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ABSTRACT Continuum constitutive laws are needed to ensure that bio-artificial tissue constructs replicate the mechanical
response of the tissues they replace, and to understand how the constituents of these constructs contribute to their overall
mechanical response. One model designed to achieve both of these aims is the Zahalak model, which was modified by
Marquez and co-workers to incorporate inhomogeneous strain fields within very thin tissues. When applied to reinterpret
previous measurements, the modified Zahalak model predicted higher values of the continuum stiffness of fibroblasts than
earlier estimates. In this work, we further modify the Zahalak model to account for inhomogeneous strain fields in constructs
whose cell orientations have a significant out-of-plane component. When applied to reinterpret results from the literature, the
new model shows that estimates of continuum cell stiffness might need to be revised upward. As in this article’s companion, we
updated the average cell strain by defining a correction factor (‘‘strain factor’’), based upon the elastic response. Three different
cell orientation distributions were studied. We derived an approximate scaling model for the strain factor, and validated it against
exact and self-consistent (mean-field) solutions from the literature for dilute cell concentrations, and Monte Carlo simulations
involving three-dimensional finite element analyses for high cell concentrations.

INTRODUCTION

The Zahalak (Zahalak et al., 2000) model is a constitutive

law that relates the active and passive mechanical response

of cells and collagen to the overall response of a bio-artificial

tissue construct. Such models are important for ensuring that

tissue constructs adequately replicate the mechanical prop-

erties of the tissues they replace, and for interpreting experi-

ments designed to probe the mechanical properties of cells

and collagen in these constructs.

Zahalak’s first-order approximation that cells and matrix

deform in registrywith one another provides a lower bound on

cell stiffness when the Zahalak model is used to interpret cell

stiffness from tests on a tissue construct. Except in cases in

which cell concentration is sufficiently high that a continuous,

‘‘percolated’’ network of cells forms, cells and matrix

experience different average strains even in a uniformly

stretched tissue construct. The actual distribution of strain in

a construct depends on the details of the cell orientations, and

on the relative properties of cells and matrix (e.g., Marquez

et al., 2005). This article’s companion (Marquez et al., 2005)

developed a framework for incorporating into the Zahalak

model the average strain field, as predicted by linear elasticity

and simple network statistics, for a planar distribution of cells.

When reinterpreting results from the literature using this

framework, Marquez et al. (2005) found that accounting for

the statistical connectivity of a cell network caused estimates

of instantaneous continuum cell stiffness to be nearly doubled

to EN
c ¼ 1:1MPa; and estimates of fully relaxed cell stiffness

to be nearly doubled to Eo
c ¼ 150 kPa (Table 1).

This article addresses the question of how an out-of-plane

component to the distribution of cell orientations affects

estimates of cell stiffness in tissue constructs. The results

show that a tissue with a uniform planar orientation distri-

bution of relatively stiff cells, as in Marquez et al. (2005),

will have a greater stiffness than an otherwise identical

tissue in which cells are oriented randomly. When interpret-

ing the stiffness of cells from tests on bio-artificial tissue con-

structs, the assumption of a uniform planar cell distribution

and a three-dimensional (3D) uniform cell distribution can

be viewed as opposite extremes, which, as we show, may

bound the actual cell moduli.

We arrived at these conclusions by developing a model to

account for the average strain in cells in a tissue construct.

Three specific 3D cell orientation distributions were studied

(fully aligned, 3D planar and 3D uniform distributions).

Modified estimates of average cell strain were incorporated

into the Zahalak model through a scaling term called a

‘‘strain factor’’, and a framework was developed for backing

out cell stiffness from the results of tests on tissue constructs.

The focus in this work is tissue constructs consisting of

fibroblasts in a reconstituted collagen matrix. In these

constructs, the fibroblasts are stiffer than the matrix, except

at very high strains (Wakatsuki et al., 2000). Linear elasticity

and small strain theory were employed as first-order ap-

proximations; limitations of these approximations are

addressed in this article’s companion (Marquez et al., 2005),

and discussed in detail by Prager (1969). We approximated

cells as being cylindrical and perfectly bonded to the matrix,

and found strain factors for different cell and matrix
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parameters when these idealized constructs were subjected to

uniaxial stretching.

Background

Strain factors, and their incorporation into the
Zahalak model

In this article’s companion (Marquez et al., 2005), a two-

dimensional (2D) model for the strain factor was developed,

and incorporated into the Zahalak constitutive law. This

model was a scaling model that was calibrated and validated

against exact solutions and Monte Carlo simulations for

idealized tissues with low cell concentration. A ‘‘percolation

model’’ extended this scaling model to constructs with very

high cell densities, including cell densities at which cells

overlap, through application of network statistics. The

percolation model was validated against Monte Carlo sim-

ulations involving finite element (FE) estimates of exact linear

elasticity solutions for strain factors in idealized tissues.

Marquez et al. (2005) showed that the average strain

tensor eðcÞij in cells embedded in a thin membrane is related to

the average strain tensor eij in the entire membrane by a scalar

called the ‘‘strain factor’’, S, so that eðcÞij ¼ Seij to within

a reasonable approximation. When incorporated into the

Zahalak model, the general equation governing the response

of the cells to a remote strain field eij is given as
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pq
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1
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s

ðcÞ
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where, so ¼ 1/3 N l Fo, N is the cell concentration (number

of cells per unit volume), l is the cell length, Fo is the active

axial cell force, A and B are ‘‘anisotropy tensors’’ that

account for the cell orientation distribution, tc is the cell time

constant, k and v are constants to be determined exper-

imentally, and repeated indices imply summation. (Zahalak

et al., 2000). The instantaneous and long-term mechanical

responses of cells are linear. k and v can be related to the

instantaneous elastic modulus Eo
c and long-term elastic

modulus EN
c of the cells by

Eo
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k

SNAcl
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where Ac is the cross-sectional area of a cell, E
o
m and EN

m are

the instantaneous and long-term elastic moduli of the matrix,

and the ‘‘normalized stiffnesses’’ of the cell are defined by
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The anisotropy tensors are defined as the integrals of the

cell orientation unit vector n in all directions V, as follows:

