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ABSTRACT Given the three-dimensional structure of a protein, its thermodynamic properties are calculated using a recently
introduced distance constraint model (DCM) within a mean-field treatment. The DCM is constructed from a free energy
decomposition that partitions microscopic interactions into a variety of constraint types, i.e., covalent bonds, salt-bridges,
hydrogen-bonds, and torsional-forces, each associated with an enthalpy and entropy contribution. A Gibbs ensemble of
accessible microstates is defined by a set of topologically distinct mechanical frameworks generated by perturbing away from
the native constraint topology. The total enthalpy of a given framework is calculated as a linear sum of enthalpy components
over all constraints present. Total entropy is generally a nonadditive property of free energy decompositions. Here, we calculate
total entropy as a linear sum of entropy components over a set of independent constraints determined by a graph algorithm that
builds up a mechanical framework one constraint at a time, placing constraints with lower entropy before those with greater
entropy. This procedure provides a natural mechanism for enthalpy-entropy compensation. A minimal DCM with five
phenomenological parameters is found to capture the essential physics relating thermodynamic response to network rigidity.
Moreover, two parameters are fixed by simultaneously fitting to heat capacity curves for histidine binding protein and ubiquitin at
five different pH conditions. The three free parameter DCM provides a quantitative characterization of conformational flexibility
consistent with thermodynamic stability. It is found that native hydrogen bond topology provides a key signature in governing
molecular cooperativity and the folding-unfolding transition.

INTRODUCTION

The stability of a folded protein, its degree of conformational

flexibility, and its functional efficiency strongly depend upon

thermodynamic environment. The difference in Gibbs free

energy between folded and unfolded conformations, DG [

GF � GU, dictates whether the native fold will be stable. In

a two-state model of protein folding, only folded and un-

folded states contribute to protein thermodynamics, where

DG is commonly characterized using three parameters

(Kumar and Nussinov, 2001) consisting of the folding-

unfolding transition temperature (i.e., melting temperature,

Tm), the enthalpy of unfolding, DH, and the change in heat

capacity upon unfolding, DCp. These thermodynamic pa-

rameters are obtained by fitting to experimental measure-

ments using differential scanning calorimetry (DSC). The

two-state thermodynamic model has the drawback that after

parameters are obtained from experiment, prediction of other

associated quantities is limited.

Predicting protein thermodynamics is a difficult problem.

Multicanonical Monte Carlo (MC) simulations (Okamoto,

1998) and molecular dynamics (MD) simulations in con-

junction with replica-exchange sampling (Pitera and Swope,

2003) are among promising all-atom methods. Go-like

models can simulate larger proteins (Leonhard et al., 2003)

by using phenomenological parameters, but calculations

involving 60 residues still require months of massively

parallel supercomputing. Ising-like coarse grain statistical

mechanical models that account for partial unfolding of the

native structure (Hilser and Freire, 1996; Hilser et al., 1998)

compromise between computational efficiency and pre-

dictive power. These model schemes generate ensembles

by perturbing away from the native state topology. Even

simpler, are free energy decomposition approaches

(Makhatadze and Privalov, 1993) that predict DG, DH, and
DS by assuming thermodynamic quantities are additive over

component parts, where each part is associated with

thermodynamic properties tabulated from model compound

transfer measurements (Makhatadze and Privalov, 1993;

Hedwig and Hinz, 2003). Although offering virtually

instantaneous calculation times, there is a fundamental

problem with free energy decompositions. Unlike enthalpies

(or energies), component entropies are nonadditive (Mark

and van Gunsteren, 1994; Brady and Sharp, 1995; Dill,

1997). Nevertheless, DH correlates well with the number of

residues and total accessible surface area of the native fold

(Robertson and Murphy, 1997).

In this article, protein thermodynamics will be calculated

using a distance constraint model (DCM) (Jacobs et al.,

2003). The DCM restores the utility of a free energy

decomposition by regarding network rigidity as an un-

derlying mechanical interaction. The DCM offers a practical

approximation scheme to account for the nonadditivity of

component entropies resulting from mechanical correlations

between component parts of the decomposition. That is, the

forming and breaking of rigid substructures provide an

enthalpy-entropy compensation mechanism that governs
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molecular cooperativity, and gives rise to nucleation effects.

These nucleation effects strongly depend on the cross-

linking properties of the constraint topology. Exact calcu-

lations for the DCM have been successful in predicting

thermodynamic properties in polypeptides that exhibit both

normal and inverted helix-coil transitions (Jacobs et al.,

2003; Jacobs and Wood, 2004). Proteins have rich cross-

linking constraint topologies that make exact calculations

intractable. Therefore, the DCM is solved here within a

mean-field treatment. Heat capacity, stability curves, and a

variety of order parameters are calculated. Of particular im-

portance is the global flexibility order parameter, defined as

the average number of independent degrees of freedom per

residue. Landau free energy functions with respect to the

global flexibility order parameter provides a direct means of

correlating protein stability to conformational flexibility.

The calculations performed here rely on FIRST (Jacobs

et al., 2001) to determine mechanical properties of a given

framework. FIRST is an acronym for Floppy Inclusion and

Rigid Substructure Topography, which is based on a fast

graph algorithm that identifies all rigid clusters, over-

constrained regions, flexible regions having correlated

motions, and independent constraints. A number of previous

reports have used FIRST to understand mechanical stability

of protein structure (Jacobs et al., 2001; Hespenheide et al.,

2002; Rader et al., 2002; Rader and Bahar, 2004) The

main focus of this article is to show how protein stability-

flexibility relationships can be quantified by combining free

energy decomposition and network rigidity calculationswith-

in an ensemble-based approach.

