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ABSTRACT Pyelonephritis-associated pili (Pap) expression in uropathogenic Escherichia coli is regulated by a complex phase
variation mechanism involving the competition between leucine-responsive regulatory protein (Lrp) and DNA adenine methylase
(Dam). Population dynamics of pap gene expression has been studied extensively and the detailed molecular mechanism has
been largely elucidated, providing sufficient information for mathematical modeling. Although the Gillespie algorithm is suited for
modeling of stochastic systems such as the pap operon, it becomes computationally expensive when detailedmolecular steps are
explicitly modeled in a population. Here we developed aMarkovChainmodel to simplify the computation. Ourmodel is analytically
derived from the molecular mechanism. The model presented here is able to reproduce results presented using the Gillespie
method, but since the regulatory information is incorporated before simulation, our model runs more efficiently and allows
investigation of additional regulatory features. The model predictions are consistent with experimental data obtained in this work
and in the literature. The results show that pap expression in uropathogenic E. coli is initial-state-dependent, as previously
reported. However, without environment stimuli, the pap-expressing fraction in a population will reach an equilibrium level after
;50–100 generations. The transient time before reaching equilibrium is determined by PapI stability and Lrp and Dam copy
numbers per cell. This work demonstrates that the Markov Chain model captures the essence of the complex molecular
mechanism and greatly simplifies the computation.

INTRODUCTION

Phase variation is an important mode of regulation in patho-

genic operons. Phase variation can be characterized by a

random transition in promoter configurations that result either

in a highly transcriptionally active state (ON) or an inactive

state (OFF). Associated with each promoter configuration, or

operon state, is a corresponding steady state of the protein

product of the operon. Transitions between operon states (and

therefore protein steady state) occur with a frequency of

;10�2–10�5 cells (cycles) per generation (Blyn et al., 1989).

It is thought that this mechanism allows for a phenotypically

diverse bacterial colony and ensures survival of at least a few

individuals by always having some members already pre-

pared for aplethora of environmental and immunogenic insult.

(For a review of phase variation, see Henderson et al., 1999;

Hernday et al., 2004, 2003, 2002.)

There are two fundamental approaches to model a coupled

system of chemical reactions: deterministic and stochastic.

The deterministic approach uses a set of differential equa-

tions to describe the system. It assumes the number of

molecules can be approximated as a continuously varying

quantity that varies deterministically, and the fluctuation

around the average value of concentration is relatively small

(Gibson and Bruck, 2000). These assumptions break down

for biological systems, since the number of mRNA or

proteins in cells is so small that the traditional continuous

deterministic approximation does not capture the stochastic

nature of the system.

Stochastic simulation of complex cellular processes using

the Gillespie algorithm (Gillespie, 1976) has become com-

mon practice (McAdams and Arkin, 1997; Arkin et al., 1998;

Wolf and Arkin, 2002) but remains computationally expen-

sive despite recent progress in optimizing its performance

(Gibson and Bruck, 2000; Gillespie, 2001). A continuous-

time Markov model was previously used to infer system

properties of the fim operon regulated by DNA inversion

(Wolf and Arkin, 2002). The key feature of the fim model is

that Markov states are represented as different protein-DNA

complex configurations combined with mean cytosolic levels

of regulatory protein at high or low steady-state concen-

trations. This fundamental modeling insight massively

reduces the level of minutia that needs to be modeled and

speeds up simulations by orders of magnitude.

Previously, we have used the Gillespie method to model

Pap phase variation (Jarboe et al., 2004). Here we derive

a Markov Chain model with discrete time and discrete state

for the same system. Phase variable operons are typically

slow switching with respect to the protein response time. The

response time is a measure of the time it takes for a protein to

reach the steady-state level after the operon state switches.