Aij ¼
Z
V

ninjpðnÞdV and Bijpq ¼
Z
V

ninjnpnqpðnÞdV;

(5)

where p(n)dV is the probability that a cell in the volume

dV points in the direction of n.
The full tissue constitutive relation has the form
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Z t
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where s
ðmÞ
ij ðeðmÞ

ij ; tÞ is the average matrix stress at time t, and
M is the factor relating the average matrix stain eðmÞ

ij to the

remote strain field eijðeðmÞ
ij ¼ MeijÞ:

M ¼ 11
fc

1� fc
ð1� SÞ; (7)

in which fc is the volume fraction of cells in the tissue. The

instantaneous and long-term responses of the matrix were

approximated to first order as linear elastic in this work.

This model applies to the 3D cellular distributions of

interest in this article. The missing ingredient is the correct

functional form of the 3D strain factor, S, for 3D cell dis-

tributions.

Micromechanical models used to estimate strain factors

The micromechanical models we employed to estimate the

strain factor fall into two groups: models based on Eshelby’s

(Eshelby, 1957) solution, and models based upon numerical

simulation of repeating microstructures (‘‘unit cells’’). The

following summarizes the models we used, and their specific

implementation in this article.

Eshelby-based approaches. Methods based upon Eshel-

by’s solution describe the microgeometries of inhomoge-

neous materials with statistical ‘‘self-consistent’’ (‘‘mean-

field’’) approaches (Budiansky, 1965; Hill, 1965), in which

elastic fields within each constituent are approximated by

TABLE 1 Cell and matrix stiffness

EN
c =EN

m Eo
c=E

o
m EN

c ; MPa Eo
c ; MPa

Zahalak model

(Zahalak, 2000)

21 6 15 73 6 32 0.09 6 0.054 0.62 6 0.22

2D uniform

cell distribution

(Marquez

et al., 2005)

35 6 26 124 6 54 0.15 6 0.09 1.06 6 0.37

3D uniform

cell distribution

(this article)

40 6 30 372 6 163 0.17 6 0.102 3.18 6 1.11

Cell stiffness calculated using the unmodified Zahalak model, compared to

those calculated using the theory modified for 2D membranes (Marquez

et al., 2005) and for 3D cell distributions.
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their averages. Such descriptions can use information about

the microscale geometry, the cell shape and orientation, and,

to a limited extent, the statistics of the cell distribution. The

three approaches we employed were Eshelby’s exact

solution (Eshelby, 1957, 1959), the Mori-Tanaka method

(Mori and Tanaka, 1973), and a very important recent

extension to the Mori-Tanaka approach by Chen and Cheng

(1996). These are valid for low and moderate concentrations

of cells. We used these models to validate the continuum

predictions of the approximate scaling model at very low cell

concentrations.

Strain factor for dilute cell populations: Eshelby’s
solution. Eshelby’s equivalent inclusion approach

(Eshelby, 1957, 1959) provides an exact solution for the

uniform strain field inside an isolated, ellipsoidal, linear

elastic cell in a linear elastic matrix as a function of the

remote strain. This was specialized to the case of long,

slender, isotropic, relatively stiff, aligned ellipsoidal cells in

Appendix A to obtain an analytical estimate of the strain

factor at very low cell concentrations. For the case of nm¼ nc
¼ 0.5, this expression can be written as

S ¼
11 3

Ec

Em

� 1

� �
Ip �
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Em

r
2

Ec
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11 2� 3
Ec

Em

� �
r
2
1 3
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� 1

� �
Ipð11 2r

2Þ
� �;
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p
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�
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r
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in which r¼ l/d is the aspect ratio of the cells (long axis/short
axis), Ec and nc are the elastic modulus and Poisson’s ratio of

the cells, and Em and nm are those of the matrix (e.g., Jones,

1998).

Extension to moderately dilute cell populations. We

extended these estimates to slightly higher cell concen-

trations, with the aim of validating the trends predicted by

our statistical model for cell interactions. We used two

results from the literature for this purpose. The first was that

of Mori and Tanaka (1973), who extended the Eshelby

solution to include moderate concentrations of cells by

modifying the average matrix stress to approximately ac-

count for the perturbation caused by the presence of identical

neighboring cells. Mori and Tanaka assumed that when

many identical cells are introduced in the tissue, the average

cell strain is given by eðcÞij ¼ AEsh
ijkl e

ðmÞ
kl ¼ AMT

ijkl ekl; where A
Esh

is defined in Appendix A, and

AMT ¼ AEsh½ð1� fcÞI1 fcA
Esh��1

;

in which fc is the cell volume fraction and I is the fourth-rank
unit tensor. The strain factor for an aligned cell distribution

may be found from this by replacingAEshwithAMT in Eq. A1.

The second result we employed was that of Chen and

Cheng (1996), who extended the Mori-Tanaka approach to

short-fiber composites with random orientation distributions.

In the Mori-Tanaka approach, the average tissue stiffness,

CMT, is

CMT ¼ CðmÞ½I1 fcDðI1 fcEÞ�1��1
;

where

D ¼ ðI� ðCðmÞÞ�1CðcÞÞðI1EðCðmÞÞ�1ðCðcÞ � CðmÞÞÞ:

Chen and Cheng replace D and E with their volumetric

averages, ÆDæ and ÆEæ, over all possible cell orientations n:

ÆDæ ¼ 1

V

Z
V

D9pðnÞdVðnÞ; (10)

where V is a statistically representative volume of tissue, and

D9 represents the values of D for a cell pointing in the

direction of n. Then,

Ccc ¼ CðmÞ½I1 fcÆDæðI1 fcÆEæÞ�1��1
: (11)

We approximated strain factors from this generalization

by using an approach motivated by the result derived in

Appendix B, indicating a linear relationship between the

strain factor and the effective modulus of the material

surrounding a cell: we assumed that the strain factor in both

the Mori-Tanaka and Chen-Cheng models were the same

when the environment of each individual cell is similar; that

is, when Ccc
1111 ¼ CMT

1111; where the 1-direction lies parallel to

a cell.