METHODS

Distance constraint model

The DCM is based on two key ingredients. The first is a free energy

decomposition where microscopic interactions are partitioned into distinct

types. The second, guided by previous work with FIRST (Jacobs et al.,

2001), is to represent a variety of short-ranged interaction types as

mechanical constraints. The mechanical representation of free energy

components is a critical feature in the DCM to overcome the problem of

nonadditivity in component entropies. Taken together, a constraint of

type t is associated with a partial configuration integral, Qt. When there is

no coupling between constraints, the partition function is given by

Qsys ¼
Q

t Q
Nt
t ; where Nt is the number of constraints of type t present in

the system. From the relationship, Qt ¼ e�DGt=RT; where R is the ideal gas

constant and T is absolute temperature, the total free energy with respect to

a reference state, is a linear sum given as DGsys ¼ +
t
DGtNt: In general, DGt

will depend on the environment of the constraint, which includes the local

conformational state of the protein. In one extreme limit, constraints of the

same type are independent of their local surroundings. In the other extreme,

variation in local environment breaks all degeneracies, such that each

constraint effectively defines a unique type. The labeling of constraint types,

with index t, is convenient because it handles all possible model details

ranging between these extremes.

Constraints of type t are assigned enthalpy and entropy contributions by

Gibbs free energy relation DGt ¼ DHt � TDSt. Constraints with (large,

small) values of DSt are said to be (weak, strong) because larger DSt implies

more phase space is associated withQt, which is defined through a presumed

coarse graining procedure. The DCM accounts for coupling between

subsystems (constraints) in terms of generic mechanical properties of a bar-

joint framework (constraint topology). The term generic (Jacobs and Thorpe,

1995) implies that all frameworks with the same topological distribution of

constraints have the same rigidity properties independent of specific atomic

coordinates. Consequently, the DCM is tractable because the rigidity

calculations are done using a fast graph algorithm (Jacobs et al., 2001) that

scales near linearly with number of atoms. Viewing network rigidity as an

underlying mechanical interaction between constraints, total enthalpy and

entropy for framework F ; are given by:

DHðFÞ ¼ +
t

DHtNtðFÞ; (1)

DSðFÞ ¼ +
t

DStI
ðpÞ
t ðFÞ; (2)

where NtðFÞ is the number of constraints of type t present in mechanical

framework F ; and I
ðpÞ
t ðFÞ is the corresponding number of independent

constraints preferentially determined.

The preferential set of independent constraints is determined by a

mathematically well-defined procedure, given by:

1. Sort all constraints based on entropy assignments in increasing order,

thereby ranking them from strongest to weakest.

2. Add constraints recursively one at a time according to the rank ordering

from strongest to weakest, identifying the independent constraints until

the entire framework is completely rigid.

Equation 2 gives strong constraints precedence in defining rigid sub-

structures, while regarding weaker constraints within these rigid substruc-

tures as fully accommodating. Redundant constraints do not lower

conformational entropy. This procedure provides a lowest upper bound

estimate for conformational entropy. Taken together, Eqs. 1 and 2 are at the

heart of providing an enthalpy-entropy compensation mechanism. Many

favorable constraints will lower energy, but their distribution in the network

is critical. When many constraints are placed in a local region, then that

region becomes overconstrained with redundant constraints. The higher

density of favorable constraints lowers energy, but the accompanying

decrease in entropy is limited by the loss of conformational freedom

associated with the formation of a rigid substructure. Thus, dense pockets of

favorable constraints are resistant to thermal fluctuations at low temper-

atures, but as temperature increases, the entropic penalty drives rigid

substructures to spontaneously break apart! Mechanical correlations

between constraints give rise to molecular cooperativity, where allostery is

associated with the long-range nature of network rigidity (Jacobs and

Thorpe, 1995).

The constraint types considered in this work, and their parameterizations

are listed in Table 1. The central force and bond-bending forces associated

with covalent bonds define the strongest set of distance constraints, and these

are considered quenched. Consequently, covalent bond constraints are not

explicitly parameterized, because they simply shift the reference free energy

TABLE 1 Free energy decomposition scheme

Type of interaction DH DS

Covalent bonds — —

Native torsion v Rdnat
Disordered torsion 0 Rddis
Intramolecular H-bonds Eenv 3Rgenv
Solvent H-bonds u —

As discussed in the text, covalent bond constraints are not explicitly

parameterized, nor is the entropy for the H-bonds between protein and

solvent. Parameterization for the intramolecular H-bonds accounts for local

environment. All other parameters are assumed independent of local

environment.
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while defining a flexible template framework on to which additional weaker

constraints are placed. Covalent bonds that remain free to rotate within the

template framework are partitioned into nativelike or disordered conforma-

tional states. This coarse grain description is analogous to the Lifson-Roig

model (Lifson and Roig, 1961) that partitions backbone conformations into

helical or coil states. An (energy, entropy) of (v, Rdnat) is assigned when the

local conformation is nativelike, otherwise (0, Rddis). The zero energy is

selected for the disordered state without loss of generality.

After prior work (Jacobs et al., 2001), an H-bond is mechanically

represented by three distance constraints, while its local environment is

taken into account using an empirical energy function (Dahiyat et al., 1997)

that gives Eenv depending on atomic geometry of the native three-

dimensional structure. Salt bridges are considered special types of H-bonds,

where only the radial part of the energy function is used. The maximal

entropy of 3Rgenv is assigned to an H-bond when its three distance con-

straints are independent, each yielding a contribution of Rgenv. Depending

on network rigidity, an H-bond can contribute 0, 1, 2, 3 amounts of Rgenv.

The entropy parameter, genv, is specified by assuming genv is a linear function

of Eenv. Over the range between�8 Kcal/mol to 0, the linear relation yields;

genv ¼ gmin 1 ð11Eenv=8Þðgmax � gminÞ; (3)

where gmin and gmax serve as free parameters. Because one entropy

parameter can be set arbitrarily, Eq. 3 is simplified by fixing gmin [ 0.

The justification for Eq. 3 is twofold: i), As energy well depth of an

H-bond decreases its curvature is expected to decrease—corresponding to

a constraint with greater entropy contribution; and ii), FIRST success-

fully characterizes H-bond strength in terms of energy; therefore, Eq. 3 is

used to preserve relative differences in H-bond strength previously found

successful.

