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ABSTRACT Sensitivity analysis quantifies the dependence of system behavior on the parameters that affect the process
dynamics. Classical sensitivity analysis, however, does not directly apply to discrete stochastic dynamical systems, which have
recently gained popularity because of its relevance in the simulation of biological processes. In this work, sensitivity analysis for
discrete stochastic processes is developed based on density function (distribution) sensitivity, using an analog of the classical
sensitivity and the Fisher Information Matrix. There exist many circumstances, such as in systems with multistability, in which
the stochastic effects become nontrivial and classical sensitivity analysis on the deterministic representation of a system cannot
adequately capture the true system behavior. The proposed analysis is applied to a bistable chemical system—the Schlögl
model, and to a synthetic genetic toggle-switch model. Comparisons between the stochastic and deterministic analyses show
the significance of explicit consideration of the probabilistic nature in the sensitivity analysis for this class of processes.

INTRODUCTION

Parametric sensitivity is a simple yet powerful tool to

elucidate a system’s behavior and has found wide application

in science and engineering (Varma et al., 1999). In systems

biology, sensitivity analysis has been utilized in many

applications, e.g., to guide tuning of system parameters to

obtain a desired phenotype (Feng et al., 2004), to provide

a measure of information through the Fisher Information

Matrix for parameter estimation and design of optimal ex-

periments (Zak et al., 2003; Gadkar et al., 2004), and to give

insights into the robustness and fragility tradeoff in bi-

ological regulatory structures based on the rank-ordering of

the sensitivities (Stelling et al., 2004). The sensitivity co-

efficients describe the change in the system’s outputs due to

variations in the parameters that affect the system dynamics.

A large sensitivity to a parameter suggests that the system’s

performance (e.g., temperature, reactor yield, periodicity)

can drastically change with small variations in the parameter.

Vice versa, a small sensitivity suggests little change in the

performance. Knowledge of sensitivities can also help to

identify the driving mechanisms of a process without having

to fully understand the detailed mechanistic interconnections

in a large complex system.

Traditionally, the concept of sensitivity applies to con-

tinuous deterministic systems, e.g., systems described by

differential (or differential-algebraic) equations. The first-

order sensitivity coefficients are given by (Varma et al.,

1999)

Si;j ¼
@yiðtÞ
@pj

; (1)

where yi denotes the ith output, t time, and pj the jth parameter.

This equation follows directly from the definition of

parametric sensitivity above, and assumes implicitly that

the output yi is continuous with respect to the parameter pj.

Although this concept has wide applicability, it does not

directly apply to stochastic/probabilistic systems whose out-

puts take random values with probability defined by a density

function. Nevertheless, sensitivity analysis for stochastic

systems has been previously developed in which the stochas-

tic effects enter as additive Gaussian white noise (e.g.,

Langevin-type problems) (Costanza and Seinfeld, 1981;

Dacol and Rabitz, 1984) or as uncertainty in the parameters

(Feng et al., 2004).

Discrete stochastic modeling has recently gained popu-

larity because of its relevance in biological processes

(McAdams and Arkin, 1997; Arkin et al., 1998) which ac-

hieve their functions with low copy numbers of some key

chemical species. Unlike the solutions to stochastic differ-

ential equations, the states/outputs of discrete stochastic

systems evolve according to discrete-jump Markov pro-

cesses, which naturally lead to a probabilistic description of

the system dynamics. The states and outputs are random

variables governed by a probability density function which

follows a chemical master equation (CME) (Gillespie,

1992a,b). The rate of reaction no longer describes the

amount of chemical species being produced or consumed per

unit time in a reaction, but rather the likelihood of a certain

reaction to occur. Though analytical solution of the CME

is rarely available, the density function can be constructed

using the stochastic simulation algorithm (Gillespie, 1976).

This work aims to develop parametric sensitivity analysis

for discrete stochastic systems described by CMEs. Four

sensitivity measures were formulated based on a direct ex-

tension of the deterministic sensitivity and on the Fisher In-

formation Matrix (FIM) from information theory (Cover and

Thomas, 1991). In addition, the stochastic effects in certain
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systems can give rise to distinctive density functions,

involving multimodality, which necessitate application of

the proposed analysis. Here, multimodality relates closely to

stochastic systems with multiple attractors operating around

a bifurcation point. Such mechanisms are commonly en-

countered in cellular processes, for example in a cell’s

decision-making and regulation. The proposed analysis was

applied to two representative examples depicting these cir-

cumstances: a prototype chemical reaction network—the

Schlögl model (Gillespie, 1992b), and a model for a synthetic

genetic toggle switch in Escherichia coli (Gardner et al.,

2000). The toggle switch consists of two repressor-promoter

pairs aligned in a mutually inhibitory network. Comparisons

of classical and stochastic sensitivity analysis demonstrate

the significance of an explicit treatment of the probabilistic

behavior in the analysis of these systems. To the authors’

knowledge, this work represents the first sensitivity analysis

study for discrete stochastic systems described by chemical

master equations.

