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ABSTRACT Peripheral proteins can trigger the formation of domains in mixed fluid-like lipid membranes. We analyze the
mechanism underlying this process for proteins that bind electrostatically onto a flat two-component membrane, composed of
charged and neutral lipid species. Of particular interest are membranes in which the hydrocarbon lipid tails tend to segregate
owing to nonideal chain mixing, but the (protein-free) lipid membrane is nevertheless stable due to the electrostatic repulsion
between the charged lipid headgroups. The adsorption of charged, say basic, proteins onto a membrane containing anionic
lipids induces local lipid demixing, whereby charged lipids migrate toward (or away from) the adsorption site, so as to minimize
the electrostatic binding free energy. Apart from reducing lipid headgroup repulsion, this process creates a gradient in lipid
composition around the adsorption zone, and hence a line energy whose magnitude depends on the protein’s size and charge
and the extent of lipid chain nonideality. Above a certain critical lipid nonideality, the line energy is large enough to induce
domain formation, i.e., protein aggregation and, concomitantly, macroscopic lipid phase separation. We quantitatively analyze
the thermodynamic stability of the dressed membrane based on nonlinear Poisson-Boltzmann theory, accounting for both the
microscopic characteristics of the proteins and lipid composition modulations at and around the adsorption zone. Spinodal
surfaces and critical points of the dressed membranes are calculated for several different model proteins of spherical and disk-
like shapes. Among the models studied we find the most substantial protein-induced membrane destabilization for disk-like
proteins whose charges are concentrated in the membrane-facing surface. If additional charges reside on the side faces of the
proteins, direct protein-protein repulsion diminishes considerably the propensity for domain formation. Generally, a highly
charged flat face of a macroion appears most efficient in inducing large compositional gradients, hence a large and unfavorable
line energy and consequently lateral macroion aggregation and, concomitantly, macroscopic lipid phase separation.

INTRODUCTION

The binding of water soluble proteins to lipid membranes is

often mediated by electrostatic interactions between the

proteins’ basic domains and acidic lipids. Upon adsorption

onto a mixed membrane, consisting of negatively charged and

neutral lipids, a peripheral protein may induce local changes

in lipid composition at the binding site. This protein-induced

lipid ‘‘demixing’’ is due to the lateral fluidity of the

membrane, and hence the ability of charged lipids to migrate

and adjust their concentration at the adsorption site, so as to

optimize the electrostatic interaction strength between the

protein and the membrane. Experimental evidence for this

kind of lipid segregation has been reported for various

systems; e.g., the binding of polylysine (Franzin and

Macdonald, 2001; Roux et al., 1988), cardiotoxin II (Carbone

and Macdonald, 1996), cytochrome c (Heimburg et al., 1999),

and model peptides (Gawrisch et al., 1995) onto monovalently

charged membranes, as well as membranes containing

multivalent lipids (Gambhir et al., 2004; Rauch et al., 2002).

Segregation of lipids in mixed fluid membranes can also

occur spontaneously, in the absence of bound proteins, as

a result of direct lipid-lipid interactions, i.e., due to stronger

attraction between like species as compared to that between

different lipid molecules. If one of the lipid components in

the mixture carries electrically charged headgroups, then

electrostatic repulsion between these headgroups will oppose

lipid demixing. In this case lipid segregation is only possible

if the nonelectrostatic interlipid forces between like species

are strongly attractive, strong enough to overcome the

electrostatic repulsion. Nonelectrostatic attraction between

lipids could arise, for example, from a length mismatch (or

structural difference) of the lipid tails of the different species

(Lehtonen et al., 1996), or from distinct intermolecular

headgroup interactions, as found, for instance, by Garidel

and Blume (2000a,b). As in any nonideal mixture, if the net

average attraction between like lipids is strong enough, the

membrane may undergo a thermodynamic phase separation,

whereby the membrane splits up into lateral domains of

different lipid compositions, as is the case, for instance, in

raft-forming systems (Brown and London, 1998).

Consider again a binary lipid membrane, composed of

charged and neutral lipids, in which the nonelectrostatic

interactions between like species favor lipid demixing. The

demixing tendency of this system can be enhanced by

increasing the salt concentration in solution, or (in the case of

acidic lipids) by lowering the pH, so as to screen the

electrostatic repulsion between charged lipids, thus ampli-

fying the net average attraction between like lipid species.

Similar electrostatic screening can be provided by, say,

positively charged peripheral proteins that electrostatically
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adhere and sequester the negatively charged lipids of a mixed

membrane. In fact, multivalent proteins are expected to

provide efficient electrostatic screening, possibly inducing

phase separation in the protein-dressed membrane, i.e., the

appearance of membrane domains that are rich in proteins

and oppositely charged lipids, coexisting with protein-poor

domains containing a smaller fraction of charged lipids, as

schematically illustrated in Fig. 1. This qualitative scenario

appears consistent with the experimental results reported by

Hinderliter et al. (2001), pertaining to the binding of the

charged peripheral protein, synaptotagmin I C2A motif, to

a mixed phosphatidylcholine/phosphatidylserine bilayer. It

was also found that minor chemical variations of the

uncharged lipid, such as changing the acyl chain length or

the degree of unsaturation, have pronounced effects on the

protein-induced tendency for domain formation (Hinderliter

et al., 2004). Notably, the modifications of the lipid structure

involved nonelectrostatic properties, suggesting that the

ability of the adsorbed proteins to induce membrane domains

is an indirect, membrane-mediated, effect.

Several theoretical studies have addressed the phenome-

non of protein-induced domain formation in membranes.

These include lattice models that do not explicitly account

for electrostatic interactions (Netz, 1996), and mean-field

models that describe electrostatic interactions in an approx-

imate fashion (Heimburg et al., 1999; Denisov et al., 1998).

None of these studies, however, has considered the role of

lipid nonideality, which, as explained below, plays a central

role in the phase behavior of the dressed membrane. More

relevant in this context are the Monte Carlo lattice

simulations of Hinderliter at al. (2001, 2004). Although

electrostatic interactions do not appear explicitly in this

model (but are rather lumped into the lipid-lipid and lipid-

protein interaction constants), the simulations clearly in-

dicate that protein adsorption indeed enhances domain

formation. Of particular interest here is that the lipid-lipid

interaction parameters used to fit the experimental results

reported in this work correspond to effectively attractive

interaction between lipids of the same kind. In other words,

domain formation was found to take place provided lipid

demixing is nonideal (with interlipid interactions favoring

demixing). Below we argue that nonideal lipid mixing (or,

more precisely, ‘‘positive deviations’’ from ideality) is a

necessary condition for thermodynamic instability, i.e., for

lateral phase separation of the protein-dressed membrane.

As noted above, a key feature associated with the

adsorption of a large and highly charged protein onto

a mixed, oppositely charged, membrane, is its ability to

sequester and thus simultaneously neutralize a large number

(depending on the macroion’s charge and size) of charged

lipids. In a membrane containing initially a small fraction of

charged lipids this process will result in a significantly higher

concentration of these lipids within the protein’s interaction

zone, concomitantly generating a concentration gradient

across its circumference. In other words, the adsorption of an

isolated protein induces local demixing in the membrane

whereby the lipid composition within the protein’s in-

teraction region is different from the lipid composition

around this region. Attractive (nonelectrostatic) interactions

between charged lipids facilitate this local demixing process

but are not essential for its occurrence. Note also that this

local demixing is very different from lateral phase separation

(often referred to as ‘‘domain formation’’) of the dressed

membrane, as this later process is, in fact, a thermodynamic

two-dimensional (2D) condensation transition involving the

protein-lipid clusters. (The term ‘‘cluster’’ is used here for

the adsorbed protein together with its ‘‘favorite lipid

patch’’). This condensation transition will only take place

if the effective interaction between these clusters is

attractive, and strong enough to overcome the concomitant

loss of 2D translational entropy. Direct, nonpolar forces

between the adsorbed proteins could perhaps provide such

attraction in certain systems, but seem quite unlikely in the

case of similarly charged proteins. Of special interest in this

work and of special relevance to mixed, charged, membranes

is another mechanism, namely, the membrane-mediated in-

teraction between the adsorbed proteins.

