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ABSTRACT Constitutive models are needed to relate the active and passive mechanical properties of cells to the overall
mechanical response of bio-artificial tissues. The Zahalak model attempts to explicitly describe this link for a class of bio-
artificial tissues. A fundamental assumption made by Zahalak is that cells stretch in perfect registry with a tissue. We show this
assumption to be valid only for special cases, and we correct the Zahalak model accordingly. We focus on short-term and very
long-term behavior, and therefore consider tissue constituents that are linear in their loading response (although not necessarily
linear in unloading). In such cases, the average strain in a cell is related to the macroscopic tissue strain by a scalar we call the
‘‘strain factor’’. We incorporate a model predicting the strain factor into the Zahalak model, and then reinterpret experiments
reported by Zahalak and co-workers to determine the in situ stiffness of cells in a tissue construct. We find that, without the
modification in this article, the Zahalak model can underpredict cell stiffness by an order of magnitude.

INTRODUCTION

Bio-artificial tissues under development for the replacement

of injured or diseased tissue in the human body must be not

only biologically compatible, but also mechanically com-

patible. For this reason, they must reproduce the mechanical

behavior of the healthy tissues they replace. The aim of this

work is to develop an improved set of constitutive equations

that describe how a class of bio-artificial tissues behaves

mechanically, based upon an understanding of the mechan-

ical properties of the tissue’s constituents.

The improved constitutive model presented in this work is

an extension of the Zahalak model (Zahalak et al., 2000).

The primary limitation of Zahalak’s model is its assumption

that, irrespective of their relative mechanical properties, cells

deform in registry with the tissue. We show that although

this approximation is reasonable for tissues with extremely

high cell concentrations and low elastic mismatch between

cells and extracellular matrix, it needs to be addressed for

other tissues. We address this by including a correction factor

called the ‘‘strain factor’’. When a tissue is strained uniaxially,

the strain factor is the ratio between the average strain along

a cell’s axis and the average tissue strain resolved in that

direction.

With the adjustment we present, the Zahalak model applies

to a broad range of tissues. However, in developing models

for characterizing the strain factor, we refine our attention to a

class of bio-artificial tissue constructs consisting of relatively

stiff, elongated (length/width ratio on the order of 5–40)

fibroblasts cultured in a relatively compliant reconstituted

collagen matrix. These tissue constructs are far more com-

pliant than most living tissues, due to the high compliance of

reconstituted collagen; in such constructs, the matrix is much

more compliant than fibroblasts (Wakatsuki et al., 2000;

Zahalak et al., 2000).

We consider in these models only the short-term and very

long-term response of these constructs, and thus treat the

constructs as an incrementally linear elastic collagen matrix

(e.g., Parry, 1988; Roeder et al., 2002) populated by

perfectly bonded linear elastic cells. Although the in-

stantaneous elastic moduli of collagen are strain dependent

(Pryse et al., 2003; Ozerdem and Tozeren, 1995; Pins et al.,

1997), the approximation of linearity is appropriate for small

strain increments applied monotonically (Fung, 1981). A

discourse on the limitations of modeling biological tissues

with linear kinematics and Hooke’s law is presented by

Prager (1969). We further refine our attention to tissue

constructs in which the cells have remodeled the matrix into

a very thin membrane whose thickness is in the order of the

cell diameter (see, for example, Wakatsuki et al., 2000).

The primary model we use for characterizing the strain

factor is a scaling model. We validate the scaling model

through comparison to numerical simulations and an exact

solution for a special case, and then calibrate the model’s

single free parameter using Monte Carlo simulations in-

volving several different types of computational analyses.

The scaling model needs to account for very strong inter-

actions between neighboring and overlapping cells, which

can form tightly linked networks. To account for these effects,

we incorporate a first-order statistical model, and validate the

resulting ‘‘percolationmodel’’withMonteCarlo simulations.

Background

From a mechanics viewpoint, this work is related to earlier

work on composite materials reinforced with short fibers. A
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rich foundation of studies on short-fiber composites consid-

ers the problem from a great number of perspectives (e.g.,

Fukuda and Kawata, 1974; Chou, 1992; Budiansky and Cui,

1995; Tucker and Liang, 1999). This work makes use of

homogenization procedures, which estimate overall mechan-

ical properties based upon the solution of model problems,

and unit cell approaches, which estimate the overall mechan-

ical properties based on the response of idealized micro-

structural representations.

Several assumptions and modeling techniques used in this

article have been employed in prior studies of the mechanical

environment of cells, which have focused largely on

relatively compliant, roughly spherical cells in cartilage.

Baer and Setton (2000) treated the cells and matrix as linear

to study the short-term and long-term mechanical environ-

ment of such cells. Wu et al. (1999) and Wu and Herzog

(2000) apply both unit cell analysis and linear elastic

homogenization theory to these tissues. More complicated

constitutive models such as biphasic theory (Mow and

Ratcliffe, 1997) have been applied to this problem by

Bachrach et al. (1995) and Guilak and Mow (2000).

This study differs from earlier work in its focus on tissues

containing oblate cells in a relatively compliant matrix. The

following reviews the analytical foundation of the specific

models used in this work.

Zahalak model

The Zahalak (Zahalak et al., 2000) constitutive law relates

the individual contributions of cells and matrix to the overall

mechanical behavior of a tissue construct. The cells are

modeled as contractile rods, whose contribution s
ðcÞ
ij to the

total stress is given by the volume average (Bird et al., 1987):

s
ðcÞ
ij ¼ NlÆFninjæ[Nl

Z
V

ninjFðnÞPðnÞdVðnÞ;

where N is the cell concentration (number of cells per unit

volume), l is the cell length,,. indicates averaging over all

orientations, F is the contractile force in each cell, n is a unit

vector, P(n) is the probability density function correspond-

ing to the probability that a cell’s axis parallels n, and ni and
nj are the i and j components of n.
After including a viscoelastic model for the cells, Zahalak

arrived at the following differential equation governing the

continuum stress response of the cells:

@s
ðcÞ
pq

@t
1

1

tc
s

ðcÞ
pq ¼ 3

tc
s0Apq 1 k

@

@t
1

v

tc

� �
ðBpqijeijÞ; (1)

where eij is the infinitesimal strain tensor at a point (e.g.,

Saada, 1993), so ¼ 1/3 NlF, A and B are ‘‘anisotropy

tensors’’ containing geometric constants, and k, v, and tc are

material parameters that can be measured using protocols

described in Zahalak et al. (2000). Repeated indices imply

summation.

The instantaneous and long-term mechanical responses of

cells are linear. k and v can be related to the instantaneous

elastic modulus Eo
c and long-term elastic modulus EN

c of the

cells by

E
o

c ¼
k

NAcl
and E

N

c ¼ v

NAcl
; (2)

where Ac is the cross-sectional area of a cell.