DISCRETE STOCHASTIC
SENSITIVITY MEASURES

In discrete stochastic systems, the states and outputs are

random variables characterized by a probability density

function. The model parameters affect the outputs indirectly

through a chemical master equation which describes the

evolution of the corresponding density function. The sen-

sitivity as defined in Eq. 1 requires continuity of the outputs

with respect to the parameters and hence does not directly

apply to discrete stochastic outputs. However, the notion of

sensitivity suitably applies to the density function which

characterizes the system outputs. Hence, a direct analog of

classical parametric sensitivity in Eq. 1 for a discrete

stochastic system is given by (Costanza and Seinfeld, 1981)

Sjðx; tÞ ¼
@f ðxðpÞ; tÞ

@pj

; (2)

where f is the density function, x denotes the vector of states

and outputs, and p denotes the vector of parameters. The

aforementioned sensitivity yields a sensitivity measure for

discrete stochastic systems:

SjðtÞ ¼ E

����@f ðx; tÞ@pj

����
� �

¼
Z
X

����@f ðx; tÞ@pj

����f ðx; tÞdx: (3)

As the states and outputs are described by a single

probability density function, the sensitivity coefficient of

a single output with respect to a parameter as in Eq. 1 does

not exist in this circumstance. The dependence of the states x
with respect to the parameters is implicitly assumed. If the

outputs assume integer values, then the integral is replaced

by a sum. For the purpose of this article, the sensitivity

coefficient is concerned only with the magnitude of changes

in the density function and hence the absolute operator in Eq.

3.

The differences between the original development of Eq. 2

(Costanza and Seinfeld, 1981) and its use in this work as

sensitivity coefficient warrant further remarks. The sensitiv-

ity coefficient in Eq. 2 was first introduced to determine

the uncertainty of the states x due to the uncertainty of the

parameters. In other words, the probabilistic nature of the

states arises from the uncertainty in the parameters. In

contrast, the chemical master equation gives rise to random

values of the states as a result of internal stochastic effects,

due to the low copy number of molecules involved in the

reactions. Consequently, the computation of the coefficients

in Eq. 2 differs between the two approaches. In the original

development, such coefficients were derived and solved

using a Fokker-Planck equation (Costanza and Seinfeld,

1981). On the other hand, direct derivation of these coef-

ficients using the CME yields a highly complex equation,

which motivates our use of a finite difference approach (see

Sensitivity Analysis of Chemical Master Equations, below).

The stochastic sensitivity as defined above is closely

related to the score function in information theory (Cover

and Thomas, 1991):

S̃jðx; tÞ ¼
@ log f ðx; tÞ

@pj

: (4)

The score function gives the gradient of the log-likelihood

function (Beck and Arnold, 1977) and has a strong relevance

in parameter estimation problems, as its variance J describes

the (maximum) information that can be extracted from (ran-

dom) measurements to estimate the corresponding parameter

values p (note that the expected value of the score function

equals to zero):

J ¼ E
�
ð=plogf Þð=plogf ÞT

�
: (5)

The variance, known as the Fisher Information Matrix,
defines the lower bound on the uncertainty in the parameter

estimates according to the Cramer-Rao inequality (Cover

and Thomas, 1991)

Vp $ J
�1
; (6)

where Vp denotes the covariance of unbiased parameter

estimates.

This work adopts the Fisher Information Matrix as a mea-

sure of the sensitivities of a discrete stochastic system, based

on new interpretations of the FIM (see below). Without loss

of generality, the remainder of this section assumes that the

density function follows a Gaussian distribution

f ¼ ð2pÞ�n=2jVj�1=2
exp �1

2
ðx� xÞT

V
�1ðx� xÞ

� �
; (7)

where n denotes the number of parameters and xx is the mean.

