d

lh0

;1=3nm
�1
: (25)

As a practical matter, to achieve this large a difference, the

spontaneous curvatures of the raft and surround would have

to have opposite signs. We therefore suggest that a flexible

raft is more likely to be stable than a firm raft.

The values of Js and Jr for which g . 0 and g , 0 are

readily illustrated for a firm (Fig. 6 A) and flexible raft (Fig. 6

B). The straight lines (g ¼ 0) separate regions of positive and

negative line tension. Their slope is Bs/Br. For an extremely

firm raft (Br � Bs), the lines become horizontal and g

becomes independent of Js (see Eq. 21). Based on elastic

contributions alone, rafts can form only for values of Jr and

Js that yield g . 0, the region between the lines. The

Jr intercepts are 6ð
ffiffiffi
2

p
ðKrBsKsÞ

1
4=B

3
4
rÞðd=h0Þ: Clearly, the

smaller the height mismatch, d, and the more firm the raft,

the narrower is the range of spontaneous curvatures, Jr and

Js, for which g . 0. Because biological rafts contain protein,

they may be firmer than lipid bilayer rafts. In general Jr 6¼ Js,

and thus in the absence of height mismatch, the elastic nature

of monolayers will reduce the total line tension that results

from all molecular interactions. The reduction may be large

enough to prevent rafts from forming.

Monolayer shape varies as a damped sinusoid
in the transition zone

An inspection of the equilibrium shape of the neutral surface

(Fig. 7) shows that height does not monotonically decrease

as the thick raft meets the thinner surround, but rather the

height oscillates as it decreases. Equations 19 and 20 show

that there are two characteristic lengths. One, l1 ¼
2ph2

0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h2

0 � B=K
p

; determines the wavelength of the

oscillation and the other, l2 ¼ h2
0

ffiffiffiffiffiffiffiffiffi
K=B

p
; determines the

decay length of the monolayer deformations at the raft

boundary. For a flexible raft (Fig. 7, curve 1), the oscillations

occur both within the raft and the surround region. For

increasingly firm rafts, oscillations are attenuated within the

raft and accentuated within the surround. For an absolutely

firm raft (curve 2), height cannot vary within the raft and as

a consequence, height variation maximizes within the sur-

round. An inspection of Eq. 3 for h(x) and Eq. 11 for the

boundary conditions at x ¼ 0 shows that h(x) is continuous

across the boundary, but that its derivative dh/dx is generally

discontinuous. Curve 1 is smooth at the boundary, without

a discontinuity in slope at the boundary, because the elastic

FIGURE 6 Phase diagram for stability of the raft as a function of the

spontaneous curvature of raft, Jr, and surround, Js. A raft is stable only in the

region g . 0. (A) Firm raft. Br ¼ 4Bs ¼ 40 kT, Kr ¼ Ks ¼ 10 kT/nm2. (B)

Flexible raft. Br ¼ Bs ¼ 10 kT and Kr ¼ Ks ¼ 10 kT/nm2. For both panels A
and B, d ¼ 4 Å.
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moduli of the flexible raft and surround are the same. In

contrast, the elastic properties are quite different for the

surround and a perfectly firm raft, and here the discontinuity

in dh/dx is large and visually obvious (Fig. 7, curve 2).

Interaction between rafts

For two rafts to come into contact, they must overcome an

energy barrier. For either two flexible rafts (Fig. 8, curve 1)

or two firm rafts (Fig. 8, curves 2 and 3), an energy barrier is

located at a separation distance of ;2–4 nm between bound-

aries if spontaneous curvature is zero everywhere. The

energy barrier between rafts is more sensitive to the elastic

moduli of the rafts than is the energy required to deform the

boundary of an isolated raft. For example, the ratio of the

barriers for a firm raft (Fig. 8, curve 3) compared to a flexible

raft (curve 1) is ;2.5, but the ratio of energies at infinite

separation (the line tension) is only ;1.5.