The intramolecular hydrogen bond network (HBN) is not static, but

consists of many fluctuating cross links within the template framework. In

exchange for breaking intramolecular H-bonds, the DCM allows for protein-

solvent H-bonding. Protein-solvent H-bonds are parameterized only by

energy, u, after prior work on polypeptides (Jacobs et al., 2003; Jacobs and

Wood, 2004). The entropy parameter is unspecified because solvent is

assumed too mobile to limit conformational flexibility. The minimal DCM

has five free-parameters, consisting of two energy parameters {v, u} and

three pure entropy parameters fdnat, ddis, gmaxg.

Mean-field theory

An ensemble based approach similar to that used in COREX (Hilser and

Freire, 1996) is employed involving a restricted sample of frameworks that

are perturbed away from the known native constraint topology. In COREX

the ensemble is generated by partitioning the protein at the residue level into

blocks along the sequence where the blocks can be nativelike or unfolded

(disordered). Alternate partitions are considered by shifting blocks with an

exhaustive enumeration of partially unfolded states. In contrast, the method

used here is a hybrid between mean-field Landau theory and MC sampling,

which allows free energy landscapes and thermodynamic response functions

to be calculated. As shown in Fig. 1, a two-dimensional grid is defined where

each node represents a subensemble of frameworks. Each node on the grid

specifies an average number of native-torsion constraints and average

number of H-bond constraints present. The subensemble of frameworks

within a node is characterized by Lagrange multipliers, essentially being

chemical potentials that are introduced to control the average number of

constraints.

The statistical properties of a subensemble of frameworks within a given

node is quantified as a product function of independently distributed

probabilities. The mean-field approximation appears through the assumption

that the probability for constraint t to be present, given by pt, is independent

of all other constraint probabilities. Then the probability for the occurrence

of framework, F ; is given by:

PðFÞ ¼
Y
t

p
nt
t ð1� ptÞð1�ntÞ; (4)

where nt ¼ (1, 0) when constraint t (is, is not) present, and pt must be

determined. The variational function, pt, is selected to model a two-level

system defining the situation that the constraint is either present with energy

Et, or not present with energy Et#. This is mathematically equivalent to

a Fermi-Dirac probability distribution given by:

ptðEt;Et#;m; TÞ ¼
e
�bðEt�mÞ

e�bEt# 1 e�bðEt�mÞ; (5)

where chemical potential m represents either mnt or mhb for native-torsion

or H-bond constraints, respectively. The chemical potentials are adjusted

to yield average numbers of native-torsion constraints, Nnt, or H-bonds

present,Nhb. A node specified by (Nnt,Nhb) defines a macrostate that emerges

from a subensemble of frameworks characterized by Eqs. 4 and 5. From

Table1, Et# is equal to (0, u) for a (torsion, H-bond) constraint.

The next part in carrying out the mean-field approximation involves

defining a Landau free energy function for each node, given by:

GðNnt;NhbÞ ¼ Uhb � uNhb 1 vNnt � T½ScðNnt;NhbÞ
1 SmðNnt;NhbÞ�; (6)

where Uhb is the average intramolecular H-bond energy, Sc(Nnt, Nhb) is the

conformational entropy, and Sm(Nnt, Nhb) is the mixing entropy associated

with the number of frameworks in the subensemble consistent with the

specified macrostate (Nnt, Nhb). The �uNhb term energetically favors the

breaking of intramolecular H-bonds, where u is expected to be a negative

energy for protein-solvent interactions. The vNnt term energetically favors

the formation of nativelike conformations, as v is expected to be negative. In

the extreme case of no native-torsions and no intramolecular H-bonds, the

completely disordered template framework defines the zero reference

energy. Operationally, Eq. 6 is solved by determining {pt} for specified

(Nnt, Nhb) using iterative-numerical methods to find mhb that satisfies

Nhb ¼ +
t2hbpt; and the probability for a nativelike torsion is simply given as

ðNntÞ=Nnt;maxÞ: The average intramolecular H-bond energy is calculated as

Uhb ¼ +
t2hbEtpt; whereas mixing entropy is given by Sm ¼ �R+

t
ðptlnpt1

qtlnqtÞ; with qt ¼ 1 � pt.

FIGURE 1 Schematic representation of the free energy landscape in

constraint space. Labels (F, U) are for the folded and unfolded free energy

basins.
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For each framework sampled, the preferential independent constraints are

determined via network rigidity calculations as described above. Then at

each node

Sc ¼ R +
t2hb

gtÆI
ðpÞ
t æ1 dnatÆIðpÞnat æ1 ddisÆIðpÞdis æ

� �
; (7)

where ÆIðpÞt æ is the average number of independent constraints associated

with constraint t. Because of the massive degeneracy in torsion constraint

states, they are explicitly labeled as ÆIðpÞnat æ and ÆIðpÞdis æ: The number of

independent constraints self average, requiring as little as 200 realizations

(per node) to obtain good estimates. For the entire free energy landscape,

a million frameworks are typically sampled per thermodynamic condition

to obtain average mechanical properties. For each node the extensive

quantity ÆIðpÞdis ðNnt;NhbÞæ characterizes the global degree of flexibility. To

better facilitate comparisons between proteins of different sizes, an in-

tensive measure for the global flexibility of a protein with n residues is

defined as

uðNnt;NhbÞ[
ÆIðpÞdis ðNnt;NhbÞæ

n
: (8)

Many different nodes may have similar degree of flexibility due to trade off

between constraint types and their locations. A Landau free energy function

is defined as G(u) ¼ � RT ln Z(u), where

ZðuÞ ¼ +
Nnt

+
Nnb

Bðu;Nnt;NhbÞe�bGðNnt ;NhbÞ: (9)

The binning function B(u, Nnt, Nhb) is (0,1) if node (Nnt,Nhb) has a degree of

flexibility sufficiently close to the specified value u, where we use 0.01 as a

bin size.