The concentration gradient across the boundary of the

protein adsorption site is associated with a line energy,

proportional to the circumference length of interaction zone.

Positive line energy will favor protein aggregation, because

the circumference of two adjoining proteins is smaller than

that of two isolated ones. (Ideal mixing obviously implies

vanishing line energy.) It is not difficult to show that

a necessary condition for positive line energy is that the net

average interaction between like species is attractive, and

that the magnitude of this energy is proportional to the square

of the concentration gradient across the boundary of the

adsorption zone and the extent of lipid nonideality; see May

et al. (2002) and the Appendix. Qualitatively then, large and

FIGURE 1 Schematic illustration of a charged, two-component lipid

membrane, consisting of neutral and negatively charged lipids. Binding of

oppositely charged proteins via electrostatic interactions induces domain

formation. Highly charged membrane regions are also enriched in adsorbed

proteins. The shape of the proteins is depicted as disk-like.
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highly charged proteins can more easily induce domain

formation in the dressed membrane, provided the lipid sub-

strate exhibits a nonzero demixing propensity. It should be

emphasized that under these conditions protein adsorption

can induce domain formation even if the bare lipid

membrane is uni-phasic. That is, lipid nonideality need not

be strong enough to warrant phase separation in the protein-

free membrane; protein adsorption can significantly amplify

the demixing tendency.

These qualitative notions were mentioned in a recent study,

which has also reported an approximate evaluation of the

critical constants characterizing lateral phase separation in the

dressed membrane (May et al., 2002). The thermodynamic

stability of the lipid-protein membrane was characterized in

terms of the spinodal equation for macroion-decorated binary

membranes. The spinodal formalism has been applied to one

specific (thin disk-like) protein model, using a simple two-

state cell model scheme for calculating the electrostatic

interaction free energy. More specifically, each protein has

been associated with a membrane cell (whose size is inversely

proportional to the surface concentration of proteins), with

each cell divided into a central, ‘‘protein shaded’’ region,

surrounded by an annular region of bare membrane. A step-

function change has been assumed for the variation in lipid

composition between the two regions. Despite its simplicity,

this two-state model provides instructive qualitative insights

concerning the role of the line tension associated with the

boundary of the adsorption zone, the stability of the dressed

membrane, and reasonable estimates of the critical constants

for the particular protein model considered (see below).

Our main goal in this work is to demonstrate that protein-

induced domain formation in lipid membranes depends

sensitively on the structural characteristics of the adsorbed

proteins. To this end we shall analyze the thermodynamic

stability of mixed membranes covered by several different

types of model proteins, distinguished by their overall shape

(sphere versus disks) and the charge distributions over their

membrane-facing surfaces. As we shall see, these protein

shape characteristics have a pronounced effect on the stability

of the dressed membrane. The nonelectrostatic lipid-lipid

interactions within the membrane plane, as well as the

electrostatic interactions involving the charged species,

namely the charged lipids and the adsorbed (oppositely

charged) proteins, are taken into account in a mean-field level.

For the nonelectrostatic lateral interlipid interactions we use

the random mixing approximation of regular solution (Bragg-

Williams) theory (Evans and Wennerström, 1994). Electro-

static interactions are treated on the basis of nonlinear

Poisson-Boltzmann theory. The separation of electrostatic

and nonelectrostatic interactions allows us to study the

influence of electrostatically mediated protein adsorption on

membrane stability.

Our calculations are carried out for a microscopic-level

cell model for the protein-membrane complex, similar to the

model used by May et al. (2000) to calculate the electrostatic

binding energy of a simple model (spherical) protein to

a binary membrane composed of lipids lacking any

nonelectrostatic interactions. Using the cell model for the

protein-membrane complex we evaluate the free energy of

the protein-dressed membrane as a function of membrane

composition and protein coverage. The free energy is then

used to calculate, numerically, the spinodal surfaces,

defining the stability limits of the dressed membrane,

including, in particular, the critical constants (interlipid

interaction strength, as well as lipid composition and protein

coverage) corresponding to the different protein geometries.

The thermodynamic spinodal analysis used to this end is the

same as in May et al. (2002).

Lipid-mediated attraction between electrostatically ad-

sorbed proteins (or other peripheral macromolecules) is not

the only possible mechanism for protein aggregation or

domain formation in dressed lipid membranes. Another

possibility, for example, is that direct nonpolar forces between

the adsorbed proteins will favor their attraction, especially if

no charges reside on their apposed surfaces. Peripheral

proteins, though perhaps not to the extent of integral proteins,

may also inflict elastic deformations to the underlying lipid

membrane, whose magnitude is roughly proportional to the

length of their circumference. Thus, protein-induced elastic

perturbations of the lipid substrate may serve as yet another

mechanism of protein lateral segregation. We have chosen

to focus here on the lipid-mediated interaction between

electrostatically bound proteins, because electrostatic binding

of proteins to mixed-fluid lipid membranes is common to

many biological systems and processes. Clearly, owing to the

complex nature of both proteins and multicomponent lipid

membranes, several interaction mechanisms may be simul-

taneously operative in a given system, possibly acting in

different directions. Furthermore, the few model proteins

considered in this study represent highly idealized structures,

which hopefully provide an approximate realistic description

of certain protein geometries. Thus, although the predictions

of our analysis may help explain certain experimental

findings, our goal here is not to describe the observed

behavior of a specific experimental system but, rather, to

emphasize the nontrivial coupling between the local compo-

sitional changes induced by electrostatic binding of proteins

(of different structural characteristics) onto mixed lipid

membranes and the thermodynamic phase behavior of the

composite membrane.

THEORY

Free energy

Consider a flat, two-component, lipid layer in equilibrium with an adlayer of

electrostatically bound proteins. For concreteness, suppose that the proteins

are positively charged, and that one of the two lipid species carries a

monovalent anionic headgroup while the other is electrically neutral. For

simplicity we also assume that both lipids occupy the same cross-sectional

area at the membrane plane, al per headgroup. At given temperature and
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solvent conditions, the thermodynamic state of the membrane is specified by

two concentration variables. One is the mol fraction of charged lipids or,

simply, the lipid composition f; i.e., for f ¼ 0 the lipid layer is electrically

neutral and for f ¼ 1 it is fully charged. The other variable is the

(dimensionless) protein coverage, u, expressing the ratio between the actual

number of adsorbed proteins and their number at maximal membrane

coverage. For u¼ 0 no proteins are adsorbed, and for u¼ 1 the membrane is

completely covered with proteins.