To consider the influence of spontaneous curvature on the

raft interaction, we first vary Jr for a firm (Fig. 9 A) and

flexible (Fig. 9 B) raft, while maintaining Js ¼ 0. For both

firm and flexible rafts, the barrier is higher and shifted to

a slightly smaller separation distance for Jr . 0 compared to

Jr ¼ 0. Just the opposite is the case for Jr , 0: its barrier is

lower and shifted to a somewhat larger separation distance

than for Jr ¼ 0. That is, the energy barrier depends on the

sign of Jr. This is in distinct contrast to the line tension of an

isolated raft: g depends only on the magnitude of Jr, and is

independent of sign (e.g., see Eq. 17 and note that at large

separation, curves 2 and 3 overlap).

The consequences of varying the spontaneous curvature Js

of the intervening strip of surround between two firm rafts

depend on the sign of Jr. For Jr , 0 (Fig. 10 A), as Js is varied

from positive (curve 3) through zero (curve 1) and to

negative values (curve 2), the total energy increases to an

extent that is almost independent of separation distance. As

a consequence, the barrier height of interaction is relatively

insensitive to Js. In contrast, for Jr . 0 (Fig. 10 B), the barrier

heights decrease as Js is switched from negative to positive

values. The magnitude of the peak of the barrier of total

energy does not significantly vary with Js, but the energy

minimum near the barrier as well as the line tension of the

isolated rafts increase with more positive Js. The same

qualitative features pertain to a flexible raft (not shown). We

have seen that line tension depends on the parameters of

the raft and the surround in fairly straightforward ways. The

interactions between rafts depend on these same parameters,

but in much more complex manners.

The repulsive interaction between rafts (the cause of the

barrier) can kinetically stabilize rafts against merger. (This

is analogous to the well-known stabilization of colloidal

particles through repulsion of their electrical double layers

as described by the Deryaguin-Landau-Verwey-Overbeck

theory; Hunter, 2001) Consider an ensemble of identical rafts

of radius R that undergo Brownian motion. How large an

energy barrier would be required to prevent contact that

would lead to merger? Letting x0 ¼ the mol fraction of

molecules that form rafts and D¼ the diffusion coefficient of

a raft, we obtain that x0/R2 is the concentration of rafts and

ðx0D=R
2Þ is roughly the number of collisions a single raft

will make with others per unit time. The frequency of

collisions, n, leading to merger is

FIGURE 7 The profile of the neutral surface near the raft boundary. The

monolayer shape is plotted as h(x) � (hr 1 hs)/2. The numerical values thus

provide, in Å, the deviation of monolayer height from the average thickness

of the raft and surround. The dotted line indicates the underformed, step-like

raft boundary. For the flexible raft (curve 1), Br ¼ Bs ¼ 10 kT and Kr ¼ Ks ¼
10 kT/nm2. For the perfectly firm raft (curve 2), Br / N and Kr / N. In

both cases, d ¼ 5 Å.

FIGURE 8 The energy barrier between interacting rafts for zero sponta-

neous curvature everywhere. The total energy per unit length of two straight

parallel raft boundaries as a function of their separation distance, L, is plotted.

The line tension of an isolated raft is the energy at large separation, divided

by two. The interaction energy at any separation distance is the deviation of

that energy from the energy at large separation. The curve number is rank

ordered with increasing raft firmness: Br ¼ Bs ¼ 10 kT and Kr ¼ Ks ¼ 10 kT/

nm2 (curve 1), Br ¼ 4Bs ¼ 40 kT and Kr ¼ Ks ¼ 10 kT/nm2 (curve 2), and

Br ¼ 4Bs ¼ 40 kT and Kr ¼ 4Ks ¼ 40 kT/nm2 (curve 3). d ¼ 5 Å.
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n;
x0D

R
2 exp �DE

kT

� �
; (26)

where DE is the repulsive barrier that must be overcome for

raft merger. For raft radius R � l (the characteristic length

of monolayer deformation l ; 2–4 nm), we can use a two-

dimensional analog of the classical Deryaguin approxima-

tion for calculating short-range interactions between surfaces

(described in Hunter, 2001). We replace the circular raft

boundaries by two straight boundaries of effective length

L; 2
ffiffiffiffiffiffiffiffi
2lR

p
: The barrier height DE that the two rafts have to

surmount to merge is ;DWL, where DW is the interaction

barrier height per unit length of boundary. For R ; 10 nm,

D ; 10�8 cm2/s (diffusion coefficients only vary as log(R)

in two dimensions; Saffman and Delbruck, 1975), l; 3 nm,

x0 ; 0.5, DW; 2–10 pN (0.5–2.5 kT/nm) we find that 1/n ¼
t ; 0.1 s for DW ¼ 2 pN and t ; 1010 s for DW ¼ 10 pN.