Under this assumption, the FIM reduces to
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J ¼ S
T
V

�1
S; (8)

where S denotes the sensitivity matrix as defined in Eq. 1 and

V�1 denotes the measurement covariance (measurement

error) (Beck and Arnold, 1977). Thus, aside from its con-

ventional use as a measure of information content, Eq. 8

motivates a new utility of the FIM as a consolidation of

(weighted) sensitivities. In general, the FIM captures the

sensitivity of the (log) distribution with respect to the

parameters as shown in Eq. 5. The simplified FIM of Eq. 8

provides the basis of recently-developed hybrid sensitivity

analysis schemes, where the sensitivity matrix S is computed

deterministically and the covariance V is obtained from

stochastic simulations (Bagheri et al., 2003).

The use of the FIM as a sensitivity measure requires novel

interpretations of the properties of this matrix. The FIM

captures not only the first-order sensitivities of the system,

but also the effects of parametric interactions (second-order

sensitivities). Three sensitivity measures can be derived

based on the FIM—the diagonal elements, the eigenvalues,

and the inverse of standard deviations (i.e., the inverse of the

diagonals of Vp). The diagonal elements of the FIM represent

the magnitudes of the sensitivities with respect to each in-

dividual parameter. Under the Gaussian assumption, these

elements are equal to the weighted norms of the first-order

sensitivities:

Ji;i ¼ S
T

i V
�1
Si ¼ kSik2

V
�1 : (9)

The eigenvalues of the FIM represent the magnitudes of the

sensitivities with respect to simultaneous parameter varia-

tions whose relative magnitudes and directions are given by

the corresponding eigenvectors. The product of the eigen-

values presents an index of the information content for use in

the design of optimal experiments, known as D-optimality
(Emery and Nenarokomov, 1998). Here, each eigenvalue is

assigned as the sensitivity measure with respect to the

parameter that corresponds to the element of the eigenvector

with the largest magnitude. Thus, a parameter may have

more than one sensitivity measure, whereas others may not

have an assigned measure (i.e., there may not be a one-to-one

correspondence between the eigenvalues and the parame-

ters). Finally, the diagonal elements of the matrix Vp are the

square of the standard deviations of the parameters, and their

sum is used in the design of optimal experiments as another

index of information content known as A-optimality (Emery

and Nenarokomov, 1998). Based on Eq. 6, the standard

deviations inversely correlate with the sensitivity of the

system. As with the eigenvalue measures, the standard devi-

ations incorporate the parametric interactions, but without the

problematic one-to-one correspondence. The computation of

standard deviation, however, is more prone to numerical

inaccuracy in matrix inversion. These new interpretations of

the diagonal elements, eigenvalues, and standard deviations

of FIM provide sensitivity measures with different attributes,

and thus should be utilized and compared accordingly.

SENSITIVITY ANALYSIS OF CHEMICAL
MASTER EQUATIONS

The discrete stochastic system of interest is described by

a chemical master equation (Gillespie, 1977)

df ðx; tjx0; t0Þ
dt

¼ +
m

k¼1

akðx� nk; pÞf ðx� nk; tjx0; t0Þ

� akðx; pÞf ðx; tjx0; t0Þ; (10)

where f(x, t|x0, t0) is the conditional probability of the system

to be at state x and time t, given the initial condition x0 at

time t0. Here, ak denotes the propensity functions, nk denotes

the stoichiometric change in x when the kth reaction occurs,

and m is the total number of reactions. The propensity

function ak(x, p)dt gives the probability of the kth reaction to

occur between time t and t 1 dt, given the parameters p. As

the state values are typically unbounded, the CME essen-

tially consists of an infinite number of ODEs, whose

analytical solution is rarely available except for a few simple

problems. The stochastic simulation algorithm (SSA) pro-

vides an efficient numerical algorithm for constructing the

density function (Gillespie, 1976). The algorithm follows a

Monte Carlo approach based on the joint probability for the

time to and the index of the next reaction, which is a function

of the propensities. The SSA indirectly simulates the CME

by generating many realizations of the states (typically in the

order of 104) at a specified time t, given the initial condition

and model parameters, from which the distribution f(x, t|x0,

t0) can be constructed as discussed next.

The evolution of sensitivity coefficients in Eq. 3, as well as

the score function, can be derived from the CME by taking

the derivative with respect to the parameters

dSjðx; tjx0; t0Þ
dt

¼ +
m

k¼1

akðx�nk;pÞSjðx�nk; tjx0; t0Þ

�akðx;pÞSjðx; tjx0; t0Þ1
@akðx�nk;pÞ

@pj

3f ðx�nk; tjx0; t0Þ�
@akðx;pÞ

@pj

f ðx; tjx0; t0Þ;

(11)

where Sj is the stochastic sensitivity coefficient with respect

to the jth parameter. Such an equation should be solved

simultaneously with the CME. As with the CME, the infinite

dimensionality of the coupled sensitivity-CME differential

equation makes its analytical solution difficult to construct.