Unit cell approaches. The second group of models is

based on numerical analysis of discrete repeating micro-

structures, and includes ‘‘periodic microfield’’ approaches

and ‘‘unit cell’’ methods (e.g., Wu et al., 1989, Bohm and

Han, 2001). These approaches can provide numerical

approximations to exact solutions for tissues in which the

cellular orientations and spacing have a periodic pattern, and

were used in our work to 1), calibrate the scaling model for

tissues with low cell densities, and 2), validate the statistical

extension of the scaling model to tissues with higher cell

densities. Applying these approaches to random cellular

distributions is a challenge, especially in cases of high cell

concentration, but Monte Carlo simulations involving finite

element analyses of representative tissue structures can be

used as a homogenization procedure.

Overlap in dense cell populations

The scaling model for the strain factor in tissues with low cell

densities was extended to tissues with higher cell densities by

incorporating the statistically expected overlap of random

networks of straight, identical cylindrical cells. Kallmes and

Corte (1960) address percolation in fibrous networks through

a statistical relationship for the number of cells, Ni, that

each cell would expect to intersect in a tissue containing
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cylindrical cells of length l and diameter d. For tissues in

which cells follow a 3D random orientation distribution,

Ni ¼
pdl

2

4
N ¼ pd

4l
C; (12)

where N is the number of cells per unit volume in the tissue,

and C[ Nl3 is the dimensionless cell concentration. This can

be written in terms of average cell spacing, b, by noting that

C ¼ (l/b)3, and in terms of cell volume fraction fc and cell

volume Vc by noting that C¼ fcl
3/Vc. This result is applied in

the ‘‘Numerical models’’ section to arrive at an effective cell

length in cases when cells overlap.

Overview

We developed a simple scaling model for the strain factor in

tissues containing three different models of cell distribution.

This model, described in the next section, was calibrated to

the results of numerical analyses (the section ‘‘Strain factors

in 3D tissues), and compared for accuracy with the estab-

lished composite material models for special cases (the

section ‘‘Strain factors in dense cell populations’’), described

above. We extended the scaling model to higher cellular

concentrations (the section ‘‘Physical models and boundary

conditions’’) using the Kallmes-Corte statistical model (the

section ‘‘Overlap in dense cell populations’’), and validated

the resulting predictions against Monte Carlo predictions

involving repeated finite element calculations (the section

‘‘Strain factors in dense cell populations’’).

We incorporated the strain factor model into the Zahalak

model, and reevaluated data presented by Zahalak et al.

(2000) to assess the effect of three-dimensionality in cell

orientation distribution on the estimates of cell stiffness from

experiments on tissue constructs found in the literature (the

‘‘Discussion’’ section).

METHODS

This section describes the approaches used to evaluate 3D strain factors in

elastic, isotropic tissues, and the way that 3D strain factors were used to

evaluate the effect of 3D orientation distributions on the predictions of cell

stiffness from experiments on tissue constructs. The next section describes

the scaling model for the strain factor, and its extension to tissues containing

dense cell populations (a ‘‘percolation model’’), and the ‘‘Numerical

models’’ section describes numerical estimates used to calibrate and validate

these models, in conjunction with the micromechanical models described in

the section ‘‘Micromechanical models used to estimate strain factors’’. The

final section describes the way that strain factors incorporated into the

Zahalak model can be used to study tissues.

Scaling model

We developed a scaling law for strain factors in low cell concentration

tissues, where cells are spaced sufficiently far apart that the strain fields

surrounding them do not interact appreciably. The scaling law is a simple

approximation, motivated by the strain field illustrated in Fig. 1 a. When

a remote uniaxial strain, eN, is applied to the tissue, with all other

components of the strain tensor zero, the strains in the matrix surrounding

the ends of the cell are elevated and reduced within the cell itself. The scaling

model depicted in Fig. 1 b is obtained by assuming a constant strain field in

the cell and smoothing the matrix strain concentrations in Fig. 1 a over two

cylindrical regions of matrix material of length bd and diameter (a(d/l)g)d,

where d and l are the cell diameter and length, and a, b, and g are scaling

parameters. The elevated axial matrix strain, em, in this region and the axial

strain, ec, in the cell are both taken as uniform. ec will be slightly smaller than

eN, so em must be slightly greater than eN for the ends of this ‘‘region of

influence’’ to deform in registry with the matrix material far from the cell.

The scaling law is obtained by enforcing equilibrium, but allowing this

kinematically inadmissible strain field. The force on the central linkage in

Fig. 1 b will be the same for the cell and the (shaded) regions of influence in

the matrix. Using straightforward mechanics (e.g., Gere and Timoshenko,

1984), the longitudinal force F (in the cell) can be written

F ¼ Ecec
pd2

4
¼ Emem

pb
2d2

4
: (13)

The condition that the total displacement D of this linkage must be in

registry with that of the surrounding matrix with a constant strain eN may be

written

D ¼ eNðl1 2adðd=lÞgÞ ¼ emð2adðd=lÞgÞ1 ecl; (14)

where a and g account the size of the ‘‘region of influence’’ surrounding

a cell. Equations 13 and 14 may be solved to obtain an expression for ec in
terms of eN. Then, the strain factor may be written as:

FIGURE 1 Schematic of the scaling model. Panel a shows the matrix

strain contours around a cell. The scaling model depicted in b is obtained by

assuming a constant strain field in the cell and smoothing the matrix strain

concentrations in over two cylindrical regions of matrix material of length

bd and diameter (a(d/l)g)d, where d and l are the cell diameter and length,

and a, b, and g are scaling parameters. The elevated axial matrix strain em in

this region and the axial strain ec in the cell are both taken as uniform.
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S ¼ ec
eN

¼
11 2a d
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� �11g
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Ec
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11K
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� �11g
Ec

Em
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where the second term expression is a good approximation for tissues whose

cells have very high aspect (d/l � 1). Since S ¼ 1 when the cell-matrix

modulus ratio is unity, b ¼ 1. This scaling relationship suggests the

governing dimensionless parameters m ¼ Ec/Em and r ¼ l/d, which we call

the Young’s modulus ratio and the cell aspect ratio, respectively.

Extension to high cell concentrations

The scaling and Eshelby models for strain factor in Eqs. 9 and 10 were

derived for isolated cells. As in this article’s companion, the expressions

were extended to higher cell concentrations by 1), incorporating an

‘‘effective cell length’’ that accounts for cell overlap and bonding, and 2),

modifying the elastic properties of the medium directly surrounding the cell.

Effective matrix modulus. As the cell concentration increases, the

average stiffness of the material near each cell rises due to contributions

from neighboring cells. Using a self-consistent type approach (Budiansky,

1965; Hill, 1965), we modified the models for predicting the strain factor by

replacing the elastic properties of the matrix surrounding each cell with the

effective elastic properties of the tissue as a whole. We used a ‘‘parallel’’

estimate for the effective modulus E11 in the direction of macroscopic tissue

straining:

E11 ¼ Em 1Ec
�; (16)

where Ec* is the contribution of the randomly oriented cells to the overall

modulus. An expression for this is derived in Appendix B. In the case of an

isotropic distribution of cells,

E11 ¼ Em 1
1

5
NlSðEc � EmÞAc: (17)

Effective cell length. The average effective length for all cells was

assumed to be proportional to the average number of intersections per cell,

which can be calculated using the Kallmes-Corte network model (Eq. 12).

However, not every cell intersection increases the ‘‘effective cell length’’:

globular cell clusters can form. If a cell pointing in an arbitrary direction n
intersects a cell of length l oriented at random Euler angles u and f (e.g.,

Ginsberg and Genin, 1983) relative to n, the average increase in effective

cell length in the n-direction is

Dl ¼ l
4

p
2

Z p=2

0

Z p=2

0

sin usinf du df ¼ 4

p
2l: (18)

Since this is shared between two cells,

leff ¼ l1
1

2
Dl ¼ l 11

2

p
2Ni

� �
: (19)

This effective length defines an effective aspect ratio, reff ¼ leff=d; which

can be incorporated into the scaling model along with the effective matrix

modulus (Eq. 15):

S ¼ 1

11K r
�ð11gÞ
eff

Ec

E11

: (20)

Numerical models

For validation and calibration of the scaling and percolation strain factor

over a broad range of material parameters and cell concentrations, we

performed Monte Carlo simulations involving repeated use of the FE

method implemented in a commercial software package (ADINA v.7.5.2).

Since random distributions of cells required extensive statistical analysis,

many finite element meshes with different values for the variables were

needed. We describe these analyses in the following sections.

Physical models and boundary conditions

The overall FE model involved a representation of a cube-shaped region

of a linear elastic tissue composed of collagen and cylindrical cells. A

uniform displacement was applied to the face of the cube that was

arbitrarily called the positive x-face. The negative x-face was constrained

from displacing in the x direction, the y-faces were constrained from

displacing in the y direction, and one z-face was constrained from

displacing in the z direction. The remaining face was unconstrained to

simulate a specimen that was relatively thinner in one of its dimensions.

All faces were free of shear tractions. These boundary conditions provided

mirror symmetry on five faces of the cube, and thus simulated an

infinitely long and infinitely wide repeating structure that was constrained

from contracting in one direction perpendicular to an applied stretch. In

a few simulations in which a shear strain was applied, similar periodic

boundary conditions were used.

Models of cell distributions

We studied three different cell orientation distributions: 1), isotropic

(uniform), 2), planar-isotropic, and 3), uniaxial. We adopted these three

distributions motivated by cell distributions observed in bio-artificial

tissue specimens. Wakatsuki et al. (2000) observed that unconstrained

bio-artificial tissue samples exhibited 3D isotropic distributions on their

interiors, and a ‘‘planar isotropic’’ distribution nearer their external

surfaces. Wagenseil et al. (2004) observed a degree of uniaxial alignment

in the orientation distribution of cells in tissue constructs that were

physically constrained as the cells remodeled the matrix. All of these cell

distributions led to a nearly constant strain factor for any cell orientation,

as will be shown.

1. 3D isotropic distributions. FE models containing 3 3 3 3 3 arrays of

cells were studied. To avoid any irregularities near the boundaries,

attention was focused on a cell centered in the mesh; the remaining cells

served as a quasi-random environment for this central cell. Surrounding

cell centers were assigned to fall within one ‘‘unit cell’’ of a uniform 3

3 3 3 3 cubic grid. The cell orientations and the locations of the cells’

center-points within their unit cells were assigned according to an

isotropic distribution. A typical 3D isotropic cell distribution is shown

in Fig. 2 a. A range of cell concentrations was studied; the maximum

cell concentration considered was that reached when the cell whose

center lay at the center of the 3 3 3 3 3 array of cells stretched from

one boundary of the model to the other.