Eshelby’s solution

Eshelby’s (Eshelby, 1957, 1959) exact solution for the

(uniform) strain field inside an ellipsoidal linear elastic

inclusion in a linear elastic matrix affords an exact solution

for the strain factor in tissues containing slender, sparsely

distributed, aligned cells. In Appendix A, Eshelby’s solution

was specialized to the case of slender, ribbon-shaped cells

whose length l is much greater than their width t. For an
isolated, relatively stiff, incompressible cell with Young’s

modulus Ec in an infinite, incompressible matrix with

Young’s modulus Em, Eshelby’s solution predicts that the

strain factor S will scale as

S �
11 3

t

l

� �
11

t

l

� �
1 2

Ec

Em

t

l

� � � 1

11 2
Ec

Em

t

l

� �: (3)

Overlap in dense cell populations

A third result from the literature that is employed in this work

relates to the statistically expected overlap of random

networks of identical straight, prismatic cells. The specific

result used in this article is that of Kallmes and Corte (1960),

who addressed percolation in fibrous networks through

a relationship for the number of cells that each cell in a two-

dimensional (2D) network would expect to intersect, Ni. For

a distribution of cells Q(u) defined by an eccentricity

distribution parameter, e, so thatQ(u)¼ 1/p1 e cos(u), they
arrive at the general result:

Ni ¼
1

2

�
11 e

�H

�
Nc

l
2

Atissue

1

p
� e

2
p

6

� �
; (4)

where Nc is the total number of cells, Atissue is the area in

which the cells are confined, and H¼ Nc l t/Atissue. This result

is applied in the section ‘‘Analytical predictions for strain

factors’’ to arrive at an effective cell length in cases when

cells overlap.

METHODS

This section describes the numerical and analytical models used to evaluate

strain factors in two dimensions, and the update to the Zahalak constitutive

model. The following section describes the numerical models, the

idealizations of cells, and the limitations of the numerical models. The

section ‘‘Analytical predictions for strain factors’’ describes the analytical

and statistical models developed to predict strain factors and establish
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percolation thresholds. The section ‘‘Extension of the Zahalak model to

incorporate strain factors’’ describes the way that strain factors are incor-

porated to update Zahalak’s model.

Numerical models

Numerical analyses served three purposes: 1), to validate the concept of

a strain factor; 2), to validate the scaling model over a broad range of

material parameters and cell concentrations; and 3), to find the scaling

model’s one free parameter through Monte Carlo simulations. The analyses

employed both a commercial finite element (FE) package (ADINA v.7.5.2),

and a specialized FE code written with MATLAB.

The tissues considered were thin membranes subjected to uniaxial in-

plane stretching, which were modeled with plane stress conditions (Saada,

1993). Analyses all required a planar mathematical discretization of a region

containing a prescribed number of cells with prescribed orientations (Figs. 1

and 2). Since some random distributions of cells required extensive statis-

tical analyses, many different FE meshes were needed.

Boundary conditions simulated a tissue that was infinitely long in the

direction of the applied stretch, and constrained from contracting in the

direction perpendicular to this applied stretch. As depicted in Fig. 1, the top

and bottom edges of all FE meshes were restrained from moving vertically,

the left edges were restrained from moving horizontally, and the right edges

were constrained to remain vertical while displacing. All edges were free of

shear tractions. Analogous periodic boundary conditions were used in

simulations involving applied shear strains.

The cells and matrix were parametrically assigned linear elastic, isotropic

material properties. The matrix was assigned a Poisson’s ratio of n¼ 0.49, as

were the cells in simulations requiring this.

In the following sections, we describe the models for cells and their

limitations; the model for cell distributions; the FE discretizations; and the

specially written FE code we developed for large analyses.

Sparse cell populations

As is appropriate for the class of tissue constructs described in Wakatsuki

et al. (2000), cells in ADINA analyses were modeled with one-dimensional

(1D) elastic elements having no flexural rigidity (Fig. 1 a). The stiffness of

these elements added to that of the matrix so that the effective modulus Eeff
c

of the cells could be taken to be a parallel summation of the moduli Ec of the

cells and Em of the matrix (e.g., Gere and Timoshenko, 1984):

Eeff

c ¼ Ec 1Em: (5)

The thin lines in Fig. 1 a represent the boundaries of plane stress, linear

elastic, and quadratic interpolation elements; the elements representing the

ribbon cells are shown as thick solid lines. The boundary and loading

conditions were as described above. The meshes needed to be finest in the

vicinity of the largest gradients of strain, which occurred around the edges of

the cells.

Models in which the cells occupied a 2D region with elastic modulus Ec

were studied for comparison (Fig. 1 b). In these meshes, the cell was mod-

eled with 2D elements like those of the matrix.

Convergence studies. The primary challenge in attaining convergence

stemmed from the singularities in the elastic problems considered here: the

elasticity solutions for ribbon cells and rectangular cells embedded in an

elastic matrix predict infinite matrix strains at the end of the cell. FE analyses

inherently smooth end effects over an area that is on the order of the element

size.

We refined FE meshes until further refinement showed no effect on the

strain factor. Convergence studies indicated accuracy on the order of a few

percent; error decreased as the ratio of the cell and matrix moduli approached

1. All strain factors calculated using the FE method are upper bounds. FE

models overpredict stiffness when the discretization and interpolation

schemes used in the solution cannot precisely replicate the analytical

displacement field. Elements used for the cells performed better than those

used for the matrix because of the relatively uniform strain fields in the cells.

The net result was a larger underprediction of strain in the matrix than in the

cell, resulting in an overprediction of the strain factor.

Dense cell populations

Percolation was studied in tissues containing high concentrations of

randomly oriented cells. These studies involved FE models containing

33 3 and 53 5 arrays of cells (Fig. 2). In the sample ADINA mesh shown

in Fig. 2 a, the thin lines again represent the borders of plane stress quadratic
elements, and the thick lines indicate the positions of 1D elements that

comprise the cells. Attention focused on the central cell to avoid boundary

FIGURE 1 Representative FE meshes used to calculate strain factors. (a)

1D cell discretization (thick lines denote cells) and (b) 2D cell discretization.

The periodic boundary conditions represented a tissue that was infinitely

long in the loading direction.
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effects; the surrounding cells served as a random environment for the central

cell.

The spatial and orientation distributions for cells were based upon those

observed in bio-artificial tissue constructs by Zahalak et al. (2000). A

uniform spatial distribution was adopted for the positions of the centers of

the cells, as shown by the circles plotted over the midpoints of cells in Fig. 2

b. Cases with nonuniform spatial distributions of the cells, which would

produce macroscopic inhomogeneities, were not considered. Cell orienta-

tions were assigned according to a uniform probability density function,

which would ensure planar isotropy given a sufficiently large grid of cells.

Finite element code for dense cell populations and large
tissue samples

A FE code was written using MATLAB to analyze strain factors in cases of

very large cell concentrations, and very large arrays of randomly oriented

cells. Well-established algorithms for linear elastic FE analysis were

employed (Szabo and Babuska, 1991). The code was fully validated through

comparison to exact solutions and ADINA analyses. Plane stress linear

interpolation elements were used. The meshes were constrained and loaded

in the same manner as the ADINA meshes, and careful convergence studies

were undertaken.