Moreover, the SSA cannot be directly applied to solve the

sensitivity equation without loss of rigorous physical basis

(Gillespie, 1992a). These reasons motivate application of

a black-box approach, such as finite difference, to estimate

the sensitivity coefficients below.

The probability density function approximation begins

with the construction of a cumulative distribution function

from the SSA realizations. The cumulative distribution func-

tion is given by

2532 Gunawan et al.

Biophysical Journal 88(4) 2530–2540



FðxÞ ¼
Z x

�N

f ðx̃Þdx̃; (12)

which gives the density function f(x) as the derivative of

F(x), i.e.,

f ðxÞ ¼ dF

dx
: (13)

The above equations assume that x is one-dimensional.

Extension to multidimensional x is straightforward. The

stochastic sensitivity in Eq. 2 and the FIM were estimated

using centered difference approximation (finite difference

method) such that the density function sensitivity was com-

puted according to

@f

@pj

¼ f ðx;pj1DpjÞ� f ðx;pj �DpjÞ
2Dpj

: (14)

The perturbation Dpj should be small enough to minimize

truncation error, but large enough to avoid sensitivity to sim-

ulation error. The deterministic sensitivity coefficients were

computed using the direct method derived from the ordinary

differential equations (Varma et al., 1999).

STOCHASTIC VERSUS
DETERMINISTIC ANALYSIS

Before proceeding to the application of the proposed

sensitivity analysis, it is prudent to identify the stochastic

circumstances under which the sensitivity analysis of deter-

ministic models can potentially fail and thus necessitate the

use of discrete stochastic analysis. The fundamental differ-

ence between the deterministic and stochastic analysis is in

the type of system behavior changes that are measured in

each analysis. The deterministic analysis considers changes

in the underlying distribution that lead to proportional

modulations in the lumped variables such as the mean or

mode of the distribution. On the other hand, the stochastic

sensitivity analysis directly measures the overall changes in

the density function. As different distributions can have the

same lumped representation, the use of lone lumped vari-

ables limits the applicability of the deterministic analysis to

general discrete stochastic systems.

The simplest example of such circumstances is shown in

Fig. 1. Here, the parameter perturbation induces large changes

in the distribution entropy (uncertainty) (Cover and Thomas,

1991) without an appreciable shift of the mean (mode).

Assuming that the deterministic model represents the mean

(mode) of the distribution, classical sensitivity analysis will

incorrectly suggest that the system is insensitive to the pa-

rameter perturbation, because the mean (mode) of the distri-

bution changes very little. The conclusion will be different

when the variations of the full distribution, rather than only

the mean or mode, are accounted for in the analysis. The

stochastic analysis of this example will correctly suggest

a strong sensitivity with respect to this parameter.

Much richer variations in these circumstances can arise

from a form of nonlinear dynamics, namely multistability. A

deterministic multistable system occurs when there exists

more than one attractor, for which small variations in the

bifurcating variable will lead to very different steady states.

However, the existence of multiple attractors has much less

pronounced effects on the density functions, which will

assume multimodal distributions of the states (see next sec-

tion). When the modes of the distribution are close enough,

the stochastic dynamics may exhibit flip-flops between the

two attractors. Such mechanisms are believed to play an

important role in biological systems, acting for example as

dynamical switches (Arkin et al., 1998). Again, the deter-

ministic model can provide only a lumped representation of

this distribution; typically the mean or mode of one of the

modalities. In this case, the differences between the deter-

ministic and stochastic analysis can arise in multiple situ-

ations such as shown in Fig. 2. The example process in Fig.

2 a displays the same behavior as in Fig. 1, but manifested in

a bimodal distribution (large change in distribution entropy

with small change in mean/mode of each modality). How-

ever, in the case of multimodal distribution, other circum-

stances can arise such that the density function perturbations

keep the distribution entropy and means/modes of modalities

approximately the same. For example, the parameter pertur-

bation can induce a shift in the weights (area under the

density function) between the two modalities such as shown

in Fig. 2 b, or cause opposite distribution entropy changes

(see Fig. 2 c). In addition, another example can arise from the

difference in the sensitivities of the attractors (see Fig. 2 d).