This slow-operon-switching-fast-protein-response-time pro-

perty effectively locks the operon into a particular transcrip-

tional activity level for a long period of time (on the order of

the life cycle of the bacterium or longer). This feature of the

pap operon allows us to discretize the state space according

to its DNA methylation pattern and leucine-responsive

protein (Lrp) binding pattern. The operon state switches at
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the early stage of the cell cycle. Once the state is determined,

it remains unchanged for the rest of the cell life before

division. Thus, the timescale of our Markov Chain is cell

generation and large blocks of time can be skipped between

two state transitions by this discrete time point of view. More

importantly, the Markov method encodes the molecular

mechanism in the state transition matrix so that the operon

state transition can be determined by the transition matrix in

one step. The simulation is significantly accelerated com-

pared to the Gillespie method. In this work, we developed a

Markov Chain model based on the known molecular mecha-

nisms and investigated the population dynamics of pap
operon. This method reproduces the results obtained using

the Gillespie method (Jarboe et al., 2004) and the increased

computational efficiency allows investigation of additional

regulatory features.

Summary of pap operon regulation

The detailed pap operon regulatory mechanism is reviewed

elsewhere (Henderson et al., 1999; Hernday et al., 2004,

2003, 2002), and summarized in a previous modeling work

(Jarboe et al., 2004). Our model focuses on the role of three

regulatory proteins: DNA adenine methylase (Dam), Lrp,

and PapI. The core of the Pap phase-variability is the com-

petition between Lrp and Dam within the regulatory region.

The pap regulatory region encompasses the divergently

transcribed papI and papB genes together with the 400-

basepair intergenic region (Hernday et al., 2002), as shown

in Fig. 1. Two methylation sites, GATCprox and GATCdist
(in terms of their position relative to papB), are located in the
regulatory region. GATCprox and GATCdist are each over-

lapped by a group of Lrp binding sites (Nou et al., 1995).

Phase OFF cells are fully methylated at GATCdist with Lrp

bound at GATCprox, which blocks the RNA polymerase

binding to DNA so that the cells are turned off. In contrast,

the phase ON cells are fully methylated at GATCprox and

bound by Lrp at GATCdist.
It was reported that the pap phase OFF-to-ON switch rate

is ;100-fold lower than the ON-to-OFF rate, resulting in a

mostly phase OFF population (Blyn et al., 1989; Hernday

et al., 2003). The transition from the OFF state to the ON

state occurs shortly after DNA replication. During DNA

replication, Lrp is dissociated from DNA. The fully

methylated GATCdist site of the OFF operon becomes

hemimethylated. Since the newly synthesized DNA is non-

methylated, it provides an opportunity for Lrp to bind to

GATCdist. However, Lrp cannot bind to GATCdist directly.
It has higher binding affinity to GATCprox and will first bind
to GATCprox rather than GATCdist. Even if GATCprox
becomes fully methylated, Lrp still binds to it first, but with

much lower affinity (Braaten et al., 1994; Nou et al., 1993;

Van der Woude et al., 1992, 1996). For switching to the ON

state, Lrp must shift to GATCdist with the aid of local

regulator PapI before GATCdist becomes fully methylated.

Since Lrp binding and Dam methylation are mutually

exclusive at GATCdist (Braaten et al., 1994), Lrp cannot

shift to the fully methylated GATCdist. Thus the key to

switching to the ON state is the competition occurring at both

GATCprox and GATCdist. At GATCprox, Lrp binding

competes with Dam methylation. At GATCdist, the trans-

location of Lrp-PapI complex competes with methylation.

For switching from OFF state to ON state, Lrp and Lrp-PapI

complex must succeed these two battles.

EXPERIMENTAL PROCEDURE

We performed experiments to verify the model prediction of

population dynamics. The Pap pili expression was monitored

by a pap-lacZYA promoter fusion (Braaten et al., 1994) in an

E. coli K-12 strain MC4100 obtained from David Low of

University of California, Santa Barbara. A single colony of

the pap-lacZYA fusion strain was inoculated into a shaking

tube, containing 5 mL of M9 minimal medium with 0.2%

glycerol and 0.0015 mM kanamycin. The turbidity was

determined by spectrophotometer. The cell growth rate in the

exponential phase was 0.8 doubling/h. After ;9–12 gen-

erations, the culture was diluted to fresh medium such that

the initial optical density at 600 nm is,0.002 by calculation.