The program provided rapid, automated discretization of meshes

containing 2D cell discretizations, and highly efficient analysis of tissues

with dense cell populations. Meshes consisted of uniform 200 3 200 arrays

of elements. As shown in Fig. 2 b, elements crossed by cells were assigned

the Young’s modulus of the cells, whereas all others were assigned that of

the matrix (square elements corresponding to cells are represented in Fig. 2

b as black pixels; white regions correspond to matrix elements). Note that

portions of cells from beyond the 53 5 array of cells can be seen around the

periphery of this mesh. Cells had a width equal to the grid size, which was

chosen to produce a slender cell aspect ratio (length/width . 20).

Analytical predictions for strain factors

To establish how strain factors should scale, we developed a scaling law for

the strain factor, calibrated it with Monte Carlo simulations, and validated it

against both numerical simulations and Eshelby’s solution. The scaling law

was extended to high cell concentrations using the percolation model

presented in the section ‘‘Percolation, and a model for high cell

concentrations’’.

Scaling model

A scaling law was derived for tissues having a low cell concentration,

meaning that cells were spaced sufficiently that the strain fields surrounding

them did not interact appreciably. The scaling law was motivated by the

strain field observed from FE analyses (Fig. 3 a). When the tissue receives

a remote uniaxial strain eN (Fig. 3 a), the average axial strain within

a relatively stiff cell is lower than eN, whereas the matrix normal strain in the

direction of the cell axis is greater than eN over a ‘‘region of influence’’ near

the cell ends; if the matrix is more compliant that the cell, this will be

reversed. The scaling model depicted in Fig. 3 b involved applying the

equilibrium and the constitutive relations in the presence of an incompatible

strain field (e.g., Hill, 1952). The tissue was divided into three regions, each

having constant axial strain: 1), the cell, with axial strain ec; 2), regions of
matrix connected to the ends of the cell with elevated or reduced axial strain

em; the size of these regions scale with the width t of the cell (at3 bt, where

a and b are constants); and 3), matrix material unaffected by the cell, in

which the axial strain equals the remote strain eN.

The force on the central linkage in Fig. 3 b must be the same for the

‘‘region of influence’’ and the cell. Using straightforward mechanics (e.g.,

Gere and Timoshenko, 1984), the force per unit depth F (out of the page) is

F ¼ Ecect ¼ Emembt; (6)

where b is the scaling constant shown in Fig. 3 b.

The condition that the total displacement D of this linkage must be in

registry with that of the surrounding matrix with a constant strain eN may be

written

D ¼ eNðl1 2atÞ ¼ emð2atÞ1 ecl: (7)

FIGURE 2 In studies of randomly oriented cells, 73 7 array of randomly

oriented but evenly spaced cells was cropped to yield a 5 3 5 array.

Representative meshes are shown for analyses using (a) ADINA and (b)
a finite element program written using MATLAB. Note that in the latter, the

tissue was discretized into a uniform 200 3 200 grid; each black pixel

represents a ‘‘cell’’ element, whereas each white pixel represents a ‘‘matrix’’

element. The circles superimposed on the cells in b show the uniform spatial

distribution of the 5 3 5 array of cells.
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Equations 6 and 7 may be solved to obtain an expression for ec in terms of

eN. Then, the strain factor may be written as

S ¼
11 2a

t

l

11 2
a

b

t

l

Ec

Em

� 1

11K
t

l

Ec

Em

; (8)

where a, b, and K are scaling parameters, and the second expression is

a good approximation for tissues whose cells have very high aspect (t/l� 1).

Considering that S ¼ 1 when the cell-matrix modulus ratio is unity, we can

see that b ¼ 1. Note that Eq. 8 reduces to Eshelby’s exact solution (Eq. 3)

when the scaling parameter K ¼ 2.

This scaling relationship and Eshelby’s solution both suggest the

following governing dimensionless parameter, which we call the normalized

cell stiffness:

Yc ¼
tEc

lEm

: (9)

Percolation, and a model for high cell concentrations

The expressions for the strain factor in Eqs. 3 and 8 were derived for isolated

cells. We extended these models to higher cell concentrations by 1),

incorporating a statistical model for ‘‘effective cell length’’ that accounts for

cell overlap and bonding, and 2), correcting the elastic properties of the

matrix directly surrounding the cell to account for stiffening by neighboring

cells.

Effective cell length. The ‘‘effective cell length’’ increases when cells

overlap. The average effective length for all cells was taken to be pro-

portional to the average number of intersections per cell, as predicted with

the Kallmes-Corte network model (Eq. 4). In a uniform, random distribution

(eccentricity parameter e¼ 0) of Nc identical, slender cells (length l�width

t) spread over an area Atissue, the average number of cell intersections Ni for

each individual cell is

Ni ¼
Ncl

2

pAtissue

¼ C

p
; (10)

where the C ¼ l2 Nc/Atissue is the 2D dimensionless cell concentration. C has

the physical meaning of number of cells per unit area, normalized by the cell

length. For a tissue of thickness h, containing ribbon cells of cross-sectional
area Ac [ th, this is related to the number of cells per unit volume, N, by

C ¼ Nl
2
h ¼ AcNl

2
=t: (11)

Effective cell length increases with each cell intersection:

leff ¼ l 11
1

2

C

p

� �
; (12)

where the factor of 1/2 appears because each cell intersection is shared by

two cells.

Effective matrix modulus. As the cell concentration increases, the

average stiffness of the material near each cell changes from the stiffness of

the matrix. Using a self-consistent type approach (Budiansky, 1965; Hill,

1965), we modeled the matrix material surrounding each cell as having the

effective elastic properties of the tissue as a whole. We used a ‘‘parallel’’

estimate for the effective modulus:

Eeff ¼ Em 1Ec
�; (13)

where Ec* is the contribution of the neighboring cells, which is greater than

zero if the cells are stiffer than the matrix.

An expression for Ec* began by comparing a ‘‘real’’ tissue and a similarly

sized membrane of pure matrix material. Both were subjected to a remote

uniaxial strain eN11 in the 1-direction, with all other components of the remote

strain tensor zero. Relating the two involved replacing each cell with

a contractile force per unit depth, F, applied along each cell’s axis. F is the

force per unit depth that, when applied at each cell location in the membrane

of pure matrix material, yields the strain field that occurs in the ‘‘real’’ tissue.

This force is a function of the cell width, t, the axial cell strain, SeN11, and the
additional cell stiffness, (Ec � Em):

F ¼ SeN11tðEc � EmÞ: (14)

Ec* is then the stiffening effect of these forces. For particular values of the

dimensionless 2D cell concentration, C, cell length, l, and applied strain,eN11,
Ec* was found by averaging this force cell orientations, ni (e.g., Bird et al.,

1987):

Ec
� ¼ ðC=lÞ,Fn1n1 . =eN11; (15)

FIGURE 3 Schematic of the scaling model. (a) The strain field around

a thin cell and (b) a cartoon showing the idealized strain field.
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where n1 is the 1-component of the unit vector pointing along the axis of

each cell. If u is the angle between a cell’s axis and the 1-direction, n1 ¼
cosu. Substituting and assuming a uniform distribution of cell orientations,

Ec
�¼C

l

1

2p

Z 2p

0

SðEc�EmÞtcos4udu¼ 0:375SðEc�EmÞC
t

l
:

(16)

Therefore,

Eeff ¼ Em10:375SðEc�EmÞCt=l� Em10:375SEcCt=l:

(17)

Strain factor in dense cell concentrations. Substituting Eqs. 12 and 17

into Eq. 9 yields an effective normalized cell stiffness:

Yeff

c ¼ tEc

leffEeff

: (18)

Yeff
c reduces to Yc at low cell concentrations. Inserting this into Eq.8 results in

an expression for the strain factor that is valid for all cell concentrations, and

captures the effect of percolation:

S¼ 1

11KYeff

c

: (19)

We call this generalization of the scaling model a ‘‘percolation model’’.