Figs.8–10 illustrated thatbarrierheightsarealtered incomplex

manners by parameters of the raft and surround. Because

relatively small changes in barrier heights can so dramati-

cally alter the characteristic times of raft merger, and these

times can be extraordinarily large, it may be that rafts never

overcome the barrier, in which case repulsion would

kinetically stabilize small rafts against merger. They could

still merge, however, if boundary undulations reduced the

kinetic barrier.

DISCUSSION

We found that when the monolayers can deform at the raft

boundary by splay and tilt, important physical phenomena

emerge that are not possible if only area compression/stretch

and tilt are permissible (Akimov et al., 2004). First, the

calculated line tension is smaller and is in better accord with

an experimentally determined value (Baumgart et al., 2003).

FIGURE 10 The dependence of energy barriers between rafts on Js for

positive and negative Jr. The total energy per unit length for two straight

parallel boundaries of firm rafts is plotted. (A) Jr ¼ �0.1 nm�1 , 0. Curves

are drawn for different spontaneous curvature of the strip of surround that

separates the rafts. Js ¼ 0, curve 1; Js ¼ �0.1 nm�1, curve 2; Js ¼ 10.1

nm�1, curve 3. Br ¼ 4Bs ¼ 40 kT, Kr ¼ Ks ¼ 10 kT/nm2, d ¼ 5 Å. (B) Jr ¼
10.1 nm�1 . 0. Js ¼ 0, curve 1; Js ¼�0.1 nm�1, curve 2; Js ¼10.1 nm�1,

curve 3. Br ¼ 4Bs ¼ 40 kT, Kr ¼ Ks ¼ 10 kT/nm2, d¼ 5 Å. The differences in

energies in Figs. 8, 9, and 10 illustrate the complex dependence of

interactions on Jr and Js.

FIGURE 9 The energy barrier between rafts for Js ¼ 0 and varied Jr. The

total energy per unit length of two straight parallel raft boundaries as

a function of their separation distance, L, is plotted. (A) Firm rafts (Br ¼ 4Bs

¼ 40 kT, Kr ¼ Ks ¼ 10 kT/nm2). Jr ¼ 0 (curve 1), Jr ¼�0.1 nm�1 (curve 2),

and Jr ¼10.1 nm�1 (curve 3). (B) Flexible rafts (Br ¼ Bs ¼ 10 kT, Kr ¼Ks ¼
10 kT/nm2). Jr ¼ 0 (curve 1), Jr ¼�0.2 nm�1 (curve 2), and Jr ¼10.2 nm�1

(curve 3). For panels A and B, d ¼ 5 Å.
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Second, the thickness profile of the raft does not mono-

tonically decrease at the raft boundary to meet the thinner

surround (as previously calculated), but rather the thickness

varies as a damped sinusoid in the transition zone between

the raft and the surround. Third, this sinusoidal variation in

monolayer thickness results in energy barriers between rafts

that can kinetically stabilize them against merger. Fourth,

nonzero spontaneous curvatures of either the raft or the

surround lower the raft line tension. The contribution of

hydrophobic mismatch to g will be negative if the difference

in spontaneous curvature between the raft and surround is

sufficiently large.

Approximations of the model

A difference in raft and surround thickness would expose

a hydrophobic surface to water in a step-like fashion if lipids

did not readjust so as to minimize the energy of the system.

In addition to the elastic deformations we have considered,

the energy of this readjustment is determined by mixing of

lipids at the raft boundary; this mixing is controlled by lipid-

lipid interactions and standard entropies of mixing. If lipids

could only reside at discrete sites, lipid mixing would

disperse the single step of hydrophobic exposure into a

‘‘staircase’’ of exposure; the extent of hydrophobic exposure

would be the same for the single step as for the staircase.

