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ABSTRACT An analysis is presented on how structural cores modify their shape across homologous proteins, and whether or
not a relationship exists between these structural changes and the vibrational normal modes that proteins experience as a result
of the topological constraints imposed by the fold. A set of 35 representative, well-populated protein families is studied. The
evolutionary directions of deformation are obtained by using multiple structural alignments to superimpose the structures and
extract a conserved core, together with principal components analysis to extract the main deformation modes from the three-
dimensional superimposition. In parallel, a low-resolution normal mode analysis technique is employed to study the properties
of the mechanical core plasticity of these same families. We show that the evolutionary deformations span a low dimensional
space of 4–5 dimensions on average. A statistically significant correspondence exists between these principal deformations
and the ;20 slowest vibrational modes accessible to a particular topology. We conclude that, to a significant extent, the
structural response of a protein topology to sequence changes takes place by means of collective deformations along
combinations of a small number of low-frequency modes. The findings have implications in structure prediction by homology
modeling.

INTRODUCTION

The realization that natural proteins probably cluster in

a finite and relatively small set of structurally related families

and superfamilies (Murzin et al., 1995) fueled the initiation

of various structural genomics projects, now in different

stages of development (O’Toole et al., 2004). These

initiatives are aimed at mapping protein structural space, so

that most proteins in sequenced genomes can eventually be

found within a given so-called structural modeling distance

(Baker and Sali, 2001). In principle, homology modeling

tools (Fiser et al., 2002; Sanchez and Sali, 1997) could then

be used to extrapolate the structure of a target protein from

a template found within this distance. In practice, results

from all CASP (critical assessment of techniques for protein

structure prediction) competitions so far have shown that

accuracy in homology models reflects, to a large extent, the

quality of the underlying sequence alignment employed to

build them (Tramontano and Morea, 2003). In most cases,

the resulting models only modestly shift from the template to

the target structure in the aligned regions, i.e., the maximum

improvement is rarely .;0.4 Å. By contrast, the average

root mean-square deviation in the structural core among

remote homologues (those below 40% sequence identity) is

;2.0 Å (vide infra). These differences are relevant if the

modeled structures are expected to be subsequently applied

to problems such as drug design, where current docking

force fields are known to be sensitive to small structural

shifts in the binding sites (Ferrara et al., 2004). Although

alignment errors remain the main source of inaccuracies in

comparative modeling, there is also a need for a more

accurate modeling of the distortions and rigid body shifts

imposed by sequence changes among protein homologues

(Marti-Renom et al., 2000). Clearly, a first step is to

understand the natural process of structural adaptation in

protein families during evolution and relate it to the various

physical properties of protein topologies. Among these, the

connection between evolutionary deformations and the

intrinsic flexibility of the protein topology is particularly

interesting. It has been clearly established in recent years that

proteins utilize their intrinsic flexibility to facilitate function

(Berendsen and Hayward, 2000; Karplus and McCammon,

2002; Kitao and Go, 1999). It can therefore be expected that

proteinsmake use of these same principal directions of fluctua-

tion during the process of adaptation to new or modified

functions during evolution. It is the purpose of this article to

investigate such a connection.

Here, we will apply principal components analysis (PCA;

Johnson and Wichern, 1998) to the analysis of multiple

structural alignments of a representative set of protein

families. The goal is to determine the main evolutionary

directions of structural change among the homologous

proteins of a given superfamily. Upon characterizing this

evolutionary space, we will compare it to be subspace

spanned by the vibrational normal modes imposed by the

protein topology (Atilgan et al., 2001). In normal mode

analysis (NMA; Ma, 2004), the potential energy surface is

assumed to be quadratic in the vicinity of a well-defined

energy minimum, considered here to be the observed experi-

mental conformation.

This assumption of harmonicity allows the motions of the

protein to decompose easily into a set of independent har-

monic vibrational modes, the normal modes, by solving an
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eigenvalue problem. To consider motions dictated only by

the protein topology, regardless of the peculiarities of the

protein sequence, we will employ a simplified form of NMA

(normal mode analysis) based on elastic network models

(Bahar et al., 1997; Hinsen, 1998; Tirion, 1996).