Extension of the Zahalak model to incorporate
strain factors

We extended the general three-dimensional Zahalak constitutive law to

incorporate strain factors, and then specialized the law to 2D. The updated

model was found by correcting the mean strain in the cells: eðcÞij ¼ Seij, where
S ¼ S(Yc,C) is the strain factor. One way to correct the equation for cell

behavior is to incorporate this corrected strain into the final term:

@s
ðcÞ
pq

@t
1

1

tc
s

ðcÞ
pq ¼

3

tc
s0Apq1 k

@

@t
1

v

tc

� �
ðBpqijSeijÞ: (20)

Our approach was to redefine k and v, and continue to use the form in Eq. 1.

The updated forms of Eq. 2 for relating k and v to cell moduli are then

E
o

c ¼
k

SNAcl
and E

N

c ¼ v

SNAcl
: (21)

Using Eqs. 11 and 21, these can be specialized to the 2D case

SY
o

c ¼
k

CE
o

m

and SY
N

c ¼ v

CE
N

m

; (22)

where the superscripts 0 and N refer to the instantaneous and long-term

responses of the tissue constituents, respectively.

The factors that reduce the average strain in the cells also amplify the

average strain in the matrix. As derived in Appendix B, the strain in the

matrix is amplified by the factor M:

eðmÞ
ij e�1

ij ¼ 11
fc

1� fc
ð1�SÞ[M;

where fc ¼ Nvc, in which vc is the volume of a cell. As discussed in Appendix

B, this must be accounted for in the matrix stress terms s
ðmÞ
ij ðeðmÞ

ij ; tÞ in the

modified Zahalak constitutive model:

sij ¼
Z t

�N

@s
ðmÞ
ij

@t
ðMeij; t� t̂Þ

"

1e
�ðt�t̂Þ=tc 3

tc
soApq1 k

@

@t
1

v

tc

� �
BpqijSeij
� �� �	

dt̂:

Updated framework for determining cell stiffness from
measured parameters

N, l, h,Eo
m, and EN

m can be found from calibration experiments; the

parameters k and v are obtained from direct measurements on a tissue. The

elastic modulus of cells is found by 1), using Eq. 11 to calculate C; 2), using

Eq. 22 to calculate YcS; 3), determining Yc from the characteristic

relationship between Yc and YcS described in the section "Cell stiffness

predicted by the modified 2D Zahalak model, and 4), using Eq. 9 to calculate

the cell modulus Ec from Yc.

RESULTS

Numerical simulations were needed to calibrate and validate

the analytical, scaling, and statistical models used in this

work. We begin in the next section with a validation and

assessment of the concept of a strain factor in cases that

extend beyond those explicitly allowed by Eshelby’s exact

solution, and a Monte Carlo calibration of the fitting param-

eter K.
The statistical extension of the scaling model to tissues

with dense cell populations (the section ‘‘Percolation, and

a model for high cell concentrations’’) was validated against

numerical approximations to exact continuum mechanics

solutions. The Monte Carlo simulations presented in the

section ‘‘Strain factors in random arrays of cells’’ show that

the percolation model captures the mechanics of interacting

cells correctly, and accurately predicts the cell concentration

corresponding to and mechanical consequences of the forma-

tion of a continuous, ‘‘percolated’’ network of cells.

The validated and calibrated scaling and percolation

models were inserted into the updated Zahalak constitutive

model and used to generate a chart needed to interpret cell

properties from the results of tests on tissue constructs. This

chart is presented in the section ‘‘Cell stiffness predicted by

the modified 2D Zahalak model’’, and used to reinterpret

experimental results presented by Zahalak et al. (2000).

Strain factors in nonellipsoidal cells

Eshelby’s exact solution shows that the strain factor is

mathematically rigorous for isolated, aligned, arrays of

ellipsoidal cells. We begin with an assessment of strain

factors in nonellipsoidal cells. Strain factors were evaluated

numerically for a series of model tissues strained as in Fig. 1.

Sample data corresponding to a 1D cell discretization (length

¼ l, cell spacing¼ 4 l, t¼ 0.05 l, Ec/Em¼ 5) is shown in Fig.

4. For all of the results presented, strains are normalized by

the magnitude of the maximum remote principal strain. The

solid curve represents the normalized macrostrain, resolved

in the direction of a cell; circles represent the normalized

average longitudinal strain in the cell. The key result is that

the two curves are proportional, regardless of the cell

orientation angle. As shown in Table 1 a, the strain factor,

which is the constant of proportionality between the

two curves, is very nearly constant for all cell orientations.
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Table 1 b shows strain factors for the same model tissue,

now loaded with a remote shear strain. The strain factors

were again independent of cell orientation, and were very

close those calculated for uniaxial loading.

Fig. 5 shows that the axial strain distribution is not

uniform in nonellipsoidal cells, with the majority of the non-

uniformity concentrated near the cell ends. Table 1, a and b,
show that this effect is small: the difference between the

strain factor averaged over the entire cell length, and that

calculated over 90% of the cell length, is on the order of 5%,

meaning that the strain factor provides a reasonable approxi-

mation of the mean axial cell strain.

An aspect we explored carefully was the 1D cell dis-

cretization. Fig. 6 shows that the 1D and 2D cell discre-

tizations (Fig. 1 b) show reasonable agreement: Fig. 6 a
shows that the agreement is best for modulus ratios Ec/Em

near 1 for all cell shapes, and Fig. 6 b shows that the

agreement is also very close when the cell aspect ratio t/l is
very small and Ec/Em is very large. Each point on the curves

represents the average strain factor calculated from analyses

of cells pointing at angles of 0�, 15�, 30�, 45�, 60�, and 75�
from the principal straining direction. The 1D case for Fig. 6

b contains values interpolated from Fig. 6 a. The elastic

modulus used for the 1D simulations is Eeff
c from Eq. 4 (note

that since the 1D discretization involves superimposing cell

and matrix stiffness, cases in which the cell is more

compliant than the matrix could not be captured with a 1D

discretization).

Monte Carlo analyses involving 21 sets of FE analyses

showed that the form of the scaling law in Eq. 8 is correct

at low cell concentrations. As predicted, all data for strain

factors collapsed to a single curve when plotted against Yc ¼
t/l Ec/Em (Fig. 7); the scaling model of Eq. 8 best fit the data

with K ¼ 2.2. The results shown with circles are for tissues

with cell spacing b ¼ 4 l, with all permutations of t/l ¼
f0.006,0.01,0.0125,0.025,0.05g and Ec/Em ¼ f2,5,8.33g.
Additionally, results are shown for b ¼ 2 l, t/l ¼ 0.01, and

Ec/Em ¼ f2,5,10,20g. Eshelby’s solution (Eq. A6) followed

the FE data fairly well, especially at very low values of t/l,
but consistently overpredicted the strain factor.