Meanwhile, samples from the exponential phase culture

were diluted 10�4–10�6-fold and plated on agar containing

0.2% glycerol M9 medium with 5-bromo-4-chloro-3indolyl-

b-D-galactoside (X-gal, 300 mg/ml final concentration) for

cell count. After 36 h of growth at 37�C, the colonies on the

agar plate were scored for Lac phenotype. Colonies of Lac1

phenotype were attributed to phase ON cells. Colonies of

Lac-phenotype were assigned as phase OFF cells.

MODEL DEVELOPMENT

Stochastic modeling method

To model a system in the stochastic framework, we assume

that the system is in a given state, i.e., specific volume,

FIGURE 1 Regulatory region of theE. coli pap operon. The papB and papI

genes are divergently transcribed. GATCprox andGATCdist sites are located

in the intergenic region and represented by rectangles. Both GATC sites are

subjected to methylation by Dam and overlapped by the Lrp binding sites.
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temperature, and number of molecules of each component.

Consider a set of reactions occurring in the system:

A1B/C; c1

B1C/D; c2

D/E1F; c3:

The constants c1, c2, and c3 are probability coefficients of
the reactions. In our example, the probability that a molecule

of A reacts with a molecule of B per unit time is c1. The
probability coefficient c can be derived from the elementary

reaction rate constant k. For a reaction of order n,

c ¼ k

ðNAVÞn�1;

where V is the system volume and NA is Avogadro’s number

(Gillespie, 1976). In a system of number of molecule A (#A)
and number of molecule B (#B), the probability of reaction

A1 B/ C occurring per unit time is m¼ (#A)3 (#B)3 c1.
We apply this probabilistic approach to the pap system

and describe the Dam methylation, Lrp binding, and Lrp

translocation events using chemical reactions. Each reaction

has a probability coefficient. For example, consider the Dam

methylation at the bare GACTprox site. This event is written
in the form of a chemical reaction,

Dam1GATCproxðunmethylatedÞ/
GATCproxðhemimethylatedÞ; c;

which says one molecule of Dam methylates the bare

GATCprox site with probability c per unit time. If there are

(#Dam) molecules of Dam in the system, the probability of

methylation at the bare GATCprox site is Kdam ¼ (#Dam) *
c. Note that since there is only one copy of pap operon in the
cell, and such a reaction does not consume either operon or

Dam, we can treat Kdam as a constant ignoring the cell

volume change. Thus our model gives each event in pap
regulatory system a probabilistic description.

Model assumptions

The essence of the current pap regulatory mechanism can be

summarized by the following modeling assumptions:

1. Each time Dam methylates only one GATC site located

on the top or bottom DNA strand. This event occurs with

probability Kdam. Each of the four GATC sites on DNA

double strands has the equal probability (Kdam) to be

methylated. If Lrp is bound to GATCprox or GATCdist,
Dam cannot methylate that site, since Lrp binding blocks

methylation (Braaten et al., 1994; Nou et al., 1993; Van

der Woude et al., 1992, 1996).

2. Lrp first binds to GATCprox. The methylation of

GATCprox does not block Lrp binding, but lowers the

Lrp binding probability (Braaten et al., 1994; Nou et al.,

1993; Van der Woude et al., 1992, 1996). Thus, the

chance of Lrp binding to GATCprox is in the order of

GATCprox (nonmethylated) . GATCprox (hemimethy-

lated) . GATCprox(fully methylated).

3. Lrp bound to GATCprox can shift to GATCdist if

GATCdist is not fully methylated. The probability of Lrp

translocation is affected by the DNA methylation pattern.

Hemimethylation of GATCdist does not prevent Lrp

movement, but reduces the translocation probability com-

pared to unmethylated GATCdist. Consider the following
three DNA configurations and assume Lrp has bound to

GATCprox (Fig. 2). The translocation probability is in

the order of (1) . (2) . (3). For example, in (1) the

GATCprox has been fully methylated, whereas GATCdist
is bare. Lrp will be very uncomfortable to sit at GTACprox
and very likely to move to GATCdist. Its translocation

probability will be large. In contrast, Lrp would like to stay

at GATCprox in (3), as GATCdist is hemimethylated. Its

translocation probability will be small.