The normal modes computed by means of elastic network

models can be regarded as a set of molecular deformational

modes imposed by the protein topology and can then be

directly compared with the components detected by PCA,

describing the evolutionary directions of deformation. Pre-

vious work has already established a connection between

normal modes and protein function. Considerable functional

insight has been gained by applying NMA to tubulin (Keskin

et al., 2002), adenylate kinase (Temiz et al., 2004), DNA-

dependent polymerases (Delarue and Sanejouand, 2002),

hemoglobin (Xu et al., 2003), or the mechanosensitive

channel from Escherichia coli (Valadie et al., 2003), to name

only a few. Gerstein and co-workers have generalized these

findings by showing that one-half of 3800 known protein

motions can be described well by perturbing the considered

protein along the direction of at most two low-frequency

modes (Krebs et al., 2002). However it is unclear whether or

not amino acid sequences are selected during evolution so

that proteins follow paths of structural adaptation along low-

frequency modes. Here we will show that the comparison of

PCA and NMA spaces can shed light on the mechanisms

underlying the evolution of protein structures and can pro-

vide relevant hints to improve protein modeling as well as

protein design algorithms.

METHODS

Data set

The data set (Table 1 of Supplementary Material) was selected from the

ASTRAL40 database (Brenner et al., 2000). A sample of 35 large, diverse,

and well-studied superfamilies, classified according to the SCOP (structural

classification of proteins) (Murzin et al., 1995), was selected. The number of

structures in each superfamily ranges from 11 to 46. The maximum

percentage of identity between the members of a given superfamily is 40%,

whereas the sequence identity in the core upon structural alignment is;25%

on average. The number of families in each superfamily ranges from 1 to 8.

Multiple structural alignments

The structural set corresponding to each one of the 35 families was subjected

to multiple structural alignment using MAMMOTH-mult (Lupyan et al.,

unpublished), a multiple alignment version of the structure alignment

program MAMMOTH (Ortiz et al., 2002). From the alignment, the

evolutionary core of the protein family is selected. This is defined as the set

of gapless positions for which the Ca atoms of all members are within 4 Å

from the family average. This way, a matrix Xnxp is obtained containing the

Cartesian coordinates of the Ca core positions in the family, with n being the

number of structures and p 3 times the number of core positions (each

position is defined by its corresponding x, y, z Cartesian coordinates).

Evolutionary deformations: PCA

PCA (Johnson andWichern, 1998) was used to extract the set of main modes

of motion in the alignment that best describes the deformations experienced

by the core. Starting from Xnxp, the covariance matrix Cpxp is computed,

with elements cij ¼ Æ(xi � Æxiæ)(xj � Æxjæ)æ, where averages,. are over the n

FIGURE 1 A graphical summary of the RMSIP

calculation (Eq. 1). See Methods for details.

FIGURE 2 Percentage of explained variance as a function of the number

of eigenvectors for PCA.
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structures. Then, C is subjected to spectral decomposition as C ¼ VLVT,

where V is an orthogonal matrix containing the set of eigenvectors and L is

a diagonal matrix containing the set of eigenvalues. The eigenvector matrix

V will then be used in the comparisons with anisotropic network model

(ANM; vide infra).

Vibrational modes: the ANM

For the simulation of the vibrational modes we used ANM (Atilgan et al.,

2001). ANM is a special type of NMA. It is a coarse-grained model, which

assumes that the protein in the folded state is equivalent to a three-dimensional

elastic network. The junctions of the network, considered here the Ca atoms,

undergo Gaussian-distributed fluctuations under the potentials of their near

neighbors, modeled by linear springs. A generic force constant is adopted for

the interaction potential between all pairs of residues sufficiently close. The

potential energy of the protein (V) as a function of the displacement vector

(DT) from the native conformation (in Cartesian coordinates) is thus:

V ¼ g=2DTHD, where H is the Hessian matrix containing the second

derivatives of the energy function, which is assumed to be harmonic. H is

computed from the atomic coordinates of the Ca atoms in the native structure.

Factorization ofH asH ¼ UDUTyields 3N-6 intrinsic normalmodes (N being

the number of residues), contained in the eigenvector matrix U, with

frequencies contained in the diagonal matrix D.The U matrix will be

compared with the PCA directions, contained in matrix V, using the core

positions selected from the multiple structural alignment.