Strain factors in random arrays of cells

A second limitation of the Eshelby and scaling models for

the strain factor is that they are derived for aligned cells. To

verify that the concept of a strain factor is valid in tissues

FIGURE 4 Cell strain and macrostrain versus cell angle, u, in a periodic

array of aligned cells. The solid line represents the average tissue strain

(macrostrain) resolved in the direction of the cell; the circles are the

longitudinal cell strains predicted by FE calculations. The constant of

proportionality relating the two curves is the ‘‘strain factor’’.

TABLE 1 Strain factors as a function of cell orientation

(a) Axial stretching

Orientation Strain factor 90% Strain factor 100%

0� 0.659 0.632

15� 0.660 0.633

30� 0.662 0.636

45� 0.664 0.638

60� 0.668 0.642

75� 0.670 0.644

Average 0.664 0.637

Standar Deviation 0.005 0.005

(b) Shearing deformation

Orientation Strain factor 90% Strain factor 100%

15� 0.657 0.625

30� 0.659 0.627

45� 0.662 0.631

60� 0.668 0.637

75� 0.684 0.650

Average 0.666 0.634

Standard Deviation 0.011 0.010

For the second column, we average the strain in a cell using 90% of its

length; for the third, we use its whole length.

(a) Uniaxial stretching of a tissue; (b) shearing.

FIGURE 5 Axial strain in a cell is fairly uniform, except near the cell’s

ends.
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with nonaligned distributions of cells, we studied strain

factors in randomly oriented cells in a square 3 3 3 array of

cells. We calculated the average strain at the central cell in

the 3 3 3 array, which was oriented at an angle u from the

direction of stretching and surrounded by eight randomly

oriented cells. The results followed the cos2u distribution as

in Fig. 4.

Strain factors in dense cell populations

To validate the statistical ‘‘percolation’’ model (Eq. 18) that

extends the scaling model to higher cell concentrations,

a series of Monte Carlo simulations of 5 3 5 arrays of cells

(Fig. 2) were run. As shown in Fig. 8, the percolation model

(Eq. 18) predicts all features of the results for the parameter

range shown. The model is highly accurate at low and

medium cell concentrations, and a good approximation at

very high cell concentrations. The Eshelby model (not

shown) predicted the lower asymptotes of the curves to

within a few percent.

Each point in Fig. 8 for C , 1 corresponds to an average

of two analyses using ADINA; since the cells were nearly

isolated, the scatter was extremely small. The remaining

points each represent the average of 20 analyses using the

specially written FE program (the section ‘‘Finite element

code for dense cell populations and large tissue samples’’);

the 10-fold increase in the number of analyses was ne-

cessitated by the increase in scatter that occurred at cell

concentrations near the ‘‘percolation point’’. This scatter is

evident from the increase in the size of the error bars near

a concentration of C¼ 3 (Fig. 8); relative scatter was highest

for intermediate numbers of cell intersections.

Cell stiffness predicted by the modified 2D
Zahalak model

The central result of this article, needed for interpreting

experiments on tissue constructs, is the relation between

FIGURE 7 Validation of the scaling law at low cell density. Numerical

estimates of strain factors are plotted with circles. Eshelby’s solution and the

scaling law both match the FE simulations qualitatively.

FIGURE 6 A study of how the cell discretization scheme affects

predictions of the strain factor. The 1D and 2D discretization schemes are

closest for tissues with (a) very small and large modulus ratios Ec/Em and (b)

small cell aspect ratios t/l.

FIGURE 8 FE predictions of the strain factor as a function of cell

concentration. Also plotted is the percolation model, which predicts the cell

concentration at which network formation leads to a sharp increase in the

strain factor.
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log(YcS) and log(Yc), shown in Fig. 9. These curves were

derived from the fitted percolation model (Eq. 19). The

‘‘upper limit’’ curve was established by noting that as the

cell concentration grows, S approaches 1, and log(YcS)
approaches log(Yc). The ‘‘lower limit’’ curve was estab-

lished from Eq. 19 by noting that as Yc increases, log(YcS)
asymptotes to log(1/K).
Zahalak et al. (2000) reported values for the short-time and

long-time cell moduli at different strain levels. Their tissue

constructs were a ‘‘borderline’’ 2D case (the remodeled

tissue thickness was on the order of 2–3 cell widths), which

we modeled as 2D.

Applying the procedure described in the section ‘‘Up-

dated framework for determining cell stiffness from

measured parameters’’ to reinterpret their experiments, we

arrived at the data listed in Table 2. The elastic modulus

used for the matrix was the tangent modulus estimated for

a nominal strain of 3%. The average short-term cell modulus

Eo
c predicted by the modified theory was 10-fold higher than

that predicted by Zahalak et al. (2000), whereas the long-

term cell modulus response was of the same order of

magnitude. This result can be explained in terms of the

relative stiffnesses of the cell and matrix, as discussed

below.

DISCUSSION

A fundamental assumption of the Zahalak constitutive model

was overcome in this article by incorporating a more accu-

rate assessment of the average strain experienced by cells in

a tissue. The quantity we call the strain factor relates the

remote strain tensor to the average strain in cells.

Strain factors are properties of a tissue

Eshelby’s exact solution shows that a strain factor is an

intrinsic property for tissues containing isolated, aligned,

elliptical cells. We have shown that this is also a reasonable

approximation for arbitrarily dense populations of randomly

oriented ribbon-shaped cells, and derived models that predict

the strain factor based upon a parametric description of a

tissue.

At dimensionless cell concentrations of C . 1, cells can

intersect and bond with one another; the average number of

cell crossings increases with C, as predicted by Eq. 4. At

these higher cell concentrations, interaction and bonding

between cells leads to an increase in the average strain factor

within a tissue. This also leads to a broader distribution of

strain factors throughout a tissue. Although we cannot pre-

dict this distribution, the ensemble average represented by

Eq. 19 is appropriate for the Zahalak model, which is based

on statistical averaging of cell force components.

At even higher cell concentrations, the cells form a con-

tinuous network, and the cell strain approaches the tissue

strain; consequently, the strain factor approaches 1. The per-

colation point is evident as a jump in Fig. 8 at a C ¼ 3.5–4,

and is modeled very accurately by the percolation model.

The percolation point is independent of mechanical proper-

ties of the tissue constituents. Since tissues with very stiff

cells (high Yc) have lower strain factors at subpercolation

cell concentrations, the magnitude of the percolation jump

increases as Yc increases, leading to a relatively sharper

percolation threshold in Fig. 8.

Analytical predictions of strain factors

The scaling model in this article was found to predict strain

factors lower than those predicted by Eshelby’s exact solution

for elliptical cells. The difference stems from the fact that the

cross-sectional area of elliptical cell varies along the cell

length, whereas the ribbon cells have a uniform cross section

(Steif and Hoysan, 1987). When comparing the models, the

stiffnesses were set equal at the center points of the cells.