4. Though Lrp can shift to GATCdist site by itself, this

rarely happens. When Lrp is bound at GATCprox, PapI
binds to the Lrp-GATCprox complex and facilitates the

movement of Lrp to GATCdist. Because PapI is one of

the gene products of the pap operon, this feedback loop

maintains the switch in the ON state. In this manner, PapI

can be modeled as a ligand in complex with Lrp-

GATCprox. Since multiple molecules of Lrp and PapI

are involved in the formation of this complex, we use the

Hill equation to model the effect of PapI on Lrp

translocation. Suppose the basal translocation rate of

Lrp (without PapI) is Ktran, then the translocation

probability in the presence of PapI is: ðð# papIÞn=
½Kn 1 ð# papIÞn�Þ3 const3Ktran. (#) papI is the num-

ber of PapI molecules present in the cell; const is a

constant that reflects the PapI effect on Lrp translocation.

(In our simulation, n ¼ 6, K ¼ 25, and const ¼ 30000;

see Table 1 for Ktran).
5. Lrp translocation to GATCdist is irreversible.

FIGURE 2 DNA methylation pattern affects Lrp translocation. Methyl-

ated GATC sites are represented by solid rectangle with the triangle. The

probabilities of Lrp translocation from GATCprox to GATCdist are in the

order of (1) . (2) . (3).
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6. Pap transcription machinery is highly active only when

Lrp is bound to GATCdist, and GATCprox is fully

methylated (the ON state). Otherwise, RNA polymerase

transcribes the pap operon at a low basal rate.

7. For simplicity, we model transcription and translation in

a single step: O / O 1 P, where O is the pap operon

and P is the gene product. We treat one successful tran-

scription and translation as an event, with the occurrence

frequency in time interval (0, t) following Poisson

distribution. Thus, the number of PapI produced during

one cell generation can be simulated by Poisson dis-

tribution, PðN ¼ nÞ ¼ ððltÞnelt=n!Þ, where P(N ¼ n) is
the probability of producing n molecules of PapI, and t is
cell-generation time.

8. We assume the half-life of PapI follows exponential

distribution, P(T , t) ¼ 1 � e�lt.

9. We assume that each cell contains a single copy of the

pap operon.

Markov state space

The pap operon regulatory mechanism allows us to dis-

cretize the cell into five stable states, each defined by the pap
promoter methylation and Lrp binding pattern (Fig. 3) Cor-

responding to each state is a steady state of the pap operon

products. State 1 and state 2 are ON states. Cells in either of

these states express pili on their surface. States 3–5 are OFF

states. Other combinations of methylation and Lrp binding

pattern either violate the mechanism or are transient states

which will converge to one of the five stable states. For

example, a GATC site which is not bound by Lrp must be

fully methylated, because Dam will methylate it within

seconds. Our model assumptions suggest that the configu-

ration in which GATCdist is fully methylated and bound by

Lrp cannot exist (violating assumptions 3 and 5). But state
5 with GATCprox fully methylated and bound by Lrp can

exit, because Lrp can still bind to the fully methylated

GATCprox, though with small probability reaching this state

(Braaten et al., 1994; Nou et al., 1993; Van der Woude et al.,

1992, 1996).

State transition matrix T

The consequence of full methylation at GATCdist (or

GATCprox) is the locked-on (locked-off) state during the

cell life. The state transition occurs at the early stage of the

new cell cycle. Computation of the state transition matrix T is

the key to our model since the new operon state is fully

governed by the matrix T. Here we show that the transition

matrix T can be obtained from the product of Heritance

matrix (H) and a switching matrix (A), both of which can be

derived from the pap phase variation mechanism. With the

transition matrix, it is easy to determine the operon state

switches between successive generations.