Relating both spaces: the root mean-square inner
product calculation

We compared the vibrational modes obtained by ANM with the structural

fluctuations detected by PCA. To simplify the comparisons, the normal

mode space is restricted to its 50 lowest frequency modes. Similarly, the

evolutionary space is restricted to the number of components required to

explain 70% of the variance, five components on average (see below). The

overlap between both spaces is calculated from the root mean-square inner

product (root mean-square inner product) (Amadei et al., 1999) of the PCA

eigenvectors with the vibrational ones:

RMSIP ¼ 1

D
+
D

i¼1

+
K

j¼1

ðhi � vjÞ
2

 !1=2

: (1)

Here, hi and yj are, respectively, the set of eigenvectors of the

evolutionary and ANM spaces, with dimensionality equal to three times

TABLE 1 Summary of results for the data set of superfamilies (see Table 1 of Supplementary Material for a description of the

different sets)

Protein superfamily No. structures No. core residues % Core Ærmsæ 6 s No. PCs (70% var.)

Globins 23 75 68 1.89 6 0.63 5

kinases 22 166 64 2.03 6 0.47 6

Immunoglobulins 23 51 59 1.92 6 0.54 6

Glutation S-transferases 22 67 59 1.90 6 0.51 6

Interleukin 8-like chemokines 11 51 83 1.63 6 0.71 4

RNA-binding domain 21 51 68 2.70 6 0.59 5

Fibronectin 46 38 45 2.34 6 0.89 9

Cytochrome c 16 36 46 1.64 6 0.43 3

Thioredoxinlike 35 39 53 2.08 6 0.84 3

SH3 24 34 60 1.87 6 0.55 5

Cupredoxins 22 48 49 2.00 6 0.56 4

Snake toxinlike 11 36 60 1.49 6 0.41 4

Aldolases 19 84 40 2.07 6 0.45 5

Ferritinlike 15 103 72 1.97 6 0.56 4

Death domain 12 59 71 2.61 6 0.62 4

Nuclear receptor ligand-binding domain 14 175 79 1.92 6 0.35 6

Pectin lyaselike 15 111 56 2.08 6 0.49 4

Riboflavin synthase 16 71 78 1.90 6 0.38 6

Lipocalins 23 62 50 2.18 6 0.76 4

PDZ domainlike 20 56 68 1.94 6 0.70 6

g-crystallinlike 11 51 67 2.34 6 0.97 3

LDH C-terminal domainlike 12 114 72 2.04 6 0.70 3

NTF2-like 13 83 74 2.35 6 0.51 4

DNA clamp 13 74 67 2.35 6 0.93 3

ATPASE domain of HSP90 chaperone 11 69 49 1.82 6 0.50 4

acyl-CoA-N-acyltransferases 18 64 47 2.17 6 0.50 6

Ribulose-phosphate-binding barrel 14 125 63 2.32 6 0.43 5

Zn-dependent exopeptidases 11 119 44 2.67 6 0.80 3

Periplasmic-binding proteinlike I 13 103 40 2.42 6 0.60 4

Phosphatases II 14 92 64 1.89 6 0.61 4

Ferredoxin reductaselike 12 87 73 2.08 6 0.40 4

SCR-domain 21 34 59 2.24 6 0.88 5

Defensinlike 12 22 73 2.33 6 0.56 4

C2H2 AND C2HC zinc fingers 21 20 77 1.57 6 0.51 4

Scorpion toxinlike 22 20 87 1.77 6 0.74 4
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the number of core residues defined by MAMMOTH-mult (Table 1). D is

the dimensionality of the evolutionary space (five dimensions were used on

average), and k is the dimensionality of the ANM space (the slowest 50

modes were employed). The statistical significance of the observed RMSIP

value was tested by simulating an empirical distribution of RMSIP data

under the null hypothesis of no relationship between both spaces (Fig. 1).