Structure preparation and
parameter optimization

Ubiquitin (UBQ) (Protein Data Bank (PDB) ID: 1ubq), a common protein

that functions as a tag for protein degradation by proteasomes, was selected

from the ProTherm Database (Gromiha et al., 1999) because it is small (76

residues), has known x-ray crystal structure (Vijay-Kumar et al., 1987), and

DSC measurements (Wintrode et al., 1994) at five different pH conditions

ranging between 2 to 4 are available. The histidine binding protein (PDB ID:

1hsl), aiding in periplasmic transport, was selected due to prior experience

with it (Huynh, 2002). The histidine binding protein (HBP) is much larger

with 238 residues. The x-ray crystal structure for HBP is known (Yao et al.,

1994) and DSC measurements give heat capacity curves at pH 8.3 in the apo

and bound form (Kreimer et al., 2000). Missing hydrogen atoms within the

PDB files are added because the H-bond energy function (Dahiyat et al.,

1997) depends on hydrogen atom location. Therefore, single-site titration

theory as implemented in UHBD (Madura et al., 1991) is used to calculate

the probability for a hydrogen atom to be protonated for specified pH.

Hydrogen atoms are (kept, removed) if their probability for protonation is

(greater, less) than 50 percent (for technical details, see Livesay et al., 2003;

Torrez et al., 2003).

Model parameters are determined by fitting to heat capacity. A baseline is

added to account for background contributions and because DSC gives

excess heat capacity, making absolute values difficult to ascertain. A com-

mon functional form is employed, given by:

C
ðblÞ
p ðTÞ ¼ a1

b

2
ð11 tanhðcðT � TmÞÞÞ; (10)

where Tm is the temperature of maximum heat capacity, and a, b, and c are

conditionally optimized. Simulated annealing is used for derivative-free

optimization. Generally, when few parameters are used to account for

different kinds of interactions (effects), they become nontransferable by

compensating each other—leading to multiple good fits. This problem was

alleviated by requiring gmax and ddis to be transferable. Six heat capacity

curves were fitted to simultaneously (five for UBQ and one for HBP) using

ten parameters. Four consisting of {gmax, ddis dnat, v} that were forced to be

the same across the dataset, and u was allowed to differ between the six

cases. This resulted in gmax ¼ 1.986 and ddis ¼ 2.560 to be determined and

fixed. Subsequently {dnat, u, v} are used as free parameters to fit to the heat

capacity data of UBQ and HBP. DCM calculations are separately made at

different temperatures (with same parameters). Optimization was imple-

mented using LAM-MPI (http://www.lam-mpi.org) on a Beowulf cluster

with each CPU running a different temperature.

RESULTS

Heat capacity predictions

Experimental heat capacity curves with corresponding best

fits for UBQ and HBP are shown in Fig. 2. Including

FIGURE 2 Heat capacity as a function of temperature for (a) UBQ and (b)
HBP; solid line, calculated; symbols, measured.
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baselines the DCM reproduces essential features of heat

capacity markedly well. To our knowledge, no other all-atom

models, or free energy decomposition schemes have repro-

duced heat capacity curves to such a degree. It is worth

emphasizing that in the minimal DCM, only the HBN

provides cross-linking topology that leads to the non-

additivity of entropy during the nucleation of rigid substruc-

tures. These results support the suggestion by Cooper (2000)

that a major contribution to protein heat capacity appears

through an order-disorder phase transition within the HBN.

Differences in the transition temperatures defined by the

peak in heat capacity are accounted for by the phenomeno-

logical DCM parameters that implicitly take into account

solvent effects, such as pH conditions. Best fit and cor-

responding baseline parameters are listed in Table 2 for five

different pH values for UBQ, and for four different cases for

HBP.

The crystal structure for HBP (Yao et al., 1994) resolved

the protein histidine complex as an asymmetric dimer

defined by chains A and B. Assuming the biological func-

tioning unit is monomeric (see for example, http://www.

rcsb.org/pdb/biounit_tutorial.html) the two chains were

processed individually using their respective 3D structures

as a native template framework. Although the backbone of

each subunit is nearly the same, there are notable differences

in the HBN. Chain A has an average H-bond energy of

�2.48 Kcal/mol with a total of 342 H-bonds, whereas chain

B has an average H-bond energy of �2.27 Kcal/mol with

a total of 360 H-bonds. There are 243 H-bonds common to

both chains, whereas (99, 117) H-bonds are unique to chain

(A, B). Although similar, there are enough differences in the

HBN to test the sensitivity of the DCM on input structure.

Four cases result by considering each chain in the ligated and

apo (achieved by computationally plucking out the histidine)

forms. Different dnat values are required to fit to the ligand-

bound (holo) and apo forms, and different u, v parameters are

required for each case. Except for chain B in apo form

(B-apo), fitting was done using the three parameter DCM.

Best fits to heat capacity for all 4 HBP-cases are in

acceptable agreement with measurements despite the afore-

mentioned structural variance (see Fig. S1 in supplementary

materials). The variance among the four cases of HBP

highlights the importance of working with well optimized

structures. On the other hand, these results show that the

minimal three parameter DCM provides a practical way to

directly connect thermodynamic response to structure with-

out being overly dependent on resolution. Notice dnat goes

from 1.42 (apo) to 1.24 (ligand-bound) upon the binding of

histidine. The smaller dnat indicates a more dramatic nu-

cleation process is taking place, which is consistent with

HBP becoming rigidified upon histidine binding. Compar-

ison of measured and predicted heat capacity for HBP in apo

and holo forms is shown in Fig. 3, where best-fit parameters

for apo-form are used to predict Cp upon substrate binding.

The qualitative agreement found with experiment is encour-

aging, albeit model oversimplifications do reflect in the

quantitative results.

Landau free energy and protein stability

Through the Landau free energy, protein stability and

flexibility are directly linked. From the best-fit parameters

given in Table 2 the Landau free energy as a function of

flexibility order parameter is plotted in Fig. 4 for UBQ and

HBP, respectively. The calculated Landau free energies are

smoothed with respect to the flexibility order parameter to

eliminate extraneous noise appearing from MC sampling.

Example of an unsmoothed calculation and its smoothed

counterpart is shown in supplemental materials, Fig. S2. The

order parameter characterizes global flexibility as the aver-

age number of accessible biologically relevant independent

degrees of freedom per residue. The shape of the Landau free

energy curves is found to be globally stable with two local

minimum near the transition temperature. The local min-

imum of free energy at (low, high) flexibility corresponds to

a (native, unfolded) structure. The existence of a double

minimum at the transition temperature implies a first order

transition (two-state) takes place.