Heritance matrix H

During DNA replication, Lrp bound to the promoter region is

dissociated from DNA. In addition, the newly synthesized

DNA strand is nonmethylated, providing a possibility to

change the DNA methylation pattern. Thus, three interme-

diate states defined by the methylation pattern of the newly-

synthesized double-stranded DNA will emerge from the five

stable states (Fig. 4). For example, the stable state 1 has 100%
probability to form intermediate state A. The state 2 has 50%
probability to form intermediate state A, and 50% probability

to form intermediate state B. The methylation pattern of

parent cells leaves epigenetic imprints to daughter cells: a pap
operon in the ON state (not fully methylated at GATCdist),
when replicated, will yield daughter cells with nonmethy-

lated GATCdist. But daughters of the OFF cell are at least

hemimethylated at GATCdist. In this manner, daughters of

phase ON cells are more likely to attain the ON state than

daughters of phase OFF cells. We store this epigenetic

information in a heritance matrix H (5 3 3) (Fig. 4), with its

rows corresponding to the five stable states: 1, 2, 3, 4, and 5,

respectively, and its columns to the three intermediate states:

A, B, and C, respectively. Each entry of H stores the tran-

sition probabilities from the corresponding stable state to the

intermediate state.

Switching matrix A

The intermediate states are unstable. They will soon be

methylated by Dam and bound by Lrp. All these events

occur within minutes at the beginning of the cell cycle,

resulting in one of the five stable states. The pap operon state
(phase ON versus phase OFF) is thus determined. We con-

struct a switching matrix A (3 3 5) to store the transition

FIGURE 3 The possible stable operon states. States 1 and 2 are ON states

with Lrp-PapI complex bound to GATCdist and GATCprox fully methyl-

ated. States 3–5 are OFF states with Lrp bound to GATCprox and GATCdist
fully methylated.
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probabilities from the intermediate states to the stable states,

with its rows corresponding to the intermediate states and

columns to the stable states. We shall show how to derive the

matrix A analytically.

First, it is impossible to transit from intermediate state A to

state 3, from intermediate state B to state 2 and state 3, and
from intermediate state C to state 1, since the methylated

GATC site cannot be demethylated within the short time

period before the stable state establishes. So the correspond-

ing entries of the matrix A are zero. To compute the remain-

ing entries, we conducted the following analysis (see Table 1

for notations).

As an example, to compute the transition probability from

the intermediate state A to the stable state 1, we recognize

that there are two possible ways from the intermediate state A
to the state 1 (Fig. 5), according to the model assumption:

1. Lrp binding at GATCprox / Lrp translocation to
GATCdist. The process involves two competitions: i),
competition between Lrp binding and Dam methylation

at GATCprox, and ii), competition between PapI-assisted

Lrp translocation and methylation at GATCdist. If Lrp
succeeds in both competitions, intermediate state A can

get to state 1. Thus the probability of success is

P1ðA/1Þ ¼ Klrpð2Þ
Klrpð2Þ1Kdam

� Ktranð1Þ
Ktranð1Þ1Kdam

;

with parameters defined in Table 1. The first term is the

probability of Lrp binding at GATCprox before this site

becomes fully methylated. The second term is the proba-

bility of Lrp translocation occurring before GATCdist
becomes methylated.

2. GATCprox fully methylated / Lrp binding at GATC-
prox / Lrp translocation. The probability of accom-

plishing the series of events is

P2ðA/1Þ ¼ 1

3

Kdam

Klrpð2Þ1Kdam
� Klrpð3Þ
Klrpð3Þ1Kdam

� Ktranð2Þ
Ktranð2Þ1Kdam

:

Note that one-third (1/3) in the first term comes from the

probability of methylating GATCprox to from the three bare

GATC sites (two GATCdist and one GATCprox). The DNA
methylation pattern changes along with the competition

process, which affects Lrp binding and translocation prob-

ability.