The free energy of the protein-dressed lipid layer, f ¼ f(f, u), measured

per lipid molecule, depends on the membrane composition (f) and protein

coverage (u). In the following, we express all energies in units of kBT where

kB is the Boltzmann constant and T is the absolute temperature. We decom-

pose the free energy of the dressed membrane into a sum of three contribu-

tions, which in the mean-field scheme adopted here reads

f ðf; uÞ ¼ ½f lnf1 ð1� fÞlnð1� fÞ1 xfð1� fÞ�

1
1

a
½u ln u1 ð1� uÞlnð1� uÞ�1 felðf; uÞ: (1)

The three terms within the square brackets account for the non-

electrostatic free energy of the mixed lipid layer, within the familiar random

mixing approximation of regular solution theory for an incompressible

binary fluid (here 2D) mixture with nearest-neighbor interactions. This

mean-field level approach is widely used to describe thermodynamic

properties, stability, and phase behavior of surfactant systems, polymer

solutions, emulsions, and colloids (Evans andWennerström, 1994). The first

two terms here account for the translational (‘‘mixing’’) entropy of the

mixture, whereas the third term accounts for the interaction energy

associated with nonideal lipid mixing. The extent of nonideality is measured

by x, reflecting the different interaction potentials associated with like and

unlike lipid species (see Appendix). Attractive interactions between lipids of

the same species dominate for x . 0, which for x . xc become strong

enough to drive lateral phase separation of the lipid layer. Calculation of the

critical interaction strength, xc, is one of the main concerns of this work.

Note that x only accounts for next-neighbor nonelectrostatic interactions

between the lipid molecules. The electrostatic interactions are long ranged;

they are included in the last term of Eq. 1 and will be treated separately and

in detail below. It should thus be noted that even if x . 0, implying that the

nonelectrostatic (e.g., intertail) interactions favor lipid demixing, the overall

interaction potential, which is the sum of electrostatic and nonelectrostatic

contributions, will be repulsive if the electrostatic repulsion between the

charged lipid headgroups is sufficiently strong.

For a bare membrane with no (or fully screened) electrostatic interactions

between lipids only the first contribution (in square brackets) in Eq. 1 is

relevant, predicting the critical constant xc ¼ 2, and the corresponding

critical composition fc ¼ 0.5 (Evans and Wennerström, 1994). This will be

the only relevant contribution in the limit of high salt concentration where all

electrostatic interactions are safely screened, no proteins are adsorbed, and

the mixed lipid layer effectively behaves as an electrically neutral mixture.

The second contribution in Eq. 1 represents the ideal mixing entropy of

the adsorbed protein layer, weighted by the protein/lipid size mismatch

a ¼ ap/al where ap denotes the (fixed) projected cross-sectional area per

protein. Finally, the last contribution, fel(f, u), accounts for all electrostatic

interactions in the system, including lipid headgroup repulsion, lipid-protein

interaction, and interprotein interaction. Our model for fel(f, u), which we

base on a detailed microscopic-level Poisson-Boltzmann approach, will be

outlined after introducing our criterion for the thermodynamic stability of the

membrane.

Thermodynamic stability

We use here the term ‘‘stable membrane’’ to describe a monophasic lipid-

protein membrane. The critical point of the dressed membrane is

characterized by the triade fc, uc, xc, marking the common minimum of

the so-called binodal (xb(f, u)), and spinodal (xs(f, u)) surfaces. Within the

x $ xc region bounded by the binodal surface, the membrane is globally

unstable, decomposing into two coexisting phases of different (lipid and

protein) compositions. The spinodal surface, embedded within the global

instability region (i.e., ‘‘surrounded’’ by the binodal surface) defines the

limits of metastability. Between the two surfaces the membrane is metastable

with only local stability. That is, upon an increase in x at given f and u, the

system first passes through the binodal and then through the spinodal

surface, thereby proceeding from a stable via a metastable to an unstable

region. Crossing the binodal surface marks the loss of global stability,

whereas beyond the spinodal line local stability is lost as well. At the critical

point, which corresponds to the smallest x leading to an instability, the two

surfaces coincide: xb(fc, uc) ¼ xs(fc, uc) ¼ xc (Safran, 1994).

Mathematically it is often more convenient to calculate the spinodal

surface rather than the coexistence conditions determining the binodal

surface. Because our main interest in this work is in the role of protein size

and shape on the critical constants, most of our calculations will involve

local stability (i.e., spinodal) analysis. Clearly, local stability requires the

inequality

f ðf1 df; u1 duÞ1 f ðf� df; u� duÞ. 2f ðf; uÞ; (2)

to be fulfilled for any (small) changes df and du. At the spinodal, local

stability breaks down, and Eq. 2 gives us the criterion (Landau and Lifshitz,

1976)

@
2
f

@f
2

@
2
f

@u
2 �

@
2
f

@f@u

� �2

¼ 0: (3)

Inserting into Eq. 3 the expression of the free energy per lipid, f(f, u)

according to Eq. 1, we find for the spinodal

x ¼ 1

2fð1� fÞ1
1

2

@
2
fel

@f
2 �

@
2
fel

@f@u

� �2

@
2
fel

@u
2 1

1=a
uð1� uÞ

8>><
>>:

9>>=
>>;
: (4)

Note that the second contribution to x in Eq. 4 accounts for the electro-

static interactions of the system. In their absence (that is, for fel(f, u) [ 0),

Eq. 4 predicts the critical point xc ¼ 2 and critical composition fc ¼ 0.5, as

noted earlier for an electrically neutral lipid membrane. Note also that in

this case there is no coupling between the f and u dependent terms in Eq. 1,

and the membrane is stable for all u, in agreement with the stability condition

@2f/@u2 . 0.

Electrostatic free energy of the complex

Calculation of the spinodal according to Eq. 4 requires a model for the

electrostatic free energy fel(f, u) of a protein-dressed membrane. We use

Poisson-Boltzmann theory for a symmetric 1:1 electrolyte to calculate this

free energy, explicitly taking into account the microscopic structure of the

protein and the lateral fluidity of the mixed lipid layer.

Consider a single, cylindrically symmetric protein, of maximal radial

extension Rp, and hence of projected cross-sectional area ap ¼ pR2
p: On

average, the distribution of lipids and proteins in the vicinity of the protein

under consideration is radially symmetric. Within the mean-field level of our

treatment it is thus appropriate to adopt a cell model, whereby each adsorbed

protein is associated with a cylindrically symmetric cell of radius R. Rp and

a corresponding membrane area Ac ¼ pR2. The cell radius is inversely

proportional to the protein coverage u ¼ ap/Ac ¼ (Rp/R)
2, thus accounting

(approximately) for interprotein interactions and the effects of protein

concentration on lipid composition profiles. Note that the number of lipids in

the unit cell is N ¼ Ac/al ¼ a/u. A cross section through the unit cell of the

protein-decorated lipid layer is depicted in Fig. 2.
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Because of the fluid nature of the mixed lipid layer, charged lipids

migrate toward the protein if this is energetically favorable. In other words,

the composition of the lipid layer may locally adjust. To account for this

possibility we introduce the local composition h ¼ h(r), corresponding to

the local fraction of charged lipids at distance r away from the axis of

rotational symmetry. Recall that in our expression for fel(f, u) the average

composition, f, is fixed. Thus, the local compositional profile, h, must fulfill

the condition of charge conservation

f ¼ 1

Ac

Z
Ac

dAh; (5)

where the integration is performed over the membrane area, Ac ¼ pR2, of the

unit cell.