Each minimum in the free energy landscape is a stable (or

metastable) phase of constraint topologies that interchange

through a structural transition. The free energy basins that

encompass the two minimums are labeled as uNS and uUS for

TABLE 2 Parameters obtained from best-fitting to heat capacity, where Tm locates the peak

Heat capacity fit Tm dnat u y a b c

pH 2.0 UBQ 330.6 1.60 �1.78 �0.45 1.5 3.3 0.01

pH 2.5 UBQ 335.5 1.60 �1.78 �0.48 1.6 3.4 0.01

pH 3.0 UBQ 348.2 1.60 �1.80 �0.57 1.6 3.4 0.01

pH 3.5 UBQ 359.4 1.60 �1.80 �0.63 1.9 3.0 0.01

pH 4.0 UBQ 363.0 1.60 �2.02 �0.83 1.5 3.9 0.01

apo chain A HBP 330.4 1.42 �2.42 �0.91 0.9 �1.0 0.19

apo chain B HBP 330.4 1.42 �1.91 �0.64 1.0 �1.0 0.20

HIS bound chain A HBP 340.3 1.24 �2.49 �0.94 1.0 0.0 0.0

HIS bound chain B HBP 340.3 1.24 �2.23 �0.86 1.0 0.0 0.0

The two transferable parameters are: gmax ¼ 1.986 and ddis ¼ 2.560 obtained by simultaneous fitting of five UBQ and chain B-apo form HBP data sets. No

interpolating function of pH was found for UBQ.
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the native and unfolded states respectively. Global stability

implies protein structure is thermodynamically unstable

whenever it becomes extremely rigid or extremely flexible.

Thus, the native fold will be intrinsically flexible, whereas

the unfolded protein retains some mechanical rigidity. The

latter observation implies the unfolded structure is not simply

a random coil (i.e., Gaussian chain). Rather, there is less

entropic rigidity in exchange for mechanical rigidity asso-

ciated with a more compact structure. The difference in

global flexibility between unfolded and native states at the

transition temperature is given by Du [ uUS � uNS. The

flexibility difference was found to be � 3=4 for UBQ

implying a release of three degrees of freedom for every four

residues upon unfolding. A flexibility difference of � 0.9 for

HBP was found. In both proteins these results suggest the

unfolded ensemble of conformations retain a substantial

number of rigid substructures. Although the ensemble of

frameworks is generated by perturbing away from the

native state, it is capable of describing the random coil

limit. Therefore, it is reasonable to conclude that there are

nativelike contacts present in the unfolded ensemble.

Furthermore, depending on mechanical stability character-

ized by the rigidity transition (see below), nativelike sub-

structures may or may not fluctuate via forming and breaking

apart.

Small differences of only a few Kcal/mol in free energy

are captured on a scale that is typically 8–13 Kcal/(mol

residue), as exemplified in the inset of Fig. S2 in sup-

plemental materials. The enthalpy-entropy compensation

mechanism provided by network rigidity applies throughout

the process of redistributing constraints as conformation

changes while maintaining quasistatic thermodynamic equi-

librium. The global flexibility order parameter, therefore,

characterizes the continuous kinetic path associated with the

forming and breaking of constraints. It is natural to assume

the free energy barrier reflects folding and unfolding

kinetics, where uTS is used to label its location. The barrier

height at the transition temperature is found to be sensitive to

the parameters. For the best-fit parameters listed in Table 2

the barrier heights for UBQ from pH 2 to pH 4 are re-

spectively calculated to be {0.82, 0.85, 1.07, 1.42, 0.94}

Kcal/mol and for HBP chain A the apo and holo forms are

found to be 1.64 and 5.87 Kcal/mol. Results for chain B in

(apo, holo) form are (4.04, 9.01) Kcal/mol. Furthermore,

calculating a flexibility reaction coordinate based on con-

straint topologies perturbed from the native fold, is

consistent with two recent findings: i), Native-state topology

FIGURE 3 Heat capacity for HBP as a function of temperature; circle

symbols, measured in apo form; square symbols, measured in holo form; and

solid lines, calculated using chain B and best-fit parameters for apo form.

Without parameter reoptimization, correct trends are predicted.

FIGURE 4 Landau free energy versus flexibility order parameter. (a)

UBQ at pH 3.0 for temperatures (339 K, 350 K, 369 K), respectively less

than, equal to, and greater than the melting temperature. Near Tm, two

minima exist separated by a barrier. At low T, the native state (more rigid) is

favored, whereas at high T the flexible disordered state is favored. (b)

Landau free energy for HBP versus flexibility order parameter for

temperatures (318 K, 330 K, 341 K), respectively less than, equal to, and

greater than Tm. Parameters are for chain B apo-form.
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is a major determinant for two-state folding rates (Baker,

2000; Gromiha, 2003); and ii), folding pathways have

successfully been identified with FIRST by modeling the

kinetic process through H-bond dilution starting from the

native fold-constraint topology (Hespenheide et al., 2002;

Rader et al., 2002). The calculated barrier heights for

UBQ (at different pHs) are typically considerably lower

than those for HBP, and the barrier for HBP holo form is

higher than apo form—all in qualitative agreement with

expectations.

Gibbs free energies and corresponding enthalpies for the

folded and unfolded protein are shown in Fig. 5 and Fig. 6

for UBQ (pH 3.0) and HBP, respectively. A dramatic

enthalpy-entropy compensation occurs across the transition.

Moreover, there is an implication of hysteresis, being a con-

sequence of a first order phase transition. The curves for the

folded and unfolded states end at the termination point of

coexistence, beyond which it is not possible to be (folded

above, unfolded below) the critical end-point temperature.

Stability curves are plotted in Fig. 7 showing the change

in free energy due to a transition from an unfolded to

folded protein. These curves are plotted over a temperature

range within the two-phase coexistence. Interestingly, the

metastable region for native structure in HBP extends to

higher temperatures in holo-form compared to apo-form,

whereas the metastable unfolded region is unaffected by the

ligand—presumably because the unfolded state does not

have the ligand bound.