The transition probability from intermediate state A to

state 1 is the summation of P1(A / 1) and P2(A / 1). In

this way, we analytically derived the transition probability

from the intermediate states to the stable states for every

entry of switching matrix A (see Experimental Procedure,

above). Multiplying the heritance matrix (H) by the switch-

ing matrix (A) yields the state transition matrix (T), which
contains the transition probabilities among the stable states,

and which completely governs the operon state transition be-

tween two successive generations.

FIGURE 4 Operon transition from the stable state to

the intermediate state. States 1–5 are stable states. A, B,

and C are intermediate states. The transition probabil-

ities from stable states to intermediate states are stored

in the heritance matrix H.
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Model parameters and modeling algorithm

We use similar conditions as Jarboe et al. (2004) for

simulation. Each cell has 78 Dam molecules (Boye et al.,

1992; Rasmussen et al., 1995) and 343 Lrp molecules (Chen

et al., 2001). The cell growth rate is 0.8 doublings/h, which is

the cell growth rate under our experiment condition (M9

minimal medium containing 0.2% glycerol in shake flasks at

37�C). Since the basal pap transcription rate is approxi-

mately one-eighth of the ON transcription rate (Van der

Woude et al., 1995), we assume that in one generation the

phase ON cell produces an average of 64 molecules of PapI,

and the OFF cell, eight molecules of PapI. Thus in the

Poisson distribution,

PðN ¼ nÞ ¼ ðlÞnel

n!
;

we set l ¼ 64 for phase ON cells and l ¼ 8 for phase OFF

cells. We assume the average life of PapI is 100 min, and

set l ¼ 100 for the exponential distribution, P(T , t) ¼
1 � e�lt. The reaction probability coefficients are listed in

Table 1.

The following algorithm is used to determine the state

transition from the parent cell to the daughter cell:

1. Initiate the operon state of the parent cell. For the ON

cell, the initial state can be assigned to either state 1 or 2,

which gives identical results. Similarly, the OFF cell can

be assigned to states 3, 4, or 5 with no difference in re-

sults.

2. Determine the number of PapI in the cell based on

Poisson probability PðN ¼ nÞ ¼ ððlÞnel=n!Þ (l ¼ 64 for

phase ON cells, l ¼ 8 for phase OFF cells). The Poisson

random number is given by the following procedure:

Generate a series of random number ui, i ¼ 1, . . .k, from
the uniform distribution in the unit interval; then

calculate
Qk

i¼1 ui and compare the product with e�l at

each k. The Poisson random number, n, is the first value
of k such that the product is ,e�l.

3. Assign an age to each PapI by the exponential dis-

tribution P(T , t) ¼ 1 � e�lt (l ¼ 100). To generate an

exponential random number t, one first generates a ran-

dom number r from the uniform distribution in the unit

FIGURE 5 The possible paths from the intermediate state A to the stable

state 1. The success probabilities for the two paths are P1(A/1) and

P2(A/1), respectively. The transition probability from intermediate state A
to the stable state 1 is P1(A/1) 1 P2(A/1).

TABLE 1 Probability coefficients for reactions

Reaction/event Parameter (s�1)

Dam methylation Kdam ¼ 0.001

Lrp binding at nonmethylated GATCprox Klrp(1) ¼ 0.1

Lrp binding at hemimethylated GATCprox Klrp(2) ¼ 0.05

Lrp binding at fully methylated GATCprox Klrp(3) ¼ 0.005

Lrp translocation Ktran(1) ¼ 1 * 10�5

Lrp translocation Ktran(2) ¼ 5 * 10�4

Lrp translocation Ktran(3) ¼ 6 * 10�6

Lrp translocation Ktran(4) ¼ 5 * 10�5

Lrp translocation Ktran(5) ¼ 1 * 10�6

Probabilities of Lrp binding at GATCprox and Lrp translocation to

GATCdist are affected by the DNA methylation pattern. The corresponding

DNA methylation patterns for Lrp translocation are illustrated by figures.

The numerical values were used in our simulation.
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interval, and then obtains the exponential random number

t by t ¼ ð1=lÞlnð1=rÞ.
4. Calculate the number of PapI inherited by the daughter

cell (# i-PapI) by comparing the age of PapI with the cell

division time (75 min). The particular PapI molecule is

passed on to the daughter cell only if its age is greater

than the cell division time.