2. Planar isotropic distributions. Planar isotropic distributions were

assigned in the same way as the 3D isotropic distributions, with the

exception that cell orientations were prohibited from having a compo-

nent in the z direction, perpendicular to the direction of macroscopic

straining (Fig. 2 b).
3. Uniaxial distributions FE models that investigate strain factors in

unidirectional distributions of cells involve simple unit cells containing

a single cell, with boundary conditions as described above.

Material properties of the cells and matrix

In all simulations, the cells and matrix were assigned linear elastic, isotropic

material properties. The matrix and cells were taken to be nearly incom-

pressible, with a Poisson’s ratio of n ¼ 0.49.
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Finite element discretization

FE discretizations were refined to ensure accuracy in calculating the strain

factors. Meshes were finest in the vicinity of the largest gradients of strain,

which occurred near the ends of the cells. Both the matrix and cells were

modeled with 3D parabolic-interpolation tetrahedral elements to prevent the

Poisson’s ratio locking effect (e.g., Szabo and Babuska, 1991). Sample

discretizations of the cells are shown in Fig. 2, a and b (the mesh for the

matrix is not shown).

Statistics. The Monte Carlo simulations involved repeated finite

element analyses of random distributions of cells. These cell distributions

were all based upon either isotropic or planar isotropic probability density

functions for cell orientations.

Statistical uniformity was checked by calculating the anisotropy tensors

A and B (Eq. 5). All components of the discrete anisotropy tensors

calculated for all uniform and planar isotropic cell orientation distributions

studied were within 15% of the values calculated for an infinite tissue

containing perfect uniform and planar isotropic cell orientation distributions,

respectively.

Interpretation of mechanical parameters using the
modified Zahalak model

The companion article (Marquez et al., 2005) adjusted the Zahalak model to

incorporate a strain factor for thin tissue constructs, and described an

algorithm for using this ‘‘modified Zahalak model’’ to back out the long-

term and short-term elastic responses of cells. The procedure detailed in this

section differs from that of Marquez et al. (2005) because a more

complicated geometric description of cells and cell concentration is required

in 3D.

N, l, d, Eo
m; and EN

m can be found from calibration experiments; the

parameters k and v are obtained from direct measurements on a tissue. The

procedure for finding the instantaneous elastic response Eo
c and the long-term

elastic response EN
c involves 1), calculating C from Eq. 12; 2), using

procedures described in Zahalak et al. (2000) to findk andv; 3), usingEq. 3 to

calculateYo
c S andY

N
c S; 4), determiningYo

c andY
N
c from the appropriate graph

of log(YcS) versus log(Yc) described in the section ‘‘Strain factors in 3D

tissues’’, and 5), using Eq. 4 to calculate the cell modulus Eo
c and E

N
c from Yo

c

and YN
c : Knowing Yc, one can compute the cell modulus Ec using Eq. 22.

RESULTS

The computations served to establish strain factors as ameans

of assessing the average strain fields in cells in 3D tissues, to

characterize strain factors as a function of tissue parameters,

and to fit the scaling model’s two free parameters using

a Monte Carlo approach. Section 3.1 describes strain factors

in idealized tissues made of periodic arrays of cells, and

parametric analyses of different periodic unit cell models.

The section ‘‘Strain factors in dense cell populations’’ ex-

plores strain factors in uniaxial and random cell distributions.

The section ‘‘Charts for deriving cell properties from me-

chanical measurements on tissues’’ assesses the effect of an

out-of-plane component of the cell orientation distribution

on predictions of cell stiffness from tests on tissue constructs.

Strain factors in 3D tissues

Strain factors provide a reasonable representation of average
cell strain in 3D

Periodic arrays of identical cells with identical orientations

were strained as shown in Fig. 3 a. The solid curve in Fig. 3

a represents the normalized macrostrain, resolved in the

direction of a cell. The symbols represent the normalized

average longitudinal strain calculated for cells with differing

orientation angles u¼f0,15,30,45,60,75,90g, each having an
elastic modulus 10 times that of the matrix. The key result is

that, as in the2Dcase (Marquez et al., 2005), the twocurves are

proportional regardless of the angle at which the cell is

oriented, meaning that cell axial strain is related to resolved

tissue strain by a scalar. Fig. 3 b shows that this is true for

randomly oriented cells in a 33 33 3 array as well. The solid

curve in Fig. 3 b is the average strain calculated for all the 27
cells in the mesh, multiplied by cos2u. Further analyses

showed the average strain factor to be invariant for both

uniaxial and shear stretching for any prescribed cell con-

centration C, modulus ratio m, and cell aspect ratio r¼ l/d.

Strain factors scale with Yc and follow the Eshelby solution

As expected from the scaling analysis in the ‘‘Scalingmodel’’

section, all data for strain factors of a particular aspect ratio

collapse to a single curve when plotted against Yc, as shown in
Fig. 4, which shows the FE estimates for strain factors in

periodic arrays of sparsely concentrated cells. The results

shownwith diamonds are forC¼ 0.02, r¼f10,20g, andm¼
f10,100,1000,10000g. The scaling model (Eq. 15) fits the

data best with K¼ 0.89 and g¼ 0.35. Also shown in Fig. 4 is

the Eshelby solution (Eq. 20), which follows the FE data fairly

well, but very slightly overpredicts the strain factor.

FIGURE 2 Sample finite element discretizations of cells. (a) The 33 33

3 array of cells in an isotropic distribution appears to be randomly distributed

from all vantage points. (b) The cells in a planar isotropic distribution are

centered randomly, but have no x-component to their orientations.
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Strain factors in dense cell populations

Monte Carlo simulations

FE analyses were run to establish variations of strain factors

with higher cell concentrations. These analyses required 33

3 3 3 arrays of cells (Fig. 2), since, with larger cell con-

centrations, cells spanned multiple unit cells and could

overlap one another.