Protein flexibility and network rigidity

For three distinct states defined by uNS, uTS, and uUS four

typical rigid cluster decompositions are shown in Fig. S3 in

FIGURE 5 DCM calculated thermodynamic properties for UBQ (pH 3.0).

(Top) The Gibbs’ free energy over the range of temperature within the

coexistence boundary. (Bottom) Enthalpy for the native (NS) and unfolded

(US) states. Solid lines are included to guide the eye.

FIGURE 6 DCM calculated free energies and enthalpies for HBP in apo

and holo forms. (Top) Gibbs’ free energy over a temperature range spanning

the coexistence boundary. For clarity, the free energy for the native and

unfolded states are shifted down by 100 Kcal/mol in the apo form. (Bottom)

Enthalpy as a function of temperature. Solid lines are included to guide the

eye.
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supplemental materials. These structures are typical realiza-

tions of the most probable constraint topologies. The most

probable realizations are divided between the native and

unfolded states (as shown in Fig. S4 in supplementary

materials). At fixed u, network rigidity properties (clusters of

atoms that are found to be mutually rigid or flexible) often

appear with regularity, with some variances. To capture char-

acteristic features, a continuous measure, called the flexibility

index, is used to quantify the balance and local distribution of

independent degrees of freedom and redundant constraints.

Theflexibility index is ameasure used byFIRST (Jacobs et al.,

2001) that assigns a weight to rotatable covalent bonds. A

density of independent degrees of freedom, rdof, is defined as

the number of independent dof within a flexible region,

divided by the number of covalent bonds that can rotatewithin

this region. When a region is overconstrained, a redundant

constraint density, rrdc, is defined as the number of redundant

constraints divided by the number of covalent bonds within

this region. The last possibility is an isostatic rigid region (rdof
¼ rrdc¼ 0) having theminimal number of constraints tomake

the region rigid. The flexibility index is the ensemble average

of (rdof � rrdc).

For UBQ, the conditional flexibility index for the

backbone at uNS, uTS, and uUS is shown in Fig. 8 at pH of

(2.0, 3.0, 4.0). Backbone flexibility is essentially indepen-

dent of pH at the respective conditional u-values, which

themselves depend on pH. However, based on G(u, Tm(pH))
UBQ becomes globally more rigid as pH increases from 2.0

to 4.0, where Tm also increases as pH increases. This result is

counter intuitive to the notion that a structure at higher

temperatures will be more flexible. However, this intuition

can be misleading when comparing two different pH en-

vironments. These results suggest side-chain flexibility in

UBQ increases as pH is lowered, and this is a plausible

explanation for the shifts in Tm as a function of pH.

Backbone flexibility reflecting thermodynamic equilib-

rium, calculated in terms of the flexibility index is shown in

Fig. 9 on a three-dimensional ribbon-rendering of UBQ for

nine distinct cases consisting of pH 2.0, 3.0, and 4.0 at their

respective melting temperatures. The coloring gives a qual-

itative view of the flexibility characteristics. At the respective

Tm for each pH, the overall flexibility profile is similar, also

observed in Fig. 8. In Fig. 9, the backbone flexibility for

HBP in apo and ligand-bound forms are compared. At the

same temperature, the apo-form is more flexible than the

bound-form. In addition, other flexibility measures can be

defined, such as the probability for a covalent bond to rotate

(i.e., in a disordered state), which is shown in supplementary

materials, Figs. S5 and S6.

At the transition state for UBQ, Fig. 8 shows the backbone

has both flexible and rigid parts. Some local regions fluctuate

considerably between flexible and rigid, but on average, the

protein is marginally rigid. The degree of rigid cluster size

fluctuation is quantified by cluster size statistics as a function

of global flexibility order parameter. In Fig. 10 a, the reduced
second moment for rigid cluster size is plotted against the

global flexibility order parameter. This quantity is referred to

as a cluster size susceptibility. The calculation proceeds as

a normal second moment over rigid cluster size, except the

maximum size is excluded (i.e., reduced). This quantified

measure is used in percolation theory to identify a percolation

threshold (Stauffer and Aharony, 1994) located at the peak.

At the rigidity percolation threshold, denoted as uRP, a system

has maximum fluctuation between being globally flexible

(with many small rigid clusters) or globally rigid (with some

flexible regions and dangling end rotamers). For u (less,

FIGURE 7 DCM calculated DG[ GF � GU per residue for HBP for apo

and HIS-bound forms and for UBQ at five different pH conditions. The

temperature range is limited to where both the native and unfolded states are

stable within the coexistence boundary.

FIGURE 8 A comparison of the conditional flexibility index along the

backbone for UBQ at pH 2.0, 3.0, and 4.0 calculated at Tm for {uNS, uTS,

uUS}. The corresponding u values at pH 2.0, 3.0, and 4.0 are respectively

given as {1.38, 1.66, 2.15}, {1.27, 1.57, 2.04}, and {1.02, 1.29, 1.81}.
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greater) than uRP, the protein is globally (rigid, flexible)

with much less fluctuation in rigid cluster size. Cluster size

susceptibility is found to be essentially independent of

temperature, implying the rigidity transition is driven by

constraint topology.

In the case of UBQ, Fig. 10 a shows that as pH increases

the rigidity percolation threshold shifts to lower u values. For

example, uRP ¼ 1.75, 1.67, and 1.43 for pH 2.0, 3.0, and 4.0,

respectively. The corresponding values for uNS are {1.38,

1.27, and 1.02}. Therefore, the native state is on the rigid

side of the rigidity transition. Recall that the global flexibility

order parameter characterizes the net number of independent

constraints within a protein, but it does not offer insight into

the distribution of rigid clusters. However, looking at the

reduced second moment of rigid cluster size helps interpret

statistical properties. For example, at u ¼ 1.67, UBQ (pH

3.0) is at the percolation threshold having greatest fluctuation

in cluster size. At pH 4.0 the structure is globally floppy

possessing more extended flexible regions that connect many

small rigid clusters. At pH 2.0, the opposite is true, where the

protein contains a large rigid region possessing only a few

small extended flexible regions. Thus, the nature of a rigid

cluster decomposition depends on the deviation away from

uRP, rather than the value of the global order parameter. As

another example, Fig. 10 b shows two rigid cluster sus-

ceptibility curves for HBP with a uRP of 1.14 and 1.27 in

apo- and bound-forms, respectively. For large u both curves

are nearly identical, presumably because the ligand does not

bind at high u-values. At low u-values, the bound-ligand

substantially reduces rigid cluster fluctuation, as reflected by

the lower peak height for the bound-form.