Averaging lipid location over position and time yields

a continuous neutral surface that smoothly joins the thick raft

and thin surround. The extent of hydrophobic exposure is not

altered by going from the discrete to the continuous limit: the

area per lipid along the continuous, curved neutral surface in

the transition zone is greater than the area per lipid along

the flat midplane between monolayers; the projection of the

neutral surface onto the perpendicular to the midplane is the

amount of hydrophobic exposure. In other words, lipid

mixing cannot eliminate hydrophobic exposure; elastic

deformations are required to do so. We have found that for

a height mismatch of 0.5 nm, elastic deformations reduce the

energy at the boundary from 5 kT/nm (the energy for ex-

posing the hydrophobic surfaces to water) to 0.25 kT/nm.

Energies of hydrophobic exposure to water are so large that

whatever processes most effectively eliminate exposure

should be of greatest consequence. That is, if the hydro-

phobic height mismatch were sufficiently large, the elastic

deformations will dominate the energy of the interface, and

any contributions to line tension from lipid-lipid interactions

and lipid mixing would be unimportant. Our model should

be a good approximation to reality in this case. Where height

mismatch is negligible, our model cannot be applied. But

even when hydrophobic mismatch does not dominate, our

calculations show that differences in spontaneous curvatures

between a raft and a surround will always reduce line ten-

sion, an effect that was previously unappreciated.

We treated the raft boundary as a straight edge. Whenever

the radius of a circular raft is much larger than all

characteristic lengths in the system, the approximation is

valid. The two characteristic lengths in the system are the

oscillation wavelength l1 � 2ph0=
ffiffiffi
2

p
and the elastic length

l2 � h2
0

ffiffiffiffiffiffiffiffiffi
K=B

p
: Because l1 ; 10 nm and l2 ; 2–4 nm, our

calculated values for g should be applicable for rafts with

diameters $;50 nm, diameters consistent with many

experimental measures of rafts in cell plasma membranes,

although a wide range of sizes are reported (Anderson and

Jacobson, 2002). The deformations at the raft boundary

decay over a length of ;3–6 lipid molecules on both sides of

the interface and the oscillations in raft interactions occur

over a distance that corresponds to a span of ;12 lipid

molecules.

Our model assumes mirror symmetry of two monolayers

with respect to the midplane of the bilayer. In order for

symmetry to be true, rafts would have to span both mono-

layers and not be able to occur independently within separate

monolayers. In other words, the coupling between rafts

within the two monolayers of a bilayer must be tight. Ex-

perimentally, such tight coupling is observed (Samsonov

et al., 2001), although the physical reasons for this coupling

are not yet known.

We have also assumed that the neutral surface is non-

stretchable. The area compression/stretching modulus of

a monolayer is ;120 erg/cm2 ¼ 30 kT/nm2 (Rawicz et al.,

2000). This is only three times greater than K, but six times

greater than B=h2
0: As the cholesterol content of monolayers

increases, the compression and bending moduli probably

increase by a greater factor than does the tilt modulus. The

small amount of stretching that does occur at the neutral

surface should be of little consequence and would not sig-

nificantly affect our results. When a bilayer membrane sur-

rounds a hydrophobically mismatched inclusion (i.e., an

incorporated protein), it will adjust to the mismatchby bending

and tilt deformations, with little area stretching/compression.

To quantitatively illustrate the consequences, we compare the

energy of bilayer deformation for incorporation of a right

cylindrical inclusion, whichhasbeencalculated assuming area

stretching and bending (Nielsen et al., 1998). We divided this

calculated energy by the circumference of the inclusion to

estimate line tension, and applied our boundary condition for

a perfectly firm raft to a nondeformable inclusion. This yields

a line tension approximately three to four times greater than we

calculated for bending and tilt deformations (calculations not

shown). Bending and tilt deformations are the energetically

favored deformations.

The occurrence of rafts depends on composition
of lipids other than cholesterol and sphingolipids

In an actual membrane, rafts will exist and be stable only if

the line tension is .0. Our calculations show that when

height mismatch is the dominant determinant of line tension,

line tension will be .0 for only limited ranges of Jr and Js.

As part of cellular function, lipid composition (other than
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just cholesterol and sphingolipids) may be altered in regions

of plasma membrane; this could cause rafts to appear or

disappear. In a recent report, it was concluded that rafts

contain only a few protein molecules, in which case the rafts

would be exceedingly small (Sharma et al., 2004). Our

model shows that changes in Jr and Js can dramatically alter

values of g, which in turn would greatly alter raft size. Be-

cause the values of Jr and Js may vary according to cell type

and culturing conditions, particular measures of raft size may

not reflect general cell biological principles.