In all of the aforementioned behaviors, the deterministic

analysis may arrive at incorrect results because the true

sensitivity of the density function is not reflected in the

sensitivity of the lumped variable.

FIGURE 1 An example of a sensitive distribution with insensitive mean

value. The nominal distribution is shown in solid representation and the

perturbed distributions are shown in dashed representation.
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EXAMPLES

Schlögl model

The Schlögl model describes a prototype chemical reaction

network (Gillespie, 1992b),

A12X%
a1

a2

3X; (15a)

B%
a3

a4

X; (15b)

where the concentrations A and B are kept constant

(buffered) and the reaction rate constants kj are the model

parameters. The propensity functions for these reactions are

a1 ¼ k1AXðX�1Þ=2; (16a)

a2 ¼ k2XðX�1ÞðX� 2Þ=6; (16b)

a3 ¼ k3B; (16c)

a4 ¼ k4X: (16d)

This system possesses two stable steady states for the

parameter values in Table 1. Fig. 3 shows the deterministic

and SSA simulations of the Schlögl model for the two initial

states X0 ¼ 247 and X0 ¼ 250. The deterministic simulation

with smaller initial value converged to the left mode, and

vice versa, the one with larger initial value to the right mode

of the distribution. The bifurcation at approximate initial

condition X0 � 247 was apparent from the deterministic

simulations, but the density functions from the stochastic

simulations differed very little. In fact, the stochastic effects

blur the bifurcation point as shown in Fig. 4, where the

transition from lower stable steady state at low X0 to higher

steady state at high X0 in the stochastic simulations

proceeded more smoothly than in the deterministic counter-

part. Around the bifurcation point, the density functions

become bimodal representing the existence of two attractors.

The stochastic sensitivity analysis was first applied to the

Schlögl model with initial condition slightly lower than the

bifurcation point X0 ¼ 247. A representation of distribution

changes due to variations in a parameter is shown in Fig. 5.

Since the deterministic and stochastic sensitivity coefficients

have different units, the comparisons between the two

analyses focus on the relative ordering of the parametric

sensitivity magnitudes. The ordering of the sensitivities also

provides information on the robustness of the system with

respect to parameter uncertainties (Stelling et al., 2004). The

parameters with larger (relative) sensitivities represent the

FIGURE 2 A bistable system with different sensitivities between the two

modalities. The nominal distribution is shown in solid representation and the

perturbed distribution in dashed representation. Here, the parameter

perturbation causes: (a) small change in the mean/mode of each modality

but large change in distribution entropy, (b) a shift in the weights of the

modalities (area under the density function), (c) opposite changes in

distribution entropies of the two modalities, and (d) unequal sensitivities in

the means/modes of the modalities.

FIGURE 3 Deterministic and SSA simulations of the bistable Schlögl

model for the initial conditions X0 ¼ 247 (top) and X0 ¼ 250 (bottom). The

solid circles represent the deterministic trajectories. Each distribution is

constructed from 10,000 realizations of the state X.

TABLE 1 Schlögl parameter values

Parameters Values

k1A 3 3 10�2

k2 10�4

k3B 2 3 102

k4 3.5
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fragilities of the system. The sensitivities were normalized to

the parameter values, i.e.,

�SSj ¼ Sjpj: (17)

In deterministic analysis, the sensitivity coefficients were

also normalized with respect to the nominal output values,

i.e.,

�SSi;j ¼ Si;j

pj

yi

: (18)

The sensitivities in Eq. 17 require no normalization to the

output values because the density functions integrate to 1:Z N

�N

f ðxÞdx¼ 1: (19)

The notation �SS is used for both deterministic and stochastic

sensitivity, but the differences should be clear from the

subscript. Fig. 6 b shows the deterministic sensitivity

ordering, whereas the corresponding stochastic sensitivities

are shown in Fig. 7 at steady state (t ¼ 20). The first

stochastic sensitivity measure (direct in Fig. 7) corresponds

to Eq. 3, whereas the remaining three represent the FIM-

based sensitivity measures. Since the FIM correlates with the

square of sensitivities, the square-roots of the FIM diagonals

and eigenvalues give the proportional measures for compar-

ison with the deterministic analysis. Among the four sto-

chastic sensitivity measures, the direct and FIM diagonals

are the closest analog of the classical sensitivity because they

represent the sensitivity with respect to independent param-

eter perturbations. The sensitivity measures were obtained

from 100 independent samples of each sensitivity measure,

to yield the averages and standard deviations shown in these

figures.