For each family, the empirical distribution of RMSIP values was obtained by

projecting the evolutionary space onto k-dimensional orthogonal spaces,

obtained from random orthogonal Q matrices following the Stewart

algorithm (Stewart, 1980). Ten thousand orthogonal matrices were gen-

erated to generate this distribution, which allows computing the Z-score of
the observed RMSIP value, as follows:

Z � score ¼ RMSIPðobsÞ � ÆRMSIPðranÞæ
sðranÞ (2)

Relating both spaces: mean-square fluctuations

For the case of evolutionary deformations computed from structural

alignments, the mean-square fluctuation for position k over the set of the n
proteins in the structural alignment is obtained as follows:

ÆDd2

kæ ¼
1

n
+
n

i

ðrik � ÆrkæÞ2: (3)

In the case of NMA, the mean-square fluctuation for each residue in the

vibrational space can be obtained from a sum over the inner products of the

residue entries of the 3N-6 vectors of the eigenvector matrix, scaled by

the corresponding eigenvalue, as follows (Atilgan et al., 2001):

ÆDd2

kæ ¼
3kBT

g
+

3N�6

j¼1

l
�1

j +
3k

i¼3k�2

u
2

ji: (4)

We assigned a value of 1.8 to the prefactor. The fluctuations obtained by

both methods are compared. First, we computed, for each family, the

Spearman correlation coefficient (Rs; Langley, 1970) between the list of

fluctuations per residue calculated with both approaches. The sampling

distribution of Rs under the null hypothesis of no correlation can be closely

approximated by a normal distribution having E(Rs) ¼ 0 and

varðRsÞ ¼ ðn� 1Þ�1
, where n is the number of residues. Hence, we

computed the Z-score of Rs as Zscore ¼ Rs
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
.

FIGURE 4 (A) Average core (magenta trace) detected by MAMMOTH-

mult for the 48508 (nuclear receptor ligand-binding domain) superfamily

and first eigenvector (sticks attached to the residues of the trace). The

different helices in the structure are labeled. Relative contribution of each

residue to the eigenvector is given for the length of the stick attached to the

residue. End of helix 5 (H5) is highlighted. It contains Arg-278, implicated

in ligand selectivity. (B) The first ANM eigenvector is shown. Modes

computed using the closest structure to the superfamily average (shown in

the figure).

FIGURE 3 PCA of the 48508 (nuclear receptor ligand-binding domain)

superfamily. The distribution of the structures onto the plane formed by

the first two eigenvectors is shown. Group 1 corresponds to structures

recognizing steroidlike ligands, whereas group 2 corresponds to domains

recognizing retinoic acid and its analogs. Structures not forming part of any

group correspond to orphan receptors.
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RESULTS

PCA

Each one of the 35 superfamilies (Table 1, Supplementary

Material) was multiply aligned with MAMMOTH-mult. A

summary of the results is found in Table 1. The structural

core detected from the alignments and later used in the PCA

studies comprises 62.4 6 12.5% of the total structure (per-

centage taken with respect to the shortest member of the

superfamily). On the other hand, the average root mean-

square deviation in the structural core is 2.07 Å, with an

average standard deviation of 0.60 Å. Both the number of

structures used and the core size detected seem to be large

enough to ensure that the deformations detected using PCA

will approximate the true deformations experienced by the

protein family.

A summary of the PCA results can be found in Fig. 2 and

Table 1. The structural deformations span a space of low

dimensionality; 70% of the total variance in the core

fluctuations can be explained with an average of 4.5 6 1.2

components. Thus, the behavior of all superfamilies in PCA

is rather similar, independent of the structural class, size, or

number of structures. Although structural sampling is key to

the definition of the PCA subspace, and we cannot be

confident that a complete coverage of the structural space

available to a given superfamily is achieved, the similarity of

the results in all cases suggests that our conclusion is robust.

PCA summarizes the evolutionary deformations of

a superfamily in directions mostly reflecting functional

adaptations. An example is shown in Fig. 3, which depicts

the distribution of the structures belonging to the nuclear

receptor ligand-binding superfamily (48508) on the first two

principal components. A clear functional separation is appar-

ent along the first component, which differentiates the group

of steroid-binding domains (group 1 in the figure) from the

group of retinoic acid- and analogs-binding domains (group

2). When the eigenvector is analyzed (Fig. 4 A), it becomes

apparent that one of the regions in the protein strongly

contributing to that eigenvector is the end of helix 5. This

region includes Arg-278, whose position in the ligand-

binding site is known to be involved in determining ligand

selectivity (Steinmetz et al., 2001).