Results are shown in Fig. 5, a and b, for isotropic and

planar isotropic distributions of cells, respectively. Both

plots show results for cells of aspect ratio r ¼ 12.5 with

dimensionless concentrations C ranging from 1 to 20, and for

values of Yc ranging from 0.05 to 50; results for the four

other aspect ratios considered (r ¼ f10,15,20,30g) showed
similar trends. Each point in Fig. 5, a and b, for C , 1

corresponds to an average of finite element predictions using

two different but statistically identical cell distributions;

since the cells were nearly isolated, the scatter was extremely

small. The remaining points each represent the average of

finite element predictions using 10 different but statistically

identical cell distributions. Scatter increases dramatically

near the sharp rise in strain factor at the cell concentration

corresponding to formation of a continuous, ‘‘percolated’’

cellular network. This scatter is analogous to critical

FIGURE 4 Scaling of the strain factor as a function of normalized stiffness

Yc for two different cell aspect ratios in a tissue with a sparse cell con-

centration. The FE simulations of sparse cell distributions are qualitatively

modeled by both the Eshelby solution and the scaling model.

FIGURE 5 Percolation model and results of Monte Carlo simulations.

The solid lines are the predictions of the model (Eq. 20); the symbols are the

averages from simulations. (a) A fully isotropic cell orientation distribution

and (b) a planar isotropic distribution.

FIGURE 3 Average strain in cylindrical cells scales with the ‘‘nutation’’

angle u of a cell according to a cos2u distribution. The data shown is for (a)

the central cell in a 3 3 3 3 3 array of aligned cells (C ¼ 1) and (b) all 27

cells in a 3 3 3 3 3 array of randomly distributed cells.
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fluctuations near a phase transition. The scatter increased

with increasing Yc.
The trend lines in both plots correspond to the percolation

model (Eq. 20), which matches the Monte Carlo simulations

over all cell concentrations evaluated. For uniform and planar

isotropic cellular distributions, the percolation points and

variation in strain factor with respect to Yc are statistically

indistinguishable. As predicted by Eq. 20, the strain factor

exhibits high dependence on the aspect ratio at lower values of

aspect ratio; however, for aspect ratios .30, the dependence

is weak.

Percolation

Formation of a continuous, ‘‘percolated’’ cellular network

requires a higher cell density in tissues with a 3D cell

architecture than in the 2D membranes studied in the com-

panion article. An additional feature of percolation in 3D cell

networks that does not occur with 2D networks is that the

percolation threshold is a strong function of the cell aspect

ratio in 3D, as illustrated in Fig. 6. As in 2D tissues, the

magnitude of the jump in the strain factor that occurs at the

percolation point increases as Yc increases.

Analytical verification of observed trends

As shown in Fig. 7, the Eshelby solution predicts strain

factors in ellipsoidal cells to within a few percent in very

sparsely populated tissues, but is valid only for these

extremely low cell concentrations. The Chen-Cheng model

predicts a rise in the strain factor with increasing cell

concentration as was observed in the Monte Carlo sim-

ulations, but underestimates the strain factor at all except low

cell concentrations. As a consequence, the percolation model

was used as a tool for incorporating strain factors into the

Zahalak model across the entire range of cell concentrations.

Charts for deriving cell properties from
mechanical measurements on tissues

The central result of this article, needed for interpretation of

experiments on tissues with uniform and planar isotropic cell

orientation distributions, is the relation between log(YcS) and
log(Yc), shown in Fig. 8. The charts shown in Fig. 8 allow

one to determine the normalized stiffness Yc from the product

YcS, which can be found from experimentally determined

values of k and v (Eq. 3). If the aspect ratio of the cells and

the elastic modulus of the matrix are also known, the elastic

modulus Ec of the cells may be derived from Yc. These
curves were derived from the percolation model.

As the cell concentration grows, the strain factor S of the

contiguous cell network approaches 1, and log(YcS)
approaches log(Yc). Therefore, all these curves must lie

beneath the solid lines labeled C¼N. The lower limits were

established by looking at the low-cell concentration scaling

law for S (Eq. 15): at very large Yc values (Yc/K � 1),

log(YcS) approaches a constant equal to log(r�1.63/K).
Consequently, the curves all lie above the solid lines labeled

C ¼ 0.

The charts in Fig. 8 were derived assuming incompressible

cells. However, a variation in the strain factor of only 10%

was seen in analyses varying the cell Poisson’s ratio from

0 to 0.49. Therefore, the charts shown in Fig. 8 also provide

a reasonable approximation for strain factors in cells that are

not incompressible.
FIGURE 6 Values of dimensionless cell concentration C at which per-

colation occurs as a function of the aspect ratio r.

FIGURE 7 Predictions of the strain factor as a function of dimensionless

cell concentration and normalized stiffness. The Eshelby model predicts the

lower asymptotes of the percolation model (Eq. 20) as fit to the Monte Carlo

simulations. The Chen-Cheng model (Chen and Cheng, 1996) predicts a rise

in strain factor with increasing cell concentration.
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Accounting for the 3D architecture of a cellular
network forces cell stiffness estimates to be
revised upwards

We reinterpreted experiments from Zahalak et al. (2000),

assuming that cells exhibited a 3D orientation distribution

that was either planar isotropic or uniform. The results were

nearly identical for both of these assumptions. The results are

compared in Table 1 to the interpretations of these data by

Zahalak et al. (2000) and in the companion article, for both

the instantaneous and long-term elastic moduli of the cells.

The predictions of cell stiffness that result from an

assumption of a 3D uniform cell orientation distribution are

2–5 times higher than those predicted by Zahalak, and

modestly higher than those predicted by assuming a 2D cell

distribution.

DISCUSSION

Marquez et al. (2005) extended the Zahalak constitutive

model to overcome one of its fundamental limitations by

incorporating a more accurate assessment of the average

strain of cells within a strained thin tissue. The work

presented in this article establishes how the ratio between the

remote strain tensor and the average axial strain in cells

varies as a function of tissue parameters in a 3D tissue that is

strained in one direction. The strain factor was shown to

follow the percolation model (Eq. 20).