Strain factors calculated by Eshelby’s theory were greater

than those predicted by the FE calculations, because of the

extra compliance along the remainder of the elliptical cells.

FIGURE 9 Relationship between the normalized stiffness, Yc, and the

product SYc, which can be found from experimental measurements. This plot

is needed to derive in situ cell stiffness from macroscopic tissue measure-

ments. The Zahalak model corresponds to the upper limit.

TABLE 2 Cell stiffness calculated using the unmodified

Zahalak model, compared to those calculated using the

modified theory

Cell and matrix stiffness

(Ec/Em)N (Ec/Em)0 (Ec)N[MPa] (Ec)0[MPa]

Zahalak’s model 21 6 15 73 6 32 0.09 6 0.054 0.62 6 0.22

Modified theory 35 6 26 124 6 54 0.15 6 0.09 1.06 6 0.37

The moduli used for the matrix were based on those reported by Zahalak

et al. (2000), and were estimated as the tangent moduli for a nominal matrix

of 3%: (Em)o ¼ 8.5 kPa, and (Em)N ¼ 4.3 kPa.
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Modification of the Zahalak model

The update to the Zahalak model includes a corrected

average strain field for cells distributed in a 2D planar

isotropic fashion. For the thin constructs studied by Zahalak

et al. (2000), the 2D plane-stress theory was justified. How-

ever, more work is needed to extend the updated model to

include tissues where cell orientation distributions contain a

significant out-of-plane component. Our work is applicable

only to the very long-term and very short-term mechanical

response of a tissue. Future studies involving the time-

dependence of the strain factor are needed to extend this

work to loading situations in which viscous components of

mechanical response are important. Finally, material non-

linearity is an important extension that must be addressed in

future work.

The Zahalak model underpredicts cell stiffness for cases

in which the strain factor is not unity (Table 2). The

discrepancy is greater in the short-term response of the tissue

than in the long-term response. This is expected, since the

cell stiffness for the short-term response is much higher than

the matrix stiffness, whereas the stiffnesses are much closer

for the long-term response. This means that the strain factor

is farther from 1 for the short-term response than for long-

term response.

Estimates of cell stiffness

The fully relaxed elastic modulus for fibroblasts presented is

slightly higher than most reported by others using four

different techniques (Table 3). Two factors make comparison

among these experiments difficult, however.

First, cells are not linear elastic solids: their continuum

response varies with strain (Wakatsuki et al., 2000). Since

none of these other techniques produces constant strain

fields, comparison to these results is difficult.

Second, the meaning of an elastic modulus is different in

the four experiments. The stiffness we estimate is the

continuum stiffness contribution of a cell subjected to

uniform straining of a particular level. This has a different

meaning than the cell modulus estimated by a shear traction

applied to the outermost membrane (as with magnetic

tweezers and torsion of ferromagnetic beads), where the

mechanism of load transfer to the cytoskeleton is uncertain.

The elastic modulus estimated by applying localized

indentations to the cell membrane (as with cell-poking)

varies depending on the specific location of indentation

(Petersen et al., 1982), and localized buckling of micro-

structural features can lead to underprediction of the

stiffness. The high strains (;1) involved micropipette

aspiration of cells involve microstructural cell changes that

are difficult to characterize. The relationships between

moduli estimated by these different methods need to be

explored more fully.

Our reinterpretation of results in Zahalak et al. (2000)

indicate that the instantaneous moduli of cells are an order of

magnitude stiffer than the fully relaxed moduli (Table 3).

This is consistent with atomic force microscopy cell-poking

results of Mahaffy et al. (2000), who find that the high

frequency response of cells is an order of magnitude stiffer

than the low-frequency response. However, as mentioned

above, direct comparison between techniques involving

highly nonuniform strain fields and those involving uniform

strain fields is tenuous.

CONCLUSION

The modified theory presented in this article provides an

improvement to the accuracy of predictions of cell stiffness

in bio-artificial tissue constructs.

The article showed that a strain factor is a reasonably

accurate approach to predicting the strain experienced by

cells as a function of overall tissue strains.

After obtaining the strain factor for a wide range of tissue

properties (cell concentration and normalized stiffness), we

developed a method for determining the cell stiffness as

a function of easily measured properties of a tissue. A chart

based upon the models in this article must be consulted in

this analysis. We conclude that applying Zahalak’s model

with an assumed strain factor of 1 leads to errors that can be

an order of magnitude in certain cases.

The 2D theory in this article can be used to more

accurately predict in situ cell short-term and long-term

stiffness in thin bio-artificial tissues. However, further work

is needed to extend this approach to cases in which cell

distributions contain a significant out-of-plane component,

TABLE 3 Values of cell modulus estimated by different

state-of-the-art techniques vary widely; relaxed elastic

cell modulus estimated by different approaches

Technique References Elastic modulus (MPa)

Micropipette aspiration Guilak et al. (1999) 0.0002–0.004

Miyazaki et al. (1999) 0.10

Magnetic tweezers Bausch et al. (1999)* 0.0006–0.002

Torsion of

ferromagnetic beads

Bausch et al. (1998) 0.04–0.12

Fabry et al. (2001) 0.0001–0.01

Cell-poking Petersen et al. (1982) 0.015

Laser tracking

microrheology

Yamada et al. (2000) 0.00001–0.001

AFM cell-poking Hoffman et al. (1997)* 0.005–0.2

Mahaffy et al. (2000) 0.002–0.008

Mahaffy et al. (2004) 0.0019–0.0024

2D tissue constructs Reinterpretation of data

from Zahalak et al.

(2000)

Instantaneous: 1.2

Fully relaxed: 0.15

The relationship between these estimates is unclear, due to the radically

different ways in which cells are loaded in each case. Entries marked with

an asterisk are estimates of the properties of specific cell constituents, rather

than estimates of overall cell moduli. When converting data to Young’s

moduli, a Poisson’s ratio n ¼ 0.5 was used in conjunction with an assump-

tion of isotropy.
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cases in which material nonlinearity is important, and cases

in which rate-dependent properties are desired.

APPENDIX A: EXPRESSIONS FOR STRAIN
FACTOR USING ESHELBY’S THEORY

Eshelby’s (Eshelby, 1957, 1959) solution is a fundamental tool for the

analysis of composite materials (e.g., Fukuda and Kawata, 1974; Fukuda and

Chou, 1982).We apply it here to provide an exact solution for the strain factor

in the special case of an isolated ellipsoidal cell aligned with the direction of

macroscopic straining. The tissue is modeled as an initially stress-free,

homogeneous, infinite continuum with matrix stiffness tensor C(m) (e.g.,

Saada, 1993), and the cell is modeled as a region within this continuum that is

removed, then subjected to a stress-free ‘‘transformation strain’’ (‘‘eigen-

strain’’) e(c) that requires no surface traction (note that boldface variables

indicate tensors of nonzero rank). Rebonding the cell to the matrix requires

a strain field e(r) in the infinite continuum. The corresponding stress fields(m)

within thematrix at a positionx iss(m)(x)¼C(m)e(r)(x), and the uniform stress

within the cell can be written as s(c) ¼ C(m)(e(r) � e(t)). Eshelby showed that

the uniform strain e(r) needed for rebonding the cell is related to the eigenstrain

e(t) by the expression e(r) ¼ Ee(t), where E is called the Eshelby tensor.