Our expression for the electrostatic free energy per unit cell, Fel(f, u) ¼
Nfel(f, u) ¼ afel(f, u)/u, is a straightforward extension of the Poisson-

Boltzmann free energy, and consists of five contributions

Fel ¼
1

8plB

Z
Vc

dV ð=CÞ2
1

Z
Vc

dV n1 ln
n1

n0

1 n� ln
n�

n0

�

�ðn1 1 n� � 2n0Þ
�
1

1

al

Z
Ac

dA h ln
h

f
1 ð1 � hÞln1 � h

1 � f

�

�xðh� fÞ2

�
1

l

al

Z
Ac

dAðh� fÞ1v

2

Z
Ac

dAð=hÞ2
: (6)

The first term is the energy stored in the electrostatic field, expressed in

terms of the dimensionless electrostatic potential C ¼ eF/kBT (or,

equivalently, C ¼ eF because in this work we express energies in units

of kBT; the elementary charge is denoted by e). The integral extends over

the entire aqueous volume Vc of the cylindrical cell. The Bjerrum length,

lB ¼ e2/4pew ¼ 7.14 Å, describes the strength of the bare Coulomb interac-

tions in water (with dielectric constant ew ¼ 80). The second contribution

accounts for the (ideal) mixing entropy of the mobile salt ions within the

aqueous region of the unit cell where n1 and n� denote the local concentrations

of positively and negatively charged salt ions, respectively, and n0 is their

corresponding concentration in the bulk. Similarly, the third term is the

(nonideal) demixing free energy of the lipids within the membrane,

measured with respect to the uniform distribution h(r) [ f; it includes (for

x 6¼ 0) nearest-neighbor interactions between the lipids. The fourth term

ensures the conservation of the number of charged lipids in the cell; see

Eq. 5. The Lagrange multiplier, l, enforces this constraint. Finally, the last

term in Eq. 6 is the line tension contribution, resulting from compositional

gradients within the lipid layer due to protein adsorption. The quantity v,

which measures the strength of the line tension contribution, is directly

related to the lipid nonideality constant x ¼ Cv; with C ¼ 3 if the lipid

molecules organize as a triangular lattice and C ¼ 2 for a square lattice

configuration. The derivation of the relation x ¼ Cv is outlined in the

Appendix. The value C ¼ 3 will be used in this work. Note that the line

tension contribution is expected (as we shall show in the Results section) to

depend on the size, shape, and charge distribution over the protein surface,

as well as on u and f.

It is worth mentioning at this point that the free energy, Eq. 6, does not

include contributions from the inner hydrophobic regions (of dielectric

constant el � 2) of the membrane and the protein. This is justified because

the dielectric mismatch between these regions and the aqueous environment,

el/ew, is generally much smaller than d/lD where d is the linear extension of

the involved macroions—the membrane thickness or the protein radius—

and lD ¼ (8 pn0lB)�1/2 ¼ 10 Å is the Debye screening length at physio-

logical conditions.

At equilibrium, the free energy fel(f, u) ¼ Fel/N (see Eq. 6) is at its

minimum with respect to the local ion concentrations, n1 and n�, and the

local membrane composition, h(r). The minimization is subject to four

boundary conditions. The first two,

@C

@r

� �
r¼R

¼ 0;
@C

@z

� �
z/N

¼ 0; (7)

express the symmetry at the rim of the unit cell (where the limit z/N
corresponds to modeling a single protein-dressed membrane). The other two,

lD
@C

@z

� �
z¼0

¼ 2p0hðrÞ; lD
@C

@n

� �
p

¼ �2p0fp; (8)

relate the electric field to the local two-dimensional charge density at the

membrane and protein surfaces. Specifically, at the lipid layer (z¼ 0) ew@F/

@z ¼ sl where sl ¼ �he/al is the local surface charge density of the lipid

molecules. Then, the first boundary condition in Eq. 8 follows from the

definition of the dimensionless constant p0 ¼ 2plBlD/al. Similarly, the second

boundary condition in Eq. 8 expresses the local (positive) surface charge

density,sp¼fpe/al, at the protein surface; we shall refer tofp as the effective

composition of the protein; for fp ¼ f the average charge density of the

membrane and of the protein have equal magnitude but opposite sign. Note

also that @C/@n denotes the derivative of the electrostatic potential along the

local normal to the surface of the protein, pointing into the aqueous

environment. It should finally be mentioned that the two boundary conditions

in Eq. 8 account for the low dielectric constants inside the membrane and

protein, respectively. That is, terms proportional to el/ew are neglected.

Minimization (in fact, functional minimization) of fel(f, u) with respect

to n1, n�, and h gives rise to the familiar Poisson-Boltzmann equation

l
2

DDC ¼ sinhC; (9)

which is a two-dimensional nonlinear partial differential equation for the

(dimensionless) potential C ¼C(r, z)—note that D denotes the Laplacian in

cylindrical coordinatesD¼@2/@r21 (1/r)@/@r1@2/@z2—that must be solved

within the aqueous region, subject to the boundary conditions, Eqs. 7 and 8. In

addition, the minimization leads to another differential equation, namely

alvDh ¼ ln
hð1 � fÞ
fð1 � hÞ � 2xðh� fÞ1 l�C; (10)

FIGURE 2 Cross section through the cylindrical unit cell of a protein-

dressed lipid layer. The protein (shaded region) is assumed cylindrically

symmetric around the z axis with projected radius Rp, local surface charge

density sp, and minimal distance h to the membrane. The cell radius, R,

determines the protein coverage through u ¼ (Rp/R)2. The local mol fraction

of negatively charged lipids within the mixed lipid layer is denoted by h(r).
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whose solution determines the local compositionh¼h(r). Forv¼ x/C¼ 0 it

reduces to an algebraic relation previously derived by Harries et al. (1998).

Generally, for v 6¼ 0, Eq. 10 constitutes a partial differential equation that

must be solved at the lipid layer. Yet, because of the cylindrical symmetry of

the unit cell Dh¼ h$1 h9/r where the prime denotes the derivative of h(r),

and Eq. 10 reduces to an ordinary nonlinear differential equation forh(r). The

two equations, Eqs. 9 and 10, are not independent from each other. Solution of

the Poisson-Boltzmann equation, Eq. 9, requires to know h through the

boundary condition on the lipid layer. Conversely, Eq. 10 contains the

reduced potentialC. Hence, both equations must be solved self-consistently,

including the determination of the Lagrange parameter, l, that ensures Eq. 5

to be satisfied. The practical procedure to solve Eqs. 9 and 10 proceeds via

a Newton-Raphson iteration scheme; that is, employing a linearization

method upon which both equations transform into an iterative sequence of

(coupled) linear equations (Houstis et al., 1985).

Isolated, protein-free membrane

Let us shortly discuss the case of a bare, protein-free lipid layer, where u¼ 0.

In this case the electrostatic free energy, Eq. 6, is given by the charging

free energy of an isolated planar surface that can be calculated analytically

within Poisson-Boltzmann theory (Evans and Wennerström, 1994). It is

given by

felðfÞ ¼ 2f
1� q

p
1 lnðp1 qÞ

� �
; (11)

with q2 ¼ p2 1 1 and p ¼ fp0. Recalling the definition p0 ¼ 2plBlD/al we

note that typically p0 � 1 (For example, for double-chained lipids al ¼ 65

Å2 and under physiological conditions lD ¼ 10 Å, implying p0 ¼ 6.9.) In the

limit p0 � 1 we find f$el(f) ¼ 2p0/q ¼ 2/f and the spinodal line, x(f) ¼
1/[2f(1 � f)] 1 1/f gives rise to the critical point xc ¼ 21

ffiffiffi
3

p
¼ 3:7 and

fc ¼ ð3�
ffiffiffi
3

p
Þ=2 ¼ 0:63 (Gelbart and Bruinsma, 1997; May et al., 2002).

In Fig. 3 we show both the spinodal and binodal for a charged lipid layer;

calculated for al ¼ 65 Å2 and lD ¼ 10 Å, implying p0 ¼ 6.9. Also shown are

the binodal and spinodal curves for a fully screened (effectively uncharged,

corresponding to the limit lD/0) lipid layer. Several conclusions are

worth mentioning. First, for any given f both the binodal and spinodal

move to higher x, indicating increased stability for the charged compared

to the (effectively) uncharged membrane. Hence, the electrostatic re-

pulsions between the charged lipids increase the stability of the lipid layer.