By incorporating this model for the three-dimensional

strain factor into the Zahalak constitutive law, cell stiffnesses

could be calculated from measurements of the cell

concentration, Young’s modulus of the matrix, aspect ratio

of cells, and mechanical properties of a tissue.

Predictions of strain factors

The model for the strain factor that was incorporated into the

Zahalak model was based upon several idealizations, in-

cluding linear elasticity, matrix homogeneity, isotropy,

idealized cell shapes, perfect cell-to-matrix bonding, and

steric cell-to-cell interactions. Significant material nonlinear-

ity,matrix inhomogeneity, andmatrix anisotropy could lead to

increases or decreases in strain factors in constructs with low

cell concentrations,which couldeither lower or raise estimates

of cell stiffness. These effectswould be less pronounced at cell

concentrations above the percolation point, as they would not

cause the strain factor to differ from 1 significantly. Since

differences between theEshelby solution for ellipsoids and the

MonteCarlo predictions for cylinderswere small, the effect of

cell shape might also be expected to be small. Preliminary

simulations of ellipsoidal cells not bonded to the matrix

indicate that cell-matrix bonding might also be a less critical

factor. Nonsteric cell-to-cell bonding could move the

percolation point to a lower cell concentration, and affect

estimates of the strain factor near the percolation point.

Within the context of these idealizations, discussed at

length in the companion article, the approximate percolation

model (Eq. 20) is accurate in that it qualitatively follows the

exact Eshelby solution for very low cell concentrations, and

the Chen-Cheng model for slightly higher cell concentra-

tions. When fit to Monte Carlo simulations of very sparse

populations of cylindrical cells, the percolation model

predicts slightly lower strain factors than the Eshelby

solution or the Chen-Cheng method. This is because the

ellipsoids modeled by the Eshelby and Chen-Cheng methods

have a smaller average cross-sectional area (and hence

smaller stiffness) than cylinders of equivalent thickness.

Differences between ellipsoidal and cylindrical cell ideal-

izations faded with increasing cellular length/diameter ratio.

The percolation model was fit only to simulations of

constructs containing very low cell concentrations, and

extended to higher cell concentrations through a statistical

model with no ‘‘fitting parameters’’. The 3D percolation

phenomenon differed from the thin membrane case described

byMarquez et al. (2005). The primary difference between this

percolation phenomenon in thin membranes and that in 3D

tissues is that the percolation point is a strong function of the

cell aspect ratio in 3D (Fig. 6). As with 2D constructs, the

magnitude of the percolation jump increases as Yc increases,
leading to a relatively sharper percolation threshold.

Reinterpretation of published cell
stiffness estimates

The methods of this article were used to reinterpret

experiments reported by Zahalak et al. (2000), who derived

FIGURE 8 Relationship between and the product SYc, which can be found

from experimental measurements, and the normalized stiffness, Yc, for

several values of cell aspect ratio r. These plots are needed to derive in situ

cell stiffness from macroscopic tissue measurements. The Zahalak model

(Zahalak, 2000) corresponds to the upper limit in each case.
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mechanical properties of cells from tissue measurements

based upon the following two assumptions: 1), they assumed

that the strain factor in their tissues was 1, and 2), they

assumed a planar isotropic distribution of fibroblasts.

Marquez et al. (2005) reinterpreted these experiments by

treating the specimens like thin membranes, and incorporat-

ing the correct strain factor. In the current work, we treated

the tissue as having a planar isotropic or 3D isotropic, and

applied the appropriate strain factor.

The linear elastic cell stiffnesses estimated in this article

and its companion (Table 1) are slightly higher than the

highest estimates reported in the literature for the long-term

cell modulus, and an order of magnitude higher than those

reported for the instantaneous modulus (see the companion

article for a table containing a comparison). The upper bound

instantaneous linear elastic stiffness estimate in this article is

three times that estimated by assuming a 2D uniform cell

distribution; the long-term modulus is 10% higher.

Studies by Wagenseil et al. (2003) of tissue constructs

similar to those considered by Zahalak et al. (2000) indicate

that these constructs are best modeled as having cell

orientation distributions like those in thin membranes near

their outer surfaces, and as having more isotropic distribu-

tions nearer their centers. In light of this, the actual cell

properties are most likely bounded by the current estimates

of cell properties and those of Marquez et al. (2005).

That the cell stiffnesses estimated within a tissue construct

are significantly higher than those estimated by techniques

such as cell poking and micropipette aspiration that rely on

localized stretching of the membrane is not surprising. The

results of Guilak et al. (2002) indicate that cell membranes

must stretch significantly before resisting stretch apprecia-

bly. The application of a uniform strain to a cell through its

connections to the collagen matrix could certainly be

expected to engage more of a cell’s structural elements.

The contribution of activated cells to the continuum stiffness

of a bio-artificial tissue construct appears to be far greater

than experiments on isolated cells suggest, since the stiffness

of a cell in response to a localized probing of its membrane

differs from the stiffness of a cell strained uniformly in a

collagen matrix.

CONCLUSION

The Zahalak constitutive model for bio-artificial tissues was

adapted to model the short- and long-term response of tissue

constructs with 3D isotropic and 3D planar isotropic cellular

architectures. This was achieved using the strain factor

approach introduced by Marquez et al. (2005). This work

modeled 3D strain factors, and established how strain factors

depend upon the 3D architecture of an idealized tissue. For

the experimental data that was reevaluated in this article, the

updated model allows for an upper bound on linear elastic

cell stiffness to be established.

As with our earlier work, the approach presented in this

article has some limitations that need to be addressed. The

strain factor was calibrated in this article for 3D distributions

of linear elastic cells embedded in a linear elastic matrix.