Eshelby’s approach also applies to the case when the cell has a stiffness

tensor C(c) different from of the matrix. This involves comparing the ‘‘real’’

tissue, containing a cell that undergoes no eigenstrain, to a homogeneous

‘‘comparison’’ tissue with a cell-shaped region subjected to an eigenstrain

e(t). Both tissues are subjected to a uniform applied strain field at infinity,

e(N). The key is to find the eigenstrain e(t) that produces the same stress and

strain fields in both tissues. For the ‘‘real’’ tissue, the stress in the cell is

s(c) ¼ C(c)e(c) ¼ C(c)(e(N) 1 e(r)); for the ‘‘comparison’’ tissue, s(c) ¼
C(m)(e(N) 1 e(r) � e(t)). Equating these two expressions, recalling that

e(r) ¼ Ee(t), noting that for isolated cells the average tissue strain is e(a), and

rearranging some terms, we obtain

e
ðcÞ ¼AEshelby

e
ðNÞ

; (A1)

where AEshelby ¼ [I1 E(C(m))�1(C(c) � C(m))]�1 is the strain-concentration

tensor. Note that the unit tensor is defined as Iijkl ¼ 1/2 (dik djl 1 dil djk), in

which the Kronecker delta dij is unity when the value of the index i equals

that of the index j, and zero otherwise.

This relationship between cell and tissue strain can be used to predict the

strain factor. For planar isotropic tissue constructs (e.g. Wakatsuki et al.,

2000), C(c) and C(m) can be written in terms of the Young’s modulus E and

Poisson’s ratio n of the cells and matrix, fEc,ncg and fEm,nmg, respectively
(Saada, 1993). AEshelby can be written in terms of the elastic constants and

the dimensions t and l of the cell’s in-plane axes (e.g., Mura, 1982). For

a tissue subjected to a remote uniform axial strain eN11 in the 1-direction, with
all other components of the remote strain tensor e(N) zero, the strain factor S

in a cell pointed along the unit vector n is

S¼ ðfiber axial strainÞ
ðresolved tissue strainÞ ¼

nðAEshelby
e
ðNÞÞn

nðeðNÞÞn
: (A2)

Substituting into expressions available in Mura (1982) for the Eshelby

tensor, E, the general expression for strain factor S of 2D elliptical cells can

be written in closed form as

where tl is the aspect ratio t/l, and m is Young’s modulus ratio Ec/Em. For

nc ¼ nm ¼ n, and neglecting terms of order t2l and higher, we have,

When n ¼ 0, strain factor becomes,

S¼ 2ð11m1ð214mÞtlÞ
2ð11mÞ1ð11mð813mÞÞtl

: (A5)

And, when n ¼ 0.5, the strain factor simplifies to

S¼ 113tl
11 tl12mtl

(A6)

S¼

ð2ð11 tlÞð11ncÞðnm�1Þðð2nm�1Þð11m�ncð11m12ncÞ12mnmÞ1 t
2

l ð�1�m12n
2

c12mnm

1ncð11m�4mn
2

mÞÞ1 tlð�1�3m1n
2

cð2�4nmÞ1nmð21m14mnmÞ1ncð114m�2nmð112mnmÞÞÞÞÞ

ðð2nm�1Þð2ð11ncÞðnm� 1Þð11m�ncð11m12ncÞ12mnmÞ12mt
3

l ð�1�m1n
2

c1nmð�11m1nm12mnmÞ
1nc nmð�11m�nmð�11m12mnmÞÞÞ1 t

2

l ð�1�mð417mÞ1n
3

cð214nmÞ12mncð21nmð�2

1m1ðm�6ÞnmÞÞ1n
2

cð318m�2nmð�313m18mnmÞÞ1nmð�212m�4m
2
1mnmð4111m18mnmÞÞÞ

1 tlð�1�mð813mÞ12n
3

c1n
2

cð3112m�16mn
2

mÞ1mnmð2�6m1nmð615m18mnmÞÞ
12mncð21nmð1� 2m1nmð2mnm�5ÞÞÞÞÞÞ;

(A3)

S ¼ 2ðn � 1Þð11m� 2 n1 ð2� 2mðn � 2Þ � 4nÞtlÞ
2ð11m� 2 nÞðn � 1Þ1 ð�11 2 n1mð�8� 3m1 22 n1 4ð�41mÞ n2ÞÞtl

: (A4)
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APPENDIX B: MATRIX-CORRECTED STRAIN
AND STRESS

The constitutive model in this article considers the contributions of the cells

and the matrix independently. However, the two are coupled: stiff cells

amplify the average strain in the matrix, whereas compliant cells reduce it.

We quantified this effect by considering the average strain eij in a control

volume of a tissue, which is the weighted sum of the average strains in the

cells and matrix:

eij ¼ eðcÞij fc1eðmÞ
ij ð1� fcÞ; (B1)

where the cell volume fraction fc is fraction of the volume that is occupied

by cells. In terms of the cell concentration, N, and the average volume vc
occupied by an individual cell,

fc ¼Nnc: (B2)

Since the average cell strain is given by S eij,

eðmÞ
ij e�1

ij ¼ 11
fc

1� fc
ð1�SÞ[M: (B3)

The variation of M as a function of normalized stiffness Yc and

dimensionless concentration C is shown graphically in Fig. 10. The average

matrix strain increases up to the percolation point (C � 3.5), then drops

slightly. The net increase in the average matrix strain is smallest for thin cells

(t/l , 20). Equation B3 is not valid for extremely high cell concentrations,

since the relationship in Eq. B2 does not account for the details of cell

overlap. As a consequence, Eq. B3 predicts thatM approaches infinity as the

cell volume fraction approaches 1; in fact, the Eshelby solution predicts that

M should approach an upper limit of 2.5–3.0 for cases when the matrix

stiffness is much smaller than the cell stiffness, and the small remaining

pockets of matrix material can be approximated as ellipsoidal in shape.

The authors thank Ali Nekouzadeh and Tony Pryse for many insightful

discussions.

This work was supported in part by the National Institutes of Health

through grants AR47591 and GM38838.

REFERENCES

Bachrach, N. M., W. B. Valhmu, E. Stazzone, A. Ratcliffe, W. M. Lai, and
V. C. Mow. 1995. Changes in proteoglycan synthesis of chondrocytes in

articular cartilage are associated with the time-dependent changes in their
mechanical environment. J. Biomech. 28:1561–1569.

Baer, A. E., and L. A. Setton. 2000. The micromechanical environment of
intervertebral disc cells: Effect of matrix anisotropy and cell geometry
predicted by a linear model. J. Biomech. Eng. 122:245–251.