Second, the upshift of the critical point xc ¼ 2/3:7 is independent of p0 if
p0 � 1: And finally, the shift of the critical composition fc reflects the

negligible size of the mobile salt ions compared to the cross-sectional area al
of the lipids.

Regarding the experimental relevance of the predicted upshift in the

critical point xc we note a recent work of Garidel et al. (1997) who studied

various phosphatidylcholine/phosphatidylglycerol (PC/PG) mixtures at

different pH. Specifically, upon increasing the pH from 2 to 7 (and hence

deprotonating PG) they found the actual nonideality parameter (which

includes electrostatic interactions) to decrease roughly from 1.3 to 0. Hence,

the charging shifted the membrane toward a more uniform distribution of the

lipids. Remarkably, even the numerical value of the difference in the

demixing parameters (1.3) is not far away from the theoretical Poisson-

Boltzmann prediction (1.7). Note that the ideal mixing properties of the

PC/PG mixture at pH 7 reflect two competing (and compensating) tenden-

cies: electrostatic repulsion between the charged headgroups and nonelectro-

static attraction.

RESULTS AND DISCUSSION

We have solved the Poisson-Boltzmann equation, Eq. 9,

numerically subject to the boundary conditions, Eqs. 7 and

8. The local composition of charged lipids, h(r), was de-

termined self-consistently according to Eq. 10. For any given

average membrane composition f, protein coverage u, and

nonideality parameter x, we have subsequently obtained the

electrostatic free energy per lipid, fel ¼ Fel/N, of the protein-
dressed membrane (see Eq. 6). The calculation of fel(f, u) as
a function of f and u allowed us to numerically obtain the

second derivatives @2fel/@f
2, @2fel/@f@u, and @2uel/@q

2,

needed to compute a conveniently defined stability function

S ¼ 1

2fð1� fÞ1
1

2

@
2fel

@f
2 �

@
2
fel

@f@u

� �2

@
2
fel

@u
2 1

1=a
uð1� uÞ

8>><
>>:

9>>=
>>;

� x: (12)

The two cases, stability of the membrane for S . 0 and

instability for S , 0, are separated by the spinodal surface,

S(f, u, x) ¼ 0; see Eq. 4. The minimum of the spinodal

surface, xc ¼ x(fc, uc), yields the critical point.

In all our calculations we have used al ¼ 65 Å2 for the

cross-sectional area per lipid molecule (the same for both

lipid species) and a Debye screening length of lD ¼ 10 Å.

Recall that in this case, p0 ¼ 2plBlD=al ¼ 6:9 � 1; and

hence the critical point for an isolated, protein-free (u ¼ 0)

membrane is xc ¼ 3.7 (with corresponding critical com-

position fc ¼ 0.63). The decisive question is thus if upon

binding of proteins (u . 0) the critical point can be reduced

below 3.7.

We have analyzed four representative model proteins that

are displayed in Fig. 4. These macroions, denoted by the

letters A, B, C, and D, represent model proteins of different

size, shape, and surface charge distribution, as follows: A),

The protein is a cylindrical disk of radius Rp ¼ 10 Å and

height hp ¼ 10 Å. Its charges are distributed only over the

bottom face of the disk. B), This protein is of the same shape

as A, except that its radius is increased to Rp ¼ 15 Å. C),

Again, the protein is of size and shape equivalent to A, but

charges are distributed not only on the bottom face of the

cylinder, but also on the lower half of its rim. D), This

protein is modeled as a sphere of radius Rp ¼ 10 Å. The

FIGURE 3 The spinodal (‘‘sp’’) and binodal (‘‘bi’’) for a charged (solid
lines) and for an uncharged (dashed lines) lipid layer. For the charged layer

al ¼ 65 Å2 and lD ¼ 10 Å, implying p0 ¼ 6.9. The uncharged lipid layer

corresponds to the limit of vanishingly small Debye length; lD ¼ 0. Upon

charging the lipid layer the critical point upshifts from xc ¼ 2, fc ¼ 0.5 (s)

to xc ¼ 3.7, fc ¼ 0.63 (d).
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charges are distributed only over the lower—membrane

facing—half of the sphere.

All remaining structural parameters concerning the pro-

teins are kept constant. Specifically, the minimal distance

between the protein and the membrane is fixed at h¼ 3 Å, and

the charge density of the protein corresponds to an effective

compositionfp¼ 0.6 (recallsp¼fpe/al). Finally, the interior

of each protein has low dielectric constant so that we can

safely neglect the electrostatic field inside the protein bodies

(as we also do within the hydrocarbon core of the membrane).

Disk-like protein, case A

We first analyze the small disk-like protein, A, charged only

at the bottom face. The charge density sp ¼ fpe/al corre-

sponds to Z ¼ spap=e ¼ pfpR
2
p=al ¼ 3 positive charges on

the membrane-facing side of the protein. Because the mantle

of the cylindrical disk is uncharged, we expect electrostatic

protein-protein repulsion to be negligible.

In Fig. 5, we plot the stability function, S, as defined in

Eq. 12, versus the membrane composition, f, for various val-

ues of u, ranging from u ¼ 0.05 (the thinnest solid line) to

u ¼ 0.85 (the thickest solid line) . The dashed line is the

spinodal curve of the protein-free membrane (u ¼ 0). Fig. 5

shows that in panel a, where x ¼ 3.0, there is no solution for

S # 0, i.e., the membrane consists of a single, stable, phase.

In diagram b, where x¼ 3.4, there exist solutions of S, 0 for

some combinations of f and u, indicating an unstable

membrane. Most notably, the instability occurs for such

values of x where the bare membrane (see the dashed line in

Fig. 5 b) is still stable. That is, protein adsorption can indeed

trigger domain formation in the membrane; the domains dif-

fer in both their lipid composition f and protein concentra-

tion u. Clearly, the extent of the unstable regions (S , 0)

increases with x.

Computing solutions of the equation S(f, u) ¼ 0 for

different choices of the nonideality parameter x allows us to

obtain the spinodal surface x ¼ x(f, u). Contours of this

surface are plotted in the left diagram of Fig. 6 for protein A

(the right diagram shows protein B). Because we see

a spinodal line for x ¼ 3.2 but none for x ¼ 3.0 (see

Fig. 5 a) we conclude that the critical point must be in the

range 3 , xc , 3.2. Hence, the binding of the disk-like pro-

teins of radius Rp ¼ 10 Å lowers the critical lipid nonideality

from xc ¼ 3.7 to about xc ¼ 3.1.

The numerical results above may be compared to those

predicted by the simple two-state model mentioned earlier

(May et al., 2002), which yields

xc ¼
2

f
2

p

ffiffiffi
a

p ; fc ¼
fp

2
; uc ¼

1

2
: (13)

A simplified and instructive derivation of these results can

be obtained as follows. Assume that every adsorbed protein

FIGURE 4 We consider four representative generic model proteins. Cases

A, B, and C are disk-like proteins of height hp ¼ 10 Å and radius Rp ¼ 10 Å.

Case D is a sphere of radius Rp ¼ 10 Å. The shaded regions represent

charged areas: in A and B only the membrane-facing bottom is charged

whereas in C and D it is also the lower half of the protein. The dashed lines

coincide with the axis of cylindrical symmetry, the horizontal thick solid

lines mark the charged membrane. In all cases, the surface charge density

corresponds to an effective composition of fp ¼ 0.6 (recall sp ¼fpe/al), and

the minimal membrane-protein distance is set to h ¼ 3 Å.