The cause of oscillations across the boundary

The nonmonotonic monolayer shape of the raft boundary

results from the assumption of volumetric incompressibility

and the deformation of splay. This can be appreciated from

Eq. 3 which gives h(x) in the case of volumetric incom-

pressibility. In the absence of tilt (n ¼ N), we obtain from

Eq. 3 that

hðxÞ¼ h0 �
h

2

0

2

dN

dx
and

h
2

0

2
h$ðxÞ1hðxÞ¼ h0; (27)

because N ¼ h#(x). Differential Eq. 27 is that of a harmonic

oscillator for h(x) in the x-direction, showing that h varies

sinusoidally with x. It is the deformation of splay (bending)

alone that imposes the oscillatory height profile. In the

absence of tilt, splay would cause the boundary to oscillate

indefinitely in space with amplitude ;d, the height mis-

match. But because lipids can tilt, splay energy is converted

to tilt energy. It is the deformation of tilt that causes the

oscillations to decay over the transition zone of the raft

boundary. From Fig. 7 (curve 1), it is seen that the height of

the primary oscillation is ;d, precisely as expected ac-

cording to our physical explanation.

Oscillations across the boundary determine the
energy of raft interactions

The energy of the system is completely determined by the

director field, as given by Eq. 7. Because the superposition of

director fields determines the interaction energies, the shape

of the interaction profile between rafts is determined by the

shape of the raft boundary (i.e., the director field over the

boundary). For a monolayer that deforms at a raft boundary

by stretch and tilt, the height mismatch decays monotonically

and therefore the interactions between rafts also change

monotonically with distance of separation. Because the

deformation energy is greater for two separate rafts than for

one merged raft, the rafts attract each other at all separation

distances (Akimov et al., 2004). In the more realistic case of

deformation by bending and tilt, the shape of the neutral

surface of the raft boundary oscillates and hence the inter-

action between rafts also oscillates, as a function of

separation. Consequently, a series of energy barriers must

be overcome for rafts to come into contact. The energy

barriers occur because, at the boundaries of the two rafts, the

projection of the directors onto the x axis are pointed in

opposite directions. As the rafts come closer together, the

deformations overlap and energy must be expended to re-

orient the directors. For a flexible raft, the deformations are

comparable to those of the flexible surround. But for a firm

raft, the deformations are more confined to the flexible

surround. The firmer the raft, the greater is the energy barrier.

Small rafts in cell membranes contain proteins, and these

rafts may be sufficiently firm to kinetically stabilize them

against merger.

Models that account for hydrophobic mismatch between

proteins and the surrounding bilayer also exhibit oscillations

at the protein boundary and energy barriers that oppose the

approach of these proteins. Mean-field calculations do not

capture these oscillations (Marcelja, 1976), but Monte-Carlo

calculations for lipid membranes with protein inclusions do

reveal a repulsive barrier at an intermediate separation

(Lague et al., 1998; Sintes and Baumgartner, 1997). Elastic

continuum models, similar to ours, that allow bending to

compensate for hydrophobic mismatch between protein and

bilayer lead to nonmonotonic interactions between proteins.

These include models that consider stretch/compression and

bending (Dan and Safran, 1998; Sens and Safran, 2000),

compression/stretching, tilt, and bending (Fournier, 1999;

May and Ben-Shaul, 1999), and a ‘‘director model’’ (Bohinc

et al., 2003; May, 2002; May and Ben-Shaul, 2000). A

nonmonotonic perturbation profile of a membrane near a

cylindrical protein, without hydrophobic mismatch, has also

been predicted for a model that allows compression/stretch-

ing and bending (Dan and Safran, 1998). A recent elastic

deformationmodel that includesbendingalsopredictsanoscil-

latory interaction between fusion peptides that are inserted

obliquely into a single monolayer of a bilayer (Kozlovsky

et al., 2004).

The larger the radius, R, of the raft the greater is the

waiting time for raft merger. The estimates for waiting times

are not quantitatively reliable because they depend expo-

nentially on imprecisely known quantities. But it is highly

unlikely that large rafts, on the order of microns, can merge

through a mechanism of boundary contact without distortion.