It is found that the rigidity percolation threshold and the

transition state are distinctly different. For example, at pH

3.0 for UBQ, uRP ¼ 1.67 whereas uTS ¼ 1.57, and for HBP

apo-form uRP ¼ 1.14 whereas uTS ¼ 1.31. It can be seen

from these numbers that it is possible to have uRP greater or

less than uTS. Presumably, the rigidity transition will have

direct affect on kinetics and folding pathways (Rader et al.,

2002) controlling the degree to which nativelike substruc-

tures fluctuate in the unfolded ensemble. The rigidity

transition is a mechanical, not thermodynamic, phenomenon.

Deviations between uTS and uRP are in part determined by

side-chain entropic effects that are not directly participating

in the nucleation of large rigid substructures. At first, we

were surprised by this result based on prior work using

FIRST by Thorpe and co-workers (Hespenheide et al., 2002;

Rader et al., 2002). Therefore, an attempt was made to align

the two transitions by augmenting a term in the error function

(i.e., (uRP � uTS)
2, which proved inadequate. Further

supporting evidence for this intrinsic deviation within the

minimal three-parameter DCM over a diverse protein dataset

was recently reported (Livesay et al., 2004). Although

intimately related, mechanical and thermodynamic stability

are different quantities. The improbable likelihood that any

single parameterization would result in uRP ¼ uTS for all

proteins and solvent conditions leads us to make a model

independent claim that the locations of the rigidity transition

and the transition state are distinctly different.

FIGURE 9 DCM predictions for backbone flexibility using the color code to the right for HBP in apo and holo forms, and for UBQ at different pH,

temperature conditions.
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DISCUSSION

Free energy decomposition schemes

Summation of a free energy decomposition generally fails to

accurately predict protein thermodynamic properties because

component entropies are nonadditive (Mark and van

Gunsteren, 1994; Dill, 1997) over coupled subsystems. The

problem appears in protein thermodynamics due to many

types of competing weak noncovalent interactions (Dill,

1990), which also include solvent effects. A common strat-

egy is to perform a free energy decomposition using a set of

coordinates that partitions a protein into uncoupled sub-

systems, such as a normal mode analysis. Unfortunately,

even restricted to the native state, normal mode analysis fails

because a proper description of protein thermodynamics must

account for the large ensemble of conformations that are par-

tially unfolded (Pan et al., 2000). One approach that has been

demonstrated to be very successful is to expand the free en-

ergy decomposition in terms of local geometrical properties

of protein structure using accessible solvent surface area

(Gómez et al., 1995). An efficient ensemble based approach

along these lines has been successfully employed in COREX

(Hilser and Freire, 1996; Hilser et al., 1998; Pan et al., 2000).

An alternative approach is to directly account for

correlations in entropic components (Brady and Sharp,

1995) that arise because subsystems are coupled. With this

perspective, the DCM overcomes the conundrum of non-

additivity of entropy by ascribing both thermodynamic and

mechanical properties to component parts of a protein. Cor-

relations are explicitly accounted for by network rigidity,

although nonadditivity of entropy is not necessarily an

outcome. For the unfolded state additivity in free energy

decomposition appears accurate enough to predict heat ca-

pacity from sequence (Gómez, et al., 1995; Hedwig and

Hinz, 2003). From the perspective of the DCM, these results

naturally follow because a low percentage of constraints are

found to be redundant in frameworks representing the un-

folded ensemble. Nonadditivity in entropy becomes a seri-

ous problem only when a substantial fraction of redundant

constraints appear. The distribution of where redundant con-

straints are placed within a given framework (Jacobs et al.,

2003) is directly tied to molecular cooperativity. Moreover,

an accurate description of protein stability and molecular

cooperativity requires an ensemble-based approach (Pan

et al., 2000).

In the minimal DCM, torsion constraints do not provide

direct cooperative effects because no local correlations

are enforced based on backbone Ramachandran plots

(Ramachandran et al., 1963) or side-chain rotamer statistics

(Koehl and Delarue, 1994). The torsion constraint parame-

terization also ignores local environment and residue type.

The key constraints that reflect local variation in structure is

the H-bonds (and salt bridges) because they form cross links

in the network and are attune to specificity. The HBN

provides an encoded mechanical signature that correlates

well with biological function (Jacobs et al., 2001) and

folding pathways (Hespenheide et al., 2002; Rader et al.,

2002). Hydrophobic interactions and other geometrically

nonspecific interactions are lumped together and modeled

using effective torsion, v, and H-bond to solvent, u, energy
terms.

Improvements on the free energy decomposition scheme

to explicitly account for hydrophobic interactions, hydration

effects, differences in residues and local environments

related to solvent exposed regions, etc., are currently being

incorporated. These improvements will affect the stability

curves shown in Fig. 7 as additional interactions (physical

mechanisms) are explicitly modeled. For example, in prior

FIGURE 10 Reduced second moment for rigid cluster size. (a) UBQ at

five different pH conditions at their respective Tm. The inset focuses on pH

3.0 for a variety of different temperatures, and the regions in the flexibility

order parameter labeled as NS, RP, and US correspond to the native,

transition, and unfolded states. (b) HBP in apo- and bound-forms using the

respective best-fit parameters.
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work (Jacobs and Wood, 2004; Lee et al., 2004) hydration

effects are modeled to describe polypeptides undergoing

a helix-coil transition in mixed solvent conditions that

exhibit both heat and cold denaturation. Although model

extensions are currently being developed for proteins, this

report firmly establishes the feasibility of simultaneously

calculating mechanical and thermodynamic stabilities. The

minimal DCM demonstrates a fundamental connection be-

tween structure, flexibility, and thermodynamic stability by

regarding network rigidity as an underlying interaction.