FIGURE 5 The stability function, S, defined in Eq. 12, versus com-

position f for several different protein coverages, u; varying in steps of 1/15

from u ¼ 0.05 (the thinnest solid line) to u ¼ 0.85 (the thickest solid line).

For x ¼ 3.0 (a) S. 0 for all f, indicating stable monophasic membrane. For

x ¼ 3.4 (b) the membrane is unstable for those combinations of f and u for

which S , 0. The spinodal fulfills the equation S ¼ 0.
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recruits to within its interaction zone exactly the number of

charged lipids necessary to neutralize the total charge on its

membrane-facing surface. Assume further that protein

adsorption saturates once all charged lipids have migrated

into protein binding sites, implying h(r) ¼ fp within the

interaction zones and h(r) ¼ 0 in the uncovered membrane

area, and hence, assuming a sharp boundary between these

regions =h¼ fp. As shown in the Appendix, the line energy

corresponding to a singly adsorbed protein is proportional to

the product of three factors (see the second term in Eq. 24): the

protein’s circumference length (2pRp), the lipid nonideality

strength (x), and the square of the concentration gradient

across the boundary of the interaction zone, which in this limit

of ‘‘strong adsorption’’ is simply f2
p: When two, initially

isolated proteins (including their ‘‘associated patches of

lipids’’) are brought into contact, the total line energy is

reduced by an amount proportional to the contact length

between the two patches, implying an attractive (membrane-

mediated) pairwise interaction between proteins, W, whose

magnitude equals the gain in line energy. Based on this simple

picture the protein-dressed membrane can now be regarded

as an interacting 2D gas of proteins. Adopting a lattice gas

scheme, the free energy per protein is now given by

f̃ðuÞ ¼ u ln u1 ð1 � uÞ lnð1 � uÞ1Luð1 � uÞ; (14)

withL}W denoting (in analogy to x for the lipid mixture) the

interaction parameter for the gas of adsorbed proteins. For

a triangular 2D lattice one finds L ¼ 3W ¼ ffiffiffi

a
p

xf2
p where

a ¼ ap=al ¼ pR2
p=al. From Eq. 14 we find that for L.Lc ¼

2 the 2D lattice gas undergoes a condensation transition, or, in

other words, the protein-covered membrane exhibits domain

formation. The critical protein coverage is u ¼ 1/2 implying

alsofc¼fp/2 because (in the two-state model) charged lipids

are only present in the protein covered patches, where their

concentration is fp. The first equality in Eq. 13 follows from

Lc ¼
ffiffiffi

a
p

xcf
2
p ¼ 2: Finally we note that, formally, Eq. 14

could also be derived from Eq. 1. That is, noting that all local

variation in lipid composition are actually included in the

electrostatic free energy, Eq. 6, then for a membrane of given

total compositionf the first two terms in Eq. 14 are constants.

Furthermore, following the assumption of exact charge

neutralization of adsorbed proteins by membrane lipids

eliminates all terms in Eq. 1 but the last one. And this last

term becomes simply the last term in Eq. 14.

Returning to Eq. 13 we reiterate that these critical

constants are approximate because the two-state model

assumes a stepwise variation of the lipid composition across

the boundary of the protein adsorption zone, and that all

charged lipids enter (and are uniformly distributed within)

this zone, the membrane-protein adsorption zone so as to

ensure iso-electricity of the bound complex. Alternatively

stated, the number of membrane-bound proteins is de-

termined by the requirement for electrical neutrality. This

assumption is valid only in the limit of strong adsorption

(large p0). Finally, the two-state model ignores direct

electrostatic protein-protein repulsions. Not surprisingly

then, substituting al ¼ 65 Å2, Rp ¼ 10 Å, and fp ¼ 0.6 in

Eq. 13 we find xc ¼ 2.5, considerably smaller than our

present, more accurate estimate, xc � 3.1. Note, however,

that had we allowed the lipid composition around the

interaction zone to be nonzero or, equivalently, allowing for

h(r) , fp (thus reducing the composition gradient across the

boundary of the interaction zone), the two-state model would

yield a better estimate. For example, the choice h(r) [ 0.54

(instead of h(r) ¼ fP ¼ 0.6) recovers the numerically calcu-

lated value xc ¼ 3.1. Note also that the critical composition,

fc, and critical protein coverage, uc, are both quite well pre-

dicted by Eq. 13. Clearly, the main advantage of the analyti-

cal expressions in Eq. 12 is their ability to predict (at least

qualitatively) how the critical point behaves as a function of

the system parameters such as the protein charge density

and size.

FIGURE 6 Calculated spinodal surface x ¼ x(f, u)

for protein A (left panel) and protein B (right panel).

Shown are the contours at several indicated values of x.

Proteins A and B are introduced in Fig. 4. Note that in

the right diagram the spinodal has two branches.
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Effect of protein size, case B

Protein B has radius Rp ¼ 15 Å and is otherwise identical to

protein A; see Fig. 4. Its circular bottom face accommodates

Z ¼ pfpR
2
p=al ¼ 6:5 charges (recall al ¼ 65 Å2 and fp ¼

0.6). The corresponding spinodal surface x ¼ x(f, u) is

displayed in the right diagram of Fig. 6. The most apparent

feature is the much smaller magnitude of the critical nonide-

ality; xc � 2.35. A similar decrease is predicted by Eq. 13

according to which xc ; 1=
ffiffiffi
a

p
; 1=Rp: Thus, changing the

protein radius from Rp ¼ 10 Å (case A) to Rp ¼ 15 Å (case B)

should downshift the critical nonideality from xc ¼ 3.1 to xc

¼ 3.1 3 2/3 ¼ 2.1, in reasonable agreement with the

numerically computed value xc � 2.35. The reason for the

decrease of xc with increasing protein radius, Rp, is a direct

consequence of the fact that the energetically unfavorable line

tension term in the free energy per adsorbed protein, Fel in

Eq. 6, is the only incentive for phase separation. This contribu-

tion, which increases linearly with the protein’s circumfer-

ence, gives rise to an effective, membrane-mediated, attraction

between the adsorbed macroions (May et al., 2002), and thus

acts toward membrane destabilization (see Appendix).

Two other features are worth mentioning. First, the critical

protein coverage increases somewhat from uc ¼ 0.46 for

Rp ¼ 10 Å to uc ¼ 0.57 for Rp ¼ 15 Å. Yet, this increase

translates into virtually the same average protein-protein

distance, D ¼ 2ðR� RPÞ ¼ 2Rpð1=
ffiffiffiffiffi
uc

p
� 1Þ ¼ 10 Å; in

both cases. The other feature is a second branch of the

spinodal that appears for higher x (higher than x ¼ 3) in the

low f and u region. We do not have a simple qualitative

explanation for this behavior but it shows that the adsorption

of relatively few (but sufficiently large) proteins on a weakly

charged membrane can cause an instability.