We suggest that local contacts created by short wavelength

fluctuations in the boundary are responsible for mergers: for

a fluctuating boundary, the local radii are much smaller than

the radius of the raft and thus waiting times of merger should

be greatly reduced.

A physical intuition for the energy required to
create a raft boundary

Now that a rigorous formal derivation of line tension has

been achieved, one can more easily approach the problem

with an intuitive physical insight that permits quantitative

calculation. For example, the quantitative relation between
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line tension of a flexible and a perfectly firm raft, for Jr ¼ Js

¼ 0, is easily understood. If the raft and the surround have

the same elastic moduli, they cover the height mismatch, d,

to the same extent. For a perfectly firm raft, the surround

alone must deform to entirely cover the mismatch. As a

consequence, the height of the deformation of the surround

increases by a factor of two. Because energy density is a

quadratic function of deformation, the work expended to

cover the mismatch increases fourfold compared to the case

of a flexible raft. But the area of deformation is reduced by

a factor of two. Thus the energy of deformation (i.e., the line

tension) is twofold greater for the perfectly firm raft (Fig. 4,

dotted curve) than for the flexible raft (curve 1), and this is

true for any value of d.

Consider the creation of a firm raft with a boundary of

some height mismatch. We start from a monolayer formed of

a flat raft and a flat surround, each in isolation. The raft and

surround are brought into contact, creating a ‘‘step-like’’

boundary. Although this exposes a portion of the hydropho-

bic core of the thicker raft monolayer to water, elastic de-

formations completely eliminate this exposure. Therefore,

the work required to expose a hydrophobic surface to water

is excluded from our calculation for free energy. The

monolayer is free to deform over the transition zone, length

l ¼
ffiffiffiffiffiffiffiffiffi
B=K

p
: The monolayer thickness can be changed only

by splay, a combination of bending and nonuniform tilt.

Because the flexible surround has smaller elastic moduli than

the firm raft, it is the surround that will deform to eliminate

the height mismatch. The work necessary for the required

splay is ;lsBs(dn/dx)
2 where dn/dx ; d/(h0ls) yielding an

energy ;
ffiffiffiffiffiffiffiffiffiffi
BsKs

p
ðd2h2

0Þ; the first term of Eq. 21. But the firm

raft does not remain flat in the transition zone. Rather than

deforming to eliminate the height mismatch, in the transition

zone the firm raft deforms spontaneously from its initial zero

geometric curvature to its spontaneous curvature Jr. This

lowering of energy is given by the energy of splay

; � lrBrJ
2
r ¼ �

ffiffiffiffiffiffiffiffiffi
BrKr

p
ðJrlrÞ2; the second term of Eq. 21.

Independent of the relative elastic moduli of raft and

surround, nonzero spontaneous curvature, of either raft or

surround, lowers line tension (Eq. 17). This occurs because

a monolayer is stressed when flat and at the boundary it gains

an additional degree of freedom. The monolayer deforms at

the boundary, relieving stresses, and line tension is reduced.

APPENDIX 1

Our assumption that deformations must completely eliminate the exposure

of hydrophobic surfaces to water at the raft boundary is, in actuality, a

physical necessity. Consider the consequences if the thickness of the

hydrophobic mismatch after deformation, D, were not zero. If D 6¼ 0, the

elastic energy density to deform the monolayers at the raft boundary (in

a quadratic approximation and for zero spontaneous curvature) is

we ¼ g
ðD�dÞ2

d
2 : (A1)

Equation A1 satisfies the limiting cases in which the hydrophobic mis-

match is completely eliminated (D¼ 0, we(0) ¼ g) or not compensated at all

(D ¼ d, we(d) ¼ 0). If mismatch was incomplete, the energy of the hydro-

phobic region of the boundary still exposed to water would have to be added

to we to obtain the total energy of the boundary. The hydrophobic energy

is sjDj where s is the surface tension of the oil/water interface. So

wtotal ¼ g
ðD�dÞ2

d
2 1sjDj: (A2)

The minimum of wtotal is located at

D
� ¼max 0;d 1�sd

2g

� �� �
: (A3)

For d ¼ 5 Å monolayer line tension g ¼ 1–2 pN (Fig. 4) we obtain

that D* ¼ 0. In other words, the hydrophobic exposure at raft boundary

is completely eliminated.
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