PCA and ANM comparisons

ANM computations were carried out for the structure in the

superfamily closest to the average structure determined by

MAMMOTH-mult. Consistent with previous results (Keskin

et al., 2000), tests indicated that normal modes are not

significantly affected by the specific structure in the

superfamily used in the calculation (not shown). An example

of an ANM normal mode is shown in Fig. 4 B, where the

lowest frequency mode computed for a representative

member of the nuclear receptor ligand-binding superfamily

(48508) is displayed, together with the structure employed in

the computation. The orientation of the structure is the same

used in Fig. 4 A. A simple visual inspection of Fig. 4, A and

B, indicates that the motions in both cases are considerably

different. This is generally the case for most of pairwise

comparisons between PCA and ANM eigenvectors (not

shown). Yet, a given subspace of the complete ANM space

may exist that can form a suitable basis set for the PCA

eigenvectors, even with a poor correlation between the pairs

of eigenvectors. This can be quantified by measuring the

projection of the PCA eigenvectors onto the ANM subspace

by means of the RMSIP metric (see Methods). We will

restrict our comparisons to the lowest 50 ANM modes. Our

results (vide infra) seem to indicate that this is a reasonable

choice. We will use for each superfamily the number of PCA

components shown in Table 1. We first determined the

optimal cutoff distance for neighbor selection in ANM (see

FIGURE 5 Box-plots of the overlap of the PCA and ANM spaces as

a function of the cutoff distance employed in the ANM computation. The

length of the wishers extends 1.5 times the interquantile range (shown as

a box), leaving out the outliers. (A) RMSIP values. (B) Z-score of the RMSIP

values.
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FIGURE 6 Z-score of the RMSIP (overlap of PCA and ANM spaces; see Eq. 2) at the optimal cutoff distance as a function of the number of ANM modes

employed. The lowest 50 modes have been considered. (A) a-proteins; (B) b-proteins; (C) a 1 b-proteins; (D) a/b-proteins; and (E) small proteins.
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Methods). For different cutoffs, the Z-score of the RMSIP

between PCA and ANM spaces (considering the slowest 50

modes) was computed (Fig. 5). The optimal cutoff distance,

with a median RMSIP of 0.85, was found to be 15 Å, close to

the optimal distance found by Bahar and co-workers when

comparing the mean-square fluctuations computed from

ANM and those deduced from the B-factors (Atilgan et al.,

2001). The RMSIP value is highly significant, with a Z-score
above 15 (Fig. 5 B).
Next, we studied, at this optimal cutoff, how the overlap

between both spaces depends on the number of low-

frequency normal modes considered, including up to 50

modes. The results are found in Fig. 6, which shows the

overlap in terms of the average Z-score separated over

different structural classes. A significant overlap quickly

builds up within the first ;20 modes and then tends to

plateau. Small and a/b-proteins show significantly smaller

overlaps, whereas a and a 1 b-proteins show the largest

ones. Small proteins have a larger number of disulfide

bridges, not considered in the ANM, and this could be an

explanation for the lower overlap observed. In summary,

there is a statistically significant overlap between the

deformations observed in the core of homologous proteins

and the lowest;20 frequency modes imposed by the protein

topology. Thus, the protein core in evolutionary related

proteins responds structurally to sequence changes by defor-

mations along combinations of normal modes imposed by

the protein topology.

Finally, we also studiedwhether or not the observed residue

fluctuations in the core are correlated with those predicted by

the normal modes, i.e., whether or not regions that have larger

evolutionary fluctuations correspond to those that ANM

predicts as the ones with higher fluctuations. Results can be

found in Fig. 7. For most superfamilies there is a moderate

degree of correlation between the root mean-squared fluctua-

tions observed in the core, as computed from the alignments,

and the fluctuations predicted by ANM, with correlations

in the range of 0.3–0.8 (Fig. 7 A). An example of the

FIGURE 7 (A) Spearman rank corre-

lation coefficient between the observed

mean-square fluctuations (from the

multiple structural alignments) and

those computed from ANM for each

of the superfamilies studied. (B) The

corresponding Z-score of the Spearman

rank.
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correspondence of mean-squared fluctuations for the core in

one of the superfamilies is shown in Fig. 8. A similar profile

can be observed, although the scales are different. In general,

Spearman correlations are statistically significant (Fig. 7 B).
Exceptions are cytochrome c (46626), NTF2-like (54427),

thioredoxinelike (52833), SCR-domain (57535), scorpion

toxinlike (57095), and zinc fingers (57667), all of them with

Z-scores below 2. In some cases, there are reasons that could

explain these deviations. For example, in the case of the cy-

tochrome c, the heme group is not included in the calculation

of the ANM normal modes. A similar explanation can be

found for SCR-domains and scorpion toxinlike, rich in disul-

fide bridges, and zinc fingers, whose structure is maintained

by a Zn atom chelating cystine and histidine residues.