Effect of protein-protein repulsion, case C

To investigate the influence of direct electrostatic protein-

protein repulsion, we have analyzed the adsorption character-

istics of a disk-like model protein, where charges are present

not only on its bottom face, but also on (the lower half of) its

mantle surface (protein C in Fig. 4). Specifically, in addition

to the Z¼ 3 charges on the bottom surface this protein carries

pRphpfp/al ¼ 3 additional charges on its side face. Due to

their location these charges are expected to mainly cause

direct electrostatic protein-protein repulsion rather than to

interact with the membrane. The spinodal surface for this

system, shown in the left diagram of Fig. 7, reveals a critical

nonideality xc ¼ 3.38, critical composition fc ¼ 0.60, and

critical protein coverage uc ¼ 0.18. Hence, compared to

protein A (where xc ¼ 3.1), protein C is notably less potent to

destabilize the membrane. The reason, direct electrostatic

protein-protein repulsion, also leads to a drastic downshift of

uc. This downshift corresponds to an increased average

protein-protein distance of D ¼ 2Rpð1=
ffiffiffiffiffi
uc

p
� 1Þ ¼ 27 Å;

considerably larger than the electrostatic screening length

lD ¼ 10 Å. Because of the small critical protein coverage, the

critical membrane composition can be expected to be close to

that of a bare membrane (for which we recall fc ¼ 0.63); this

is indeed seen in Fig. 7.

Effect of protein shape, case D

The lower half of the spherical protein (case D in Fig. 4) is

charged, its effective composition fp ¼ 0.6 amounts to

Z ¼ 2pR2
pfp=al � 6 charges, comparable to both cases B

and C. The corresponding spinodal surface x ¼ x(f, u) is

displayed in the right diagram of Fig. 7. It shows, somewhat

unexpectedly perhaps, that the spherical protein has practi-

cally no influence on membrane stability; the critical point

xc ¼ 3.645 is close to that of a bare membrane (xc ¼ 3.7).

The critical membrane composition, fc ¼ 0.63, and protein

coverage, uc ¼ 0.18, are close to those in case C; the reason

is the same: direct protein-protein repulsion.

Both proteins C and D have the same projected area ap,

surface charge density sp and overall charge Z. They both

FIGURE 7 Calculated spinodal surface x ¼ x(f, u)

for protein C (left panel) and protein D (right panel).

Shown are the contours at several indicated values of x.

Proteins C and D are introduced in Fig. 4.
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carry charges on their side faces, so that direct protein-

protein repulsion should play a similar role. Nevertheless,

the spherical protein appears considerably less potent to

induce membrane domains as compared to protein C.

Qualitatively it is quite clear that the reason for this dif-

ference is the weaker ability of the spherical protein to create

compositional gradients in the membrane. The correspond-

ingly lower line tension contribution to the free energy

accounts for the increased membrane stability, as discussed

in more detail in the next section.

The line tension

There is no attraction between like-charged objects within

Poisson-Boltzmann theory (Neu, 1999). Yet, such an

attraction is necessary to mediate the phase splitting of the

membrane-bound proteins. Any reduction of the critical

point beyond that of the bare membrane requires either direct

or membrane-mediated attractive forces between the like-

charged proteins. Because our model does not contain any

direct protein-protein attraction, attraction must be mediated

by the membrane substrate. Inspection of the free energy per

unit cell, Fel (see Eq. 6), reveals that only one contribution

can give rise to attractive (membrane-mediated) interactions,

namely, the line tension contribution

Flt ¼
v

2

Z
Ac

dA ð=hÞ2: (15)

Recall that v ¼ x/C where C is a numerical prefactor

depending on the number of neighbors surrounding a lipid

molecule (we have used C ¼ 3 as appropriate for a triangu-

lar lattice). It can be shown that ignoring Flt by setting

v ¼ 0 leads to a critical point of xc $ 3.7 for the protein-

dressed membrane (where the equality sign is adopted in

the complete absence of direct electrostatic protein-protein

repulsion). Hence, for x ¼ 0 (implying v ¼ 0 and thus

Flt ¼ 0) there would be no protein-induced membrane do-

main formation. We conclude that within the limits of this

approach (below, in the final section we provide a short

discussion of these limits) some degree of effective lipid-lipid

attraction within the membrane (that is, x . 0) is a necessary

condition for protein-induced membrane destabilization.

For x . 0 the membrane would tend to minimize the

unfavorable line tension contribution, Flt . 0, by reducing

the compositional gradients within, and especially at the

boundaries of, the protein-lipid interaction zone. Lateral

aggregation of the adsorbed proteins, whereby their lipid

interaction zones overlap each other, is an efficient way to

reduce lipid composition gradients (as illustrated very

schematically in Fig. 1). If this aggregation tendency of the

protein-lipid ‘‘complexes’’ (i.e., the adsorbed proteins

together with their ‘‘associated’’ charged lipids) is strong

enough to overcome the loss of translational entropy of these

complexes (the last term in Eq. 1) and, if present, the direct

electrostatic repulsion between proteins, then the dressed

membranewill become unstable. That is, phase separation will

take place whereby ‘‘domains’’ composed of densely packed

proteins and a high mol fraction of charged lipid coexist with

a dilute phase of proteins and fewer charged lipids.

The origin of the gradients in lipid composition upon

protein adsorption is, of course, the favorable electrostatic

interaction between the protein and the oppositely charged

lipids. The magnitude of these gradients depends on the

protein’s geometry and charge distribution. For example, flat

and highly charged proteins will induce larger gradients than,

e.g., smoothly curved proteins. The line tension energy, per

protein, will scale linearly with its circumference. Lipid

nonideality, or more precisely x . 0 (‘‘positive deviation’’

from ideal mixing), is a necessary condition for large positive

Flt. As we have seen, however, a smaller x than xc of the bare

membrane may suffice for phase separation of the dressed

membrane, provided the lipid composition gradients and/or

the protein size are large enough.

To test the qualitative notions above let us analyze the line

tension contribution for the different protein shapes that we

have considered in this work. Fig. 8 a compares Flt, for

proteins A, C, and D, as a function of the membrane

composition f, calculated for protein coverage u ¼ 0.25 and

nonideality parameter x ¼ 3.0. Fig. 8 b displays for f¼ 0.25

the corresponding compositional profiles, h(r). Generally,
the line tension vanishes at f ¼ 0 and f ¼ 1, adopting

a maximum at intermediate compositions. The magnitude of

Flt depends on the protein characteristics. Specifically, the

equal shaped proteins A and C show similar line tension. The

charged mantle face of protein C appears to have a marginal

effect on the lipid composition at the protein binding site.

Even at f ¼ 0.3, where the additional local lipid demixing is

maximal, the corresponding increase of the line tension is

small. This observation supports our notion regarding the

increase in xc and decrease in uc due to direct (in contrast to

‘‘indirect,’’ membrane-mediated) interprotein repulsion for

protein C, as compared to protein A. Much more dramatic is

the influence of the protein shape on the line tension;

compare the spherical protein D to either A or C in Fig. 8.

The spherical protein is smoothly curved, inducing compar-

atively mild variations in the membrane composition h(r).
The corresponding line tension is small, providing only weak

attractive forces between membrane-adsorbed proteins.

Our final comment concerns the assumption of a step-like

profile for h(r) as has been employed in previous work (May

et al., 2002; Haleva et al., 2004). Fig. 8 b indicates strong, yet
not step-like, variations in the compositional profile, h(r).
Clearly then, Eq. 13, which was derived on the basis of a

step-like profile for h(r) (the so-called two-state model),

generally underestimates xc.

SUMMARY AND CONCLUSIONS

In this work we have analyzed the influence of electro-

statically adsorbed proteins on the stability of a mixed,
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two-component fluid lipid membrane, treating both electrostatic

and nonelectrostatic interactions in a mean-field level. The

electrostatic free energy was calculated using nonlinear

Poisson-Boltzmann theory, allowing for lipid lateral re-

organization in response to the interaction with the peripheral

macroion. Regular solution theory has been used to account

for the nonideal mixing properties associated with (the

nonelectrostatic) interlipid interactions. We have treated the

membrane as a binary fluid mixture of anionic and neutral

lipids with mol fractions f and 1 � f, respectively. The lipid

molecules interact nonideally with strength x . 0, favoring

attraction of lipids of the same species. The protein is

characterized by its shape, which we have modeled as disk-

like or spherical, the distribution of charges on its surface,

and its two-dimensional membrane concentration u. We

determined the stability limits and the critical constants of

the protein-dressed membrane using the spinodal equation as

a function of x, f, and u.