Mean-field predictions for protein stability
and flexibility

The DCM quantifies protein flexibility on long time scales

using the same rigidity calculation as FIRST (Jacobs et al.,

2001; Hespenheide et al., 2002; Rader et al., 2002; Rader

and Bahar, 2004), which is an athermal mechanical model.

FIRST is limited to describingmechanical stability of a native

fold, presumably valid under conditions where the protein

functions. Since constraints modeling noncovalent interac-

tions fluctuate through breaking and forming, it is imperative

to sample over different constraint topologies. At the coarse

grain level, the DCM resembles an Ising-like model with

long-range coupling between the entropic contributions from

independent constraints. Conformational sampling over dis-

tinct constraint topologies is applied to calculate the partition

function. This task is performed within a mean-field approx-

imation combined with perturbing away from the known

constraint topology of the native state. It is in this latter aspect

that the DCM is similar to COREX (Hilser and Freire, 1996).

The mean-field approximation offers an accurate treat-

ment because of the long-range nature of network rigidity,

and the method employed is a hybrid between a mean-field

Landau theory and MC sampling. Over the two-dimensional

constraint space (see Fig. 1), MC sampling allows the cal-

culation to retain relevant statistical fluctuations. The com-

putational method employed here is ;1010 times faster than

standard molecular dynamics simulations. By constructing a

partition function over an ensemble of accessible constraint

topologies, the DCM calculates average network rigidity

properties consistent with thermodynamic stability—allow-

ing protein stability and flexibility relationships to be directly

probed.

In accordance with Landau theory, parameters are

expected to be functions of solvent and thermodynamic

conditions. For example, for the UBQ heat capacity data in

Fig. 2 the u and v parameters were pH dependent. The

Landau parameters {v, u, dnat, ddis, gmax} in the minimal

DCM have been divided into a transferable set {ddis, gmax}

and three free phenomenological parameters that depend on

protein architecture and solvent conditions. Of the three pure

entropy parameters, dnat significantly reflects protein archi-

tecture, whereas gmax reflects the intrinsic property of

intramolecular H-bonds. At the level of sophistication in

treating all torsion constraints the same, a single global value

for ddis is used to characterize a random coil for all proteins.

Demanding transferability in {gmax, ddis} helps define a

common reference for the degree of conformational flexibil-

ity to facilitate quantitative flexibility comparisons between

different proteins and solvent conditions.

Operationally, it is important to retain the three non-

transferable phenomenological parameters, {dnat, u, v} in the
minimal DCM to reflect protein-solvent interactions. Opti-

mizing these parameters using heat capacity data (or

other thermodynamic information) allows the minimal

DCM to describe stability across a diverse set of proteins

under different solvent conditions, account for sequence

mutations, and adjust for resolution differences in input

structures. The minimal DCM is applied like a three-

parameter two-state thermodynamic model is used to fit to

heat capacity data. The difference being, is that much more

information is predicted involving quantitative relationships

between flexibility and stability. The flexibility profiles

calculated by DCM have been compared against FIRST

and the Gaussian Network Model (GNM) on a diverse set

of proteins (Livesay et al., 2004), and it was found that

the DCM results were statistically marginally better in cor-

relating to S2-order parameters and B-factors. In addition, all

the best-fit parameters obtained to date using the DCM are

within physically reasonable ranges. Moreover, if the heat

capacity data is arbitrarily rescaled by a factor of 1=2 or 2,

the derivative three-parameter DCM often cannot fit to the

data, which is an indication that the parameterization is phys-

ically based.

To test the sensitivity of the DCM, the best-fit parameters

listed in Table 2 were applied to different structures with the

following results: using five sets of parameters for UBQ,

corresponding to pH from 2 to 4, the average transition

temperature6 SD among the five cases were predicted to be

(329 6 15) K and 342 6 14 K for HBP chain B in the apo

and holo forms, respectively. Similarly, for the four different

HBP best-fit cases, a prediction of 340K 6 6 K was

predicted for UBQ independent of pH. Moreover, as

exemplified in Fig. 3 the typical width and height of the

heat capacities using transferred parameters were typically

within a factor of two. These results are encouraging, show-

ing the parameters are physically based, and despite oversim-

plifications, the minimum DCM captures the essential

features of protein stability and flexibility.

CONCLUSIONS

A free energy decomposition is employed to arrive at

a minimal DCM containing five parameters. Two of the

parameters that model intramolecular hydrogen bonds are

transferable, independent of protein and solvent conditions.

Protein size, architecture, and solvent effects are all

accounted for through three nontransferable phenomenologi-

cal parameters within a Landau-like description. Nonadditiv-
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ity of entropy is directly accounted for by regarding network

rigidity as an underlying mechanical interaction that provides

an enthalpy-entropy mechanism. Within a novel ensemble-

based hybridmean-field/MC calculation, heat capacity curves

are accurately reproduced for ubiquitin at five different pH

conditions and histidine binding protein in the apo and holo

forms. Without cross-linking hydrogen bonds the minimal

DCM has no mechanism to provide any type of cooperative

effect. Therefore, the results presented here provide a strong

indication that the hydrogen bond network plays an important

role in governing protein thermodynamics, flexibility, and

molecular cooperativity.

The DCM allows stability and flexibility to both be

simultaneously quantified, and stability-flexibility relation-

ships are directly linked through the global flexibility order

parameter. It was argued, but remains to be confirmed that

the global flexibility order parameter provides a suitable

reaction coordinate for governing the progress of protein

folding transitions. Under this assumption, the transition

state is found to be distinct from the mechanical rigidity

percolation threshold. In future work, the prospect of

describing protein folding-unfolding kinetics quantitatively

is being investigated in conjunction with an improved free

energy decomposition scheme to more accurately describe

protein stability.
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