Similar comparisons were also done using an initial

condition on the opposite side of the bifurcation point X0 ¼
250, as well as initial conditions away from the bifurcation

FIGURE 4 Steady-state density functions of the Schlögl model (t ¼ 20)

around the bifurcation point. Stochastic effects produced diffused transition

from low to high X attractor.

FIGURE 5 Density function changes arising from 1% perturbations of the

parameter k1A.

FIGURE 6 Deterministic sensitivity ordering of the Schlögl model at

different initial conditions; (a) X0 ¼ 80, (b) X0 ¼ 247, (c) X0 ¼ 250, and (d)

X0 ¼ 560.

FIGURE 7 Stochastic sensitivity ordering for the Schlögl model with

initial condition X0 ¼ 247 using different sensitivity measures.
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point X0 ¼ 100 and X0 ¼ 500 at time t ¼ 20. The last two

initial conditions led to unimodal distributions, as expected

from Fig. 4. Figs. 6 and 8 present the deterministic and sto-

chastic sensitivity results based on the direct and FIM dia-

gonals. The FIM eigenvalues and standard deviations were

in general agreement (not shown). Far from the bifurcation

point, the deterministic and stochastic analysis showed good

agreement. Around the bifurcation point, the deterministic

analysis from both sides of the bifurcation point differed

from the stochastic analysis due to one of the discriminating

circumstances described in the previous section (see also

Fig. 5).

Genetic toggle switch

Systems with multiple steady states including hysteresis

effects are widely used in modeling of biological processes,

for example, in a cell’s decision making (Arkin et al., 1998),

cell cycle regulation (Pomerening et al., 2003), and mitogen-

activated protein kinase cascades (Ozbudak et al., 2004). In

fact, bistability has been a recurrent property observed in

networks of cell signaling pathways (Bhalla and Iyengar,

1999) and provides an avenue for cell differentiation and

evolution (Laurent and Kellershohn, 1999). Recently,

scientists have engineered such systems in vivo based on

a simple mathematical model of two repressor-promoter

pairs using DNA recombinant techniques (Gardner et al.,

2000), which opens the gate for more advanced genetic

switch design.

The second example is a model of the aforementioned

synthetic genetic toggle switch consisting of two repressor-

promoter pairs, lacI repressor with Ptrc-2 promoter and

a thermal sensitive l-repressor cIts with PLs1con promoter,

aligned in a mutually inhibitory manner (Gardner et al.,

2000). Here, the expression of lacI represses the activity of

Ptrc-2, which is the promoter of cIts, and vice versa, the

expression of cIts inhibits the promoter PLs1con of lacI (see

Fig. 9). The ON-OFF states are indicated by inserting a green

fluorescence protein (GFP) gene downstream of cIts such

that the transcription from Ptrc-2 will light up the cell (ON

state). Addition of the inducer isopropyl-b-D-thiogalacto-

pyranoside (IPTG) will bias the distribution to the ON state

by binding to the lacI repressor and thus inhibiting its activity

(Jacob and Monod, 1961). The reverse switch can be

accomplished by a thermal pulse, but will not be investigated

here. A simple model for this system has been proposed,

with two states describing the concentration of each re-

pressor (Gardner et al., 2000):

d½lacI�
dt

¼ a1

11 ½cIts�b
�½lacI� (20a)

d½cIts�
dt

¼ a2

11 ½lacI
��g �½cIts�; (20b)

where

½lacI
�� ¼ ½lacI�

ð11 ½IPTG�=KÞh: (21)

The parameter values are listed in Table 2. Note that the

value of parameter K differs from that reported in Gardner

et al. (2000), as the stochastic effects around the bifurcation

point caused switching from the OFF state to the ON state at

lower [IPTG], and thus led to lower observed K for the

deterministic model (K ¼ 2.9618 3 10�5; Gardner et al.,

2000). The value of K used here was obtained to better match

the flow cytometry measurements for the fraction of ON cells

at different [IPTG] concentrations (Fig. 5 b in Gardner et al.,

2000). Fig. 10 shows the deterministic switching between the

two stable steady states, high [lacI] with low [cIts] (OFF) and

FIGURE 8 Stochastic sensitivity ordering for the Schlögl model with

initial conditions; (a–b) X0 ¼ 90, (c–d) X0 ¼ 250, and (e–f) X0 ¼ 560, based

on the direct (left column) and FIM diagonals (right column). The FIM

eigenvalues and standard deviations gave similar sensitivity orderings (not

shown).