Table 1 summarizes our findings for the critical points of

the four model proteins A–D, as well as that of the protein-

free membrane M. Our main conclusion is that electrostat-

ically adsorbed proteins are indeed able to induce lateral

phase separation of the dressed membrane. A necessary

condition for this phenomenon is (positive deviations from)

nonideality due to the nonelectrostatic interactions between

lipids of the same species; that is, x . 0 in the mean-field

treatment. This result is in qualitative agreement with the

interpretation of recent experimental studies on protein-

induced domain formation in terms of attractive lipid-lipid

interactions (Hinderliter et al., 2001, 2004).

We have also shown that the extent to which the critical

point, xc, is lowered below that of a bare (protein-free) mem-

brane (where xc ¼ 3.7) depends sensitively on the shape of

the proteins and the charge distribution on their surface.

Proteins with high potential for domain formation have their

charges distributed on a (preferably flat) bottom face, rather

than on their side faces where they would give rise to direct

electrostatic interprotein repulsion. In general, when far

apart, domain-inducing proteins create a strongly varying

compositional profile of the membrane lipids, and thus large

positive line energy, providing a major driving force for lat-

eral phase separation of the composite membrane.

Modeling a macroscopically large, nonhomogeneous,

protein-dressed membrane necessarily requires approxima-

tions. Apart from treating all interactions in a mean-field level

and modeling the proteins as simple generic shapes, we have

adopted the continuum limit in considering the distribution of

charges in the membrane and the aqueous environment, thus

neglecting the discrete size of the lipid headgroups, salt ions,

and the molecular structure of water. Another significant

assumption of this work is to treat the lipid membrane as

being perfectly flat. Hence, any possible protein-induced

curvature changes are entirely suppressed. In this connection

it should be noted that theory predicts (see, for example,

Weikl, 2003 and Schiller et al., 2004) that elastic membrane

deformations can mediate either attractive or repulsive

interactions between membrane-adsorbed colloidal particles,

depending on membrane elasticity and particle shape. We

have not included the possibility of elastic membrane

deformations in this work because their action is not

necessarily coupled to the demixing of the underlying lipid

layer (in fact, a two-component membrane is not even

FIGURE 8 (a) Displays the line tension contribu-

tion to the total free energy, Flt, versus f, calculated at

x ¼ 3.0 and u ¼ 0.25 for systems A, C, and D; (b)

shows at f¼ 0.25 the corresponding local composition

h(r) of charged lipids.

TABLE 1 A summary of the critical points (the critical

nonideality parameter, vc, the critical membrane composition,

fc, and the critical protein coverage, uc) for the different protein

types, A, B, C, and D (see Fig. 4) that we have considered

A B C D M

xc 3.1 2.35 3.38 3.65 3.7

fc 0.38 0.44 0.60 0.63 0.63

uc 0.46 0.57 0.18 0.18 –

The last row (M) refers to the bare (protein-free) membrane.
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required). Similarly, we have not included here the possible

role of direct (as distinguished from membrane-mediated)

nonelectrostatic protein-protein interactions, because they

obviously depend on the size, shape, and chemical compo-

sition of the protein in question. The influence of such

interactions on the critical behavior of the dressed membrane

can be estimated by adding their contribution to that of the

membrane-mediated forces, as given for instance by the two-

state model.

Notwithstanding the various approximations and assump-

tions inherent to our theoretical analysis, we believe that its

general conclusions are valid and helpful in terms of under-

standing the physical originof protein-induceddomain forma-

tion in mixed membranes, and their dependence upon the

major structural characteristics of the adsorbed macroions.

APPENDIX

We shall derive the relation x ¼ Cv for a square lattice. The lattice points are

located at positions xi;j ¼ fxi;j; yi;jg ¼ ffiffiffiffi
al

p fi; jg with i; j ¼ 1 . . .
ffiffiffiffi
N

p
and al

being the cross-sectional area per lipid. Each of the N lattice points repre-

sents one lipid within the unit cell; the lateral area of the unit cell is A ¼ Nal.

The composition at position xi,j is hi,j.

Denote by e11, e22, e12 the interlipid, nearest-neighbor interaction energies
(subscript ‘‘1’’ refers to the charged and ‘‘2’’ to the uncharged lipid species).

In random mixing approximation the overall nonelectrostatic interaction

energy between charged lipids is

F11 ¼
1

2
+
i;j

e11hi;j½hi11;j 1hi�1;j 1hi;j11 1hi;j�1�: (16)

The sum runs over the whole lattice (that is, over all N lattice points), and the

factor of 1/2 avoids double counting of the interaction energies. Note that the

four terms in the brackets refer to the z¼ 4 nearest neighbors of a square lattice

(moregenerally, z is the coordinationnumber of the lattice).We reexpressF11 as

F11 ¼
1

2
+
i;j

e11f4h2

i;j 1hi;j½ðhi11;j � hi;jÞ � ðhi;j � hi�1;jÞ

1 ðhi;j11 � hi;jÞ � ðhi;j � hi;j�1Þ�g: (17)

In the continuum limit, we identify xi;j/x and yi;j/y with continuous

coordinates of the lattice. The sum, +
i;j/ð1=alÞ

R
dA; transforms into an

integration over the area A of the lattice, and

hi11;j � hi;j

xi11;j � xi;j
¼ 1ffiffiffiffi

al

p ðhi11;j � hi;jÞ/
dh

dx
; (18)

becomes the derivative along the x-direction. Similarly for the derivative

along the y-direction, ðhi;j11 � hi;jÞ=
ffiffiffiffi
al

p
/dh=dy: Hence, in the continuum

limit F11 is given by

F11 ¼
1

al

Z
dA

e11
2
½4h2

1 alhDh�: (19)

Using the identity hDh ¼ =(h=h) � (=h)2, applying Gauss law, and

assuming that the derivative of h in normal direction to the cell boundary

vanishes, we obtain

F11 ¼
1

al

Z
dA

e11
2
½�4hð1� hÞ � alð=hÞ2 1 4h�: (20)

Analogously, we obtain for the interaction energy between the uncharged

lipids

F22 ¼
1

al

Z
dA

e22
2
½�4ð1� hÞ � alð=hÞ2 1 4hð1� hÞ�;

(21)

and, finally, for the interaction energy between charged and uncharged lipids

F12 ¼
1

al

Z
dA e12½4hð1� hÞ1 alð=hÞ2�: (22)

A convenient reference state is that of a completely phase separated lipid

layer. The corresponding interaction energy in the reference state is

Fref ¼ 2N½e11f1 e22ð1� fÞ�; (23)

where f ¼ 1=ðalNÞ
R
dAh is the average composition of the lipid layer (see

also Eq. 5). The overall interaction energy, Fint ¼ F11 1 F22 1 F12 � Fref,

measured with respect to the reference state, is then

Fint ¼
x

al

Z
dAhð1� hÞ1 x

4

Z
dAð=hÞ2; (24)

where the nonideality parameter is x ¼ z[e12 � (e11 1 e22)/2] (recall the
coordination number z ¼ 4). Comparison with Eq. 6 shows that v ¼ x/C
with C ¼ 2. The calculation for a triangular lattice proceeds analogously

(with coordination number z ¼ 6). It leads to C ¼ 3, which is used in this

work.
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