Bausch, A. R., F. Ziemann, A. A. Boulbitch, K. Jacobson, and E.
Sackmann. 1998. Local measurements of viscoelastic parameters of ad-
herent cell surfaces by magnetic bead microrheometry. Biophys. J. 75:
2038–2049.

Bausch, A. R., W. Moller, and E. Sackmann. 1999. Measurement of local
viscoelasticity and forces in living cells by magnetic tweezers. Biophys.
J. 76:573–579.

Bird, B. R., C. F. Curtiss, R. C. Armstrong, and O. Hassager. 1987.
Dynamics of Polymeric Liquids, Vol. 2. Kinetic Theory. Wiley, New
York.

Budiansky, B. 1965. On the elastic moduli of some heterogeneous
materials. J. Mech. Phys. Solids. 13:223–227.

Budiansky, B., and Y. L. Cui. 1995. Toughening of ceramics by short
aligned fibers. Mech. Mater. 21:139–146.

Chou, T. W. 1992. Microstructural Design of Fiber Composites. Cambridge
University Press, Cambridge, UK.

Eshelby, J. D. 1957. The determination of the elastic field outside an
ellipsoidal inclusion, and related problems. Proc. Roy. Soc. A. 241:
376–396.

Eshelby, J. D. 1959. The elastic field outside an ellipsoidal inclusion. Proc.
Roy. Soc. A. 252:561–569.

Fabry, B., G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J.
Fredberg. 2001. Scaling the microrheology of living cells. Phys. Rev.
Lett. 87:148102-1–148102-4.

Fukuda, H., and T. W. Chou. 1982. A probabilistic theory of the strength of
short-fibre composites with variable fibre length and orientation. J. Mater.
Sci. 17:1003–1007.

Fukuda, H., and K. Kawata. 1974. On Young’s modulus of short fiber
composites. Fibre Sci. Technol. 7:207–222.

Fung, Y. C. 1981. Biomechanics: Mechanical Properties of Living Tissues.
Springer-Verlag, New York.

Guilak, F., W. R. Jones, H. P. Ting-Beall, and G. M. Lee. 1999. The
deformation behavior and mechanical properties of chondrocytes in
articular cartilage. Osteoarthritis Cartilage. 7:59–70.

Guilak, F., and V. C. Mow. 2000. The mechanical environment of the
chondrocyte: a biphasic finite element model of cell-matrix interactions
in articular cartilage. J. Biomech. 33:1663–1673.

Gere, J. M., and S. P. Timoshenko. 1984. Mechanics of Materials, 2nd ed.
PWS Publishers, Boston.

Hill, R. 1950. The Mathematical Theory of Plasticity. Clarendon Press,
Oxford.

Hill, R. 1965. A self-consistent mechanics of composite materials. Mech.
Phys. Solids. 13:213–222.

Hofmann, U. G., C. Rotsch, W. J. Parak, and M. Radmacher. 1997.
Investigating the cytoskeleton of chicken cardiocytes with the atomic
force microscope. J. Struct. Biol. 119:84–91.

Kallmes, O., and H. Corte. 1960. The structure of paper: the statistical
geometry of an ideal two-dimensional fiber network. Tappi. 43:737–752.

Mahaffy, R. E., C. K. Shih, F. C. MacKintosh, and J. Käs. 2000. Scanning
probe-based frequency-dependent microrheology of polymer gels and
biological cells. Phys. Rev. Lett. 85:880–883.

Miyazaki, H., Y. Hasegawa, and K. Hayashi. 1999. Tensile property of
fibroblasts from the rabbit patellar tendon. ASME Bioengineering
Conference, Big Sky, MT.

Mow, V. C., and A. Ratcliffe. 1997. Structure and function of articular
cartilage and meniscus. In Basic Orthopaedic Biomechanics, 2nd ed.
V. C. Mow and W. C. Hayes, editors. Lippicott-Raven Publishers,
Philadelphia, PA.

Mura, T. Micromechanics of Defects in Solids. 1982. Martinus Nijhoff,
The Hague, The Netherlands.

FIGURE 10 Amplification of average matrix strain as a function of cell

concentration and normalized stiffness.

776 Marquez et al.

Biophysical Journal 88(2) 765–777



Ozerdem, B., and A. Tozeren. 1995. Physical response of collagen gels to
tensile strain. J. Biomech. Eng. 117:397–401.

Parry, D. A. D. 1988. The molecular and fibrillar structure of collagen and
its relationship to the mechanical properties of connective tissue. Bio-
phys. Chem. 29:195–209.

Petersen, N. O., W. B. McConnaughey, and E. L. Elson. 1982. Dependence
of locally measured cellular deformability on position on the cell,
temperature, and cytochalasin B. Proc. Natl. Acad. Sci. USA. 79:5327–
5331.

Pins, G. D., E. K. Huang, D. L. Christiansen, and F. H. Silver. 1997. Effects
of static axial strain on the tensile properties and failure mechanisms of
self-assembled collagen fibers. J. Appl. Polym. Sci. 63:1429–1440.

Prager, W. 1969. On the formulation of constitutive equations for living
soft tissues. Q. Appl. Math. 27:128–132.

Pryse, K. M., A. Nekouzadeh, G. M. Genin, E. L. Elson, and G. I. Zahalak.
2003. Incremental mechanics of collagen gels: new experiments and
a new viscoelastic model. Ann. Biomed. Eng. 31:1287–1296.

Roeder, B. A., K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-
Harbin. 2002. Tensile mechanical properties of three-dimensional type i
collagen extracellular matrices with varied microstructure. J. Biomech.
Eng. 124:214–222.

Saada, A. S. 1993. Elasticity: Theory and Applications. Krieger Publishing,
Melbourne, FL.

Steif, P. S., and S. F. Hoysan. 1987. An energy method for calculating the
stiffness of aligned short-fiber composites. Mech. Mater. 6:197–210.

Szabo, B., and I. Babuska. 1991. Finite Element Analysis. Wiley, New
York.

Tucker, C. L., and E. Liang. 1999. Stiffness prediction for unidirectional
short-fiber composites: review and evaluation. Comp. Sci. Tech. 59:655–
671.

Yamada, S., D. Wirtz, and S. C. Kuo. 2000. Mechanics of living cells
measured by laser tracking microrheology. Biophys. J. 78:1736–1747.

Wakatsuki, T., M. S. Kolodney, G. I. Zahalak, and E. L. Elson. 2000. Cell
mechanics studied by a reconstituted model tissue. Bioph. J. 79:2353–
2368.

Wu, J. Z., and W. Herzog. 2000. Finite element simulation of location- and
time-dependent mechanical behavior of chondrocytes in unconfined
compression tests. Ann. Biomed. Eng. 28:318–330.

Wu, J. Z., W. Herzog, and M. Epstein. 1999. Modelling of location- and
time-dependent deformation of chondrocytes during cartilage loading.
J. Biomech. 32:563–572.

Zahalak, G. I., J. E. Wagenseil, T. Wakatsuki, and L. E. Elson. 2000. A
Cell-based constitutive relation for bio-artificial tissues. Biophys. J. 79:
2369–2381.

Constitutive Modeling of Thin Tissues 777

Biophysical Journal 88(2) 765–777