DISCUSSION

In a structure prediction project by comparative modeling, the

probability that the query sequence shares ,30% of identity

to a known structure of the same fold is at least 50% (Marti-

Renom et al., 2000). Detection of sequence-structure

compatibility in these cases has shown considerable improve-

ments in recent years (Kelley et al., 2000; Koh et al., 2003; Shi

et al., 2001). The quality of the corresponding sequence

alignments also shows significant progress (Marti-Renom

et al., 2004). Refinement of the initial model, however,

remains a formidable task. It has been proposed that the

simultaneous use of several templates can minimize this kind

of error. However, it has been found that model refinement,

with or without the use of multiple templates, only rarely

shifts the core structure of the model from the template to the

target (Tramontano and Morea, 2003). This difficulty is

thought to be due to both the large size of conformational

space and the delicate balance of forces in the native structure.

Progress on this challenging problem may be facilitated by

focusing on more constrained and thus more tractable

refinement problems. Characterizing the process of structural

adaptation in homologous proteins can be useful in this

regard, as it can allow the definition of collective variables to

reduce the dimensionality of the search space. Comparisons

of dynamic models with knowledge-based information from

the database have been attempted in the past. Berendsen and

co-workers (de Groot et al., 1998; van Aalten et al., 1997), for

example, compared the ‘‘essential dynamics’’ derived from

a collection of crystal structures with the results of ‘‘essential

dynamics’’ as applied to molecular dynamics simulations of

these proteins, finding good agreement between both sets of

data. However, to our knowledge, we report here the first

comparison between mechanical deformational modes and

evolutionary deformations in proteins.

Not surprisingly, we find that the regions experiencing the

highest evolutionary fluctuations in the protein core tend to

correspond to topologically unconstrained regions. More

interesting is the finding that the adaptive movements

responsible for these fluctuations are highly cooperative,

taking place in a space of low dimensionality, of only 4–5

dimensions, and similar in all superfamilies. Because side

chain degrees of freedom in the protein core are basically

dictated by the backbone conformation (Levitt et al., 1997),

this finding suggests that in fact, and as far as the core region

is concerned, the conformational space to sample in model

refinement is fairly small. The use of PCA directions thus

appears as a promising technique to model the structural

plasticity among homologous proteins, affording a very

efficient sampling of the conformational space accessible to

the protein core, and preliminary results indicate that PCA

sampling is indeed very efficient (Qian et al., 2004). The

physical origin of this low dimensionality in the evolutionary

space seems to rest in the fact that motions allowing a degree

of deformability in the structure that can accommodate

different homologous sequences are those with sufficiently

shallow energy increase when a distortion is imposed. We

found these to be on the order of the ;20 lowest frequency

modes. That is, the fact that the evolutionary subspace

overlaps significantly with the subspace spanned by the;20

lowest frequency modes imposed by the protein topology

suggests that the evolutionary pathways of structural

adaptation make use, to some extent, of combinations of

a small number of low-frequency modes imposed by the

topology. A corollary is that the protein topology could be an

important factor determining the evolutionary history of

proteins at the structural level. It remains to be seen whether

or not the ANM normal modes, or similar approximations,

are accurate enough to be used as surrogates of the PCA

eigenvectors in protein modeling problems in those cases

where the structural sampling of the family does not allow

the derivation of reliable PCA directions. Nevertheless, our

results lend support to recent proposals about the use of
FIGURE 8 Mean-square fluctuation per residue in the core corresponding

to 48508 (nuclear receptor ligand-binding domain) superfamily.
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normal modes for solving difficult molecular replacement

problems (Suhre and Sanejouand, 2004).

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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