However, the actual response of most living cells is

viscoelastic and nonlinear. The consequence of this is that

the model in this article is applicable only to short-term and

long-term tissue response; the time variation of strain factor

over the time scales associated with tissue relaxation (e.g.,

Zahalak et al., 2000) requires further investigation. Cell-cell

interactions that occur when neighboring cells are near one

another may affect strain factors in a way that is not

represented by our formulation. Local variations in matrix

properties may also influence strain factors. This must be

considered in future work.

APPENDIX A: EXPRESSIONS FOR THE STRAIN
FACTOR USING ESHELBY’S SOLUTION

Eshelby’s solution (Eshelby, 1957, 1959) can provide an analytical estimate

of the strain factor in idealized tissues with sparse cell populations. We

model the cells as ellipsoidal inclusions, with the dimensions of the major

axes matching those of the cells. The key ingredient is Eshelby’s strain

concentration tensor, AEsh ¼ [I 1 E(C(m))�1(C(c) � C(m))]�1, where C(c)

and C(m) are the fourth-rank cell and matrix stiffness tensors, I is the fourth-
rank unit tensor, and E is called the ‘‘Eshelby tensor’’, which describes the

geometry of the cells. For isotropic materials, C(c) and C(m) can be found in

many sources in terms of the elastic modulus and Poisson’s ratio Ec and n for

the cells, and Em and m for the matrix (e.g., Jones, 1998). Expressions for

Eshelby’s tensor, E, in terms of m and the cell dimensions d and l may be

found in Mura (1982).

The strain tensor eðcÞij within the cells is related to the remote strain

tensor eðNÞ
ij by eðcÞij ¼ Aijkle

ðNÞ
kl : Then, for the case of a unidirectional stretch

(eðNÞ
11 ¼ e�; with all other components of the strain tensor zero), the strain

factor in a cell point in the direction of n is

S ¼ neðcÞn

neðNÞn
¼ nAEsh

e
ðNÞn

neðNÞn
: (A1)

Solving, the general expression for the strain factor S in an idealized

tissue can be written

S ¼ �ððm� 1Þð2ð2n2
1 n � 1Þðm� 1Þ � ð2n � 1Þð�1� m� n1 2m� mm1 2nmÞr2 1 Ipð3ð11 nÞð2n � 1Þ

1mð11mÞð3� 2n � 4m1 4ðm� nÞr2ÞÞÞÞ=ðð2m� 1Þð�2mðn � 1Þðm2 � 1Þ1 ð2ð11 nÞð2n � 1Þ1m
2ð11mÞ2

1mð11mÞð3� 7n1 2ðn � 1ÞmÞÞr2 1 4I
2

pð11mÞðm� n1mm� 1Þð1� 2n1mð2m� 1ÞÞðr2 � 1Þ
� Ipðm� n1mm� 1Þð4n � 21 8r

2 � 16nr
2
1mð11mÞð31 4mðr2 � 1ÞÞÞÞÞ; (A2)
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where r is the aspect ratio of the cells (long axis/short axis), and Ip is given in

Eq. 9, and m ¼ Ec/Em. For n ¼ m, the expression becomes

When n ¼ 0, strain factor may be written

S¼ ð213Ipðm�1Þ� ð11mÞr2Þ=ð2m�ðmð31mÞ�2Þr2

14I2pðm�1Þ2ðr2�1Þ1 Ipðm�1Þð3m18r2�2ÞÞ; (A4)

and, when n ¼ 0.5, the strain factor simplifies to

S¼ 113Ipð11mÞ�mr
2

mð11ð2�3mÞr213Ipð11mÞð112r
2ÞÞ

: (A5)

APPENDIX B: RELATION BETWEEN THE STRAIN
FACTOR AND EFFECTIVE YOUNG’S MODULUS

The Zahalak model is based on a polymer rheology result (Bird et al., 1987),

which establishes the contribution to the continuum stress of a distribution of

contractile rods. The cells are superimposed upon a uniform matrix by

adding a term s
ðcÞ
ij that accounts for the perturbation to the stress field:

s
ðcÞ
ij ¼NlÆFninjæ[Nl

Z
V

ninjFðnÞpðnÞdVðnÞ: (B1)

The probability density function p for a uniform orientation distribution is

p ¼ 1/4p, the cell orientation vector in the 1-direction is n1 ¼ cosu, and

the differential of area of the unit sphere is dV ¼ sinu du df. Noting that

the additional force due to the cells is related to the cell strain SeðNÞ
ij and the

additional stiffness due to the cell is (Ec � Em), the average force along the

cell can be expressed as

FðnÞ ¼ SeðNÞ
11 ðEc�EmÞAc cos

2
u; (B2)

where Ac is the cross-sectional area of a cell. Then, the 11-stress is given by

s
ðcÞ
11 ¼Nl

Z p

0

Z 2p

0

SeðNÞ
11 ðEc�EmÞAc cos

4
usinu

1

4p
dudf

¼ 1

5
NlSeðNÞ

11 ðEc�EmÞAc: (B3)

Therefore, the contribution of the cells to the Young’s modulus of the

tissue can be written

EðcÞ ¼ s
ðcÞ
11

eðNÞ
11

¼ 1

5
NlSðEc�EmÞAc ¼

1

5

C

l
2SðEc�EmÞAc: (B4)

The contribution of the cells to the Young’s modulus of the tissue for

planar-isotropic and uniaxial distribution can be computed using the same

procedure. The effective moduli for the three different cell orientation dis-

tributions of interest can be written as follows.

For an isotropic distribution,

E11 ¼ Em1
1

5
NlSðEc�EmÞAc; (B5)

for a planar-isotropic distribution,

E11 ¼Em1
3

8
NlSðEc�EmÞAc; (B6)

and, for a uniaxial distribution,

E11 ¼Em1NlSðEc�EmÞAc: (B7)
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