FIGURE 9 Synthetic genetic toggle switch (PTAK plasmid in Gardner

et al., 2000).
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low [lacI] with high [cIts] (ON), as a function of the [IPTG]

levels. The cells were initially grown in the OFF state.

The stochastic sensitivity analysis started with the for-

mulation of a stochastic version of the model by assigning

a representative reaction to each rate equation:

:/
aãa1

lacI; (22a)

lacI/
aãa2

:; (22b)

:/
aãa3

cIts; (22c)

cIts/
aãa4

:; (22d)

where aãai are the propensity functions involving possibly

non-elementary reactions (e.g., Michaelis-Menten or Hill

type expressions). The propensities come directly from the

rates in the model normalized to the system volume V:

aãa1 ¼
a1V

11ð½cIts�d=VÞb
; (23a)

aãa2 ¼ ½lacI�
d
; (23b)

aãa3 ¼
a2V

11ð½lacI
��dÞ

g; (23c)

aãa4 ¼ ½cIts�d; (23d)

where the discrete concentrations (denoted by the subscript d)

[lacI]d and [cIts]d assume integer values and

½lacI
��d ¼

½lacI�d
Vð11 ½IPTG�=KÞh: (24)

The parameters were the same as in the deterministic model

listed in Table 2. Around the bifurcation point, the stochastic

system exhibited a bimodal distribution associated with the

ON and OFF states, and the stochastic effects introduced

flip-flops between the two stable steady states as shown in

Fig. 11. The GFP fluorescence distribution in Fig. 11 was

computed from the states according to

I¼ A�C13½lacI�d1C23½cIts�d; (25)

where I is the fluorescence intensity which is assumed to be

a linear function of the concentrations (Gaigalas et al., 2001),

A is the leakage expression, and C1 and C2 represent the

efficacy of the lacI repressor and the GFP to cIts expression

ratio, respectively. These constants were selected to obtain

qualitative matches with the flow cytometry data (Gardner

et al., 2000) (A ¼ 420, C1 ¼ 2, C2 ¼ 50). As in the Schlögl

model, the stochastic transitions from the OFF to the ON

state as a function of [IPTG] were smoother than the

deterministic simulations, as shown in Fig. 12. Notice that

the bimodality exhibited itself with [IPTG] level as low as 3

3 10�5, far less than the bifurcation point at [IPTG] ¼ 8 3

10�5. Figs. 13–15 present the deterministic and stochastic

sensitivity ordering for different inducer concentrations

around the bifurcation point. Again, the density functions

were constructed from a run of 10,000 independent SSA

realizations and the sensitivity measures were obtained from

100 independent runs. As in the Schlögl example, the

deterministic and stochastic sensitivity orderings agreed

when the density function is unimodal (see Fig. 14), but

differed when the distribution becomes bimodal (see Fig. 15).

DISCUSSION

Comparison among the sensitivity orderings in the two

examples showed discrepancies between the deterministic

and discrete stochastic analysis around the bifurcation point,

in particular when the distribution function becomes bimodal.

There are (at least) two explanations for the differences in the

TABLE 2 Genetic toggle-switch parameter values

Parameters Values

a1 156.25

a2 15.6

b 2.5

g 1

h 2.0015

K 6.0 3 10�5

FIGURE 10 Switching between the ON-OFF states as a function of

[IPTG]. The bifurcation point is ;[IPTG] ¼ 7.9 3 10�5. The concentrations

[lacI] and [cIts] are taken at the steady-state level (t ¼ 1000).

FIGURE 11 Bimodal density function arising from bistability (shown at

[IPTG] ¼ 4.0 3 10�5). The stochastic effects also introduced flip-flops

between the two stable steady states.
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sensitivity ordering. The main reason is that the stochastic

analysis was able to capture the sensitivities of the two

attractors simultaneously. In other words, the sensitivity

features of both steady states concurrently affected the

stochastic analysis, but not the deterministic analysis. In the

Schlögl model, the two most sensitive parameters around the

bifurcation point in the stochastic analysis (Figs. 7 and 8,

c and d) were exactly the most sensitive parameters of both

attractors independently, according to the deterministic

analysis (see Fig. 6). Similarly, the stochastic sensitivity of

the genetic toggle switch showed combinations of de-

terministic sensitivity ordering of the two attractors. For

example, at [IPTG] ¼ 4 3 10�5, the four most sensitive

parameters consisted of the most sensitive parameters from

both sides of the bifurcation point.

The second reason for the observed differences was an

indirect consequence of the main reason. In the Schlögl

model, the more sensitive right attractor induced a waterbed

effect, leading to little change in the mean but significant

change in the shape of the distribution around the left

attractor (see Fig. 5). The waterbed effect arose from the

constraint that the integral under the density function should

equal to 1 (see Eq. 19). This effect corresponds to the sto-

chastic behavior described in Fig. 2 b. Away from the bifurc-

ation point, however, the stochastic simulations gave unimodal

distributions, and the stochastic and deterministic sensitive

orderings exhibited good agreement.

The four sensitivity measures were in general agreement

with each other, despite the differences in their interpreta-

tions. The direct and FIM diagonals are closely related to the

first order sensitivity such as Eq. 1, from their definitions.

FIGURE 12 Stochastic transition from the OFF to ON state as a function

of the inducer [IPTG] level.

FIGURE 13 Deterministic sensitivity ordering for the genetic toggle

switch at different inducer concentrations. The bifurcation point occurs at

[IPTG] ¼ 7.9 3 10�5.

FIGURE 14 Stochastic sensitivity ordering for the genetic toggle switch

at an inducer concentration: (a–b) [IPTG] ¼ 2.0 3 10�5 and (c–d) [IPTG] ¼
8.0 3 10�5. At these concentrations, the density functions are unimodal (see

Fig. 12). The FIM eigenvalues and standard deviations gave similar

sensitivity orderings (not shown).

FIGURE 15 Stochastic sensitivity ordering for the genetic toggle switch

at an inducer concentration [IPTG] ¼ 4.0 3 10�5.
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The FIM eigenvalues and the standard deviations have less

direct correlation with the classical sensitivity, but they carry

additional information about the system behavior under

simultaneous multiple parameter perturbations, and led to the

differences shown in Fig. 15. These measures are closely

related to information content and parametric uncertainty

in parameter estimation problems, i.e., eigenvalues to

D-optimality and standard deviations to A-optimality (Emery

and Nenarokomov, 1998). The eigenvalue analysis suggests

that the sensitivities were correlated, as indicated by the large

magnitude of the differences between the largest and the re-

mainder of the eigenvalues. This is confirmed by plotting the

sensitivity of density function explicitly, as shown in Fig. 16.

The differences between the classical and stochastic

analysis above give support for rigorous consideration of

the stochastic effects in studying small systems. These

differences could lead to different interpretations of the key

mechanism(s) responsible for a given phenotype, or

strategies in the design and engineering of in vivo biological

circuits, in particular bistable switches. In the latter, the

design will utilize not only the absolute magnitude of the

sensitivity used in this work, but also the overall sensitivity

of the density function as in Fig. 16. The engineering of

genetic switches and other biological circuits will then aim to

achieve the desired distribution of the cell population, not

just the average behavior, through manipulation of the sen-

sitive parameters using methods such as genetic mutation

and over- or underexpression of certain genes. The design of

cell population distribution can borrow approaches in dis-

tribution control from other areas, especially particulate systems

(Braatz and Hasebe, 2002; Daoutidis and Henson, 2002;

Doyle et al., 2002).

The genetic toggle-switch example also motivates explicit

treatment of the stochastic effects in model development and

parameter estimation. In particular, the early onset of

bifurcation due to the stochastic dynamics led to incorrect

parameter values, which was only apparent after observing

the stochastic simulations. Similar behavior around the bi-

furcation point has also been observed in the Hopf bifur-

cation of Drosophila circadian rhythm, leading to an early

onset of oscillations (Gonze et al., 2003). In such situations,

stochastic paradigms such as the CME or chemical Langevin

equation can provide information on the system dynamics

that is missing from deterministic models.

CONCLUSIONS

Sensitivity analysis of discrete stochastic processes incorpo-

rates the dynamics of the density function explicitly. In small

systems exhibiting multistability, the stochastic effects

around the bifurcation point manifest as multimodal density

functions and spread out the transitions between different

steady states (i.e., the stochastic effects annihilate the

bifurcation between steady states). The deterministic and

stochastic sensitivity analysis around such a bifurcation point

can lead to different conclusions, as the deterministic model

lacks the information of the true dynamics in the transition.

In addition, stochastic effects can induce early/late onset of

the bifurcating behavior, which then leads to inaccurate pre-

diction of the observed bifurcation point in the deterministic

model. Applications and comparisons of the deterministic

and discrete stochastic analysis applied to the Schlögl model

and a genetic toggle switch model demonstrated the impor-

tance of applying the appropriate sensitivity analysis accord-

ing to the dynamics of the process.
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