5. Calculate the transition matrix T using (# i-PapI) as a

parameter.

6. Determine the operon state of the daughter cell based on

the parent state and the transition probability character-

ized by the matrix T.

The above algorithm is repeated for each cell in the

population. The following algorithm is used to simulate the

population dynamics:

1. Inoculation. Set the initial population size p1 (p1 ¼ 40

cells in our simulation). Set the initial generation g ¼ 1.

Set the ON fraction 3 1. Assign an operon state to each

cell according to the ON fraction (3 1).

2. Growth. Decide each daughter cell’s state by the state

transition algorithm stated above. Calculate the ON cell

fraction for each generation. Because of cell growth, the

population size doubles in each generation. To avoid

excessive computation time due to overpopulation, the

population size is reset to P1 after a certain generation,

say 9, while keeping the current ON cell fraction. The

simulation continues by repeating the above steps.

3. Termination. Stop simulation when a specific generation

is reached.

Model prediction: population dynamics of
pap expression

Using the model described above, we investigated the

population dynamics of Pap operon expression. With the

transition matrix describing the probability of transition

between different states, model simulation shows that the

populations arising from 100% ON cells or 100% OFF cells

exhibit a long transient period of ;60 generations before

reaching an equilibrium level of 3% ON (Fig. 6). Note that

the results from multiple simulations are shown for each

initial condition. As stated above, each simulation starts with

an initial population of cells and continues for many gen-

erations. Due to the stochastic nature of the events being

modeled, different simulations can have slightly different

results. During the transition period, the population gener-

ated from an initially ON cell contains more ON cells than

the population generated from an initially OFF cell. This in-

itial state dependency of Pap expression has been noted in

the literature (Blyn et al., 1989; Braaten et al., 1994) and was

reproduced using the Gillespie method (Jarboe et al., 2004).

However, the details of this phenomenon remained unclear.

Examining the mechanism of Pap expression, we iden-

tified factors that contribute to the transient memory of

expression. These factors include Pap regulation proteins,

such as PapI, Lrp, and Dam, which can be passed on to the

next generation if their turnover times are greater than the

generation time and the degree of DNA methylation, which

is semiconserved during DNA replication. Since the degree

of DNA methylation is a consequence of Lrp and Dam com-

petition, it is not an independent variable in the model. We

thus focus on these three regulatory proteins.

PapI is a local regulator of the pap operon, whose

expression level is controlled by the pap operon. The ON

cells have a higher PapI level, which can be transferred to the

daughter cells and facilitate the translocation of Lrp from

GATCprox to GATCdist, thus increasing the probability of

ON states. Therefore, the stability of PapI is expected to

affect the generation memory. We examined the effect of

PapI degradation on the operon initial state dependency

(Fig. 7). In our wild-type model, the average half-life of PapI

is 50 min, which is longer than the cell half-life (37.5 min).

Shortening the average PapI half-life to 37.5 min decreases

the initial state dependency, whereas stabilizing PapI

increases the initial state dependency. The PapI half-life

affects both the transition period and the equilibrium level.

With a 50-min PapI half-life, the transition period lasts;300

generations; the Gillespie method results (Jarboe et al., 2004)

simulated 10 generations only and the PapI stability was not

investigated. Thus the increased computational efficiency

of the Markov Chain model presented here allows a more

thorough investigation of the pap regulatory elements.

Lrp and Dam are global regulators. Their intracellular

levels are affected by physiological and environmental

factors. It has been reported that the Lrp level is cell growth-

rate regulated (Chen et al., 1997, 2001; Landgraf et al., 1996;

FIGURE 6 Phase ON cell fraction versus cell generation. Simulations

started from either 100% ON cells or 100% OFF cells. Results for four rep-

resentative simulations are shown for each initial condition.
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Rasmussen et al., 1994, 1995). We investigated the effect of

Lrp copy number on Pap pili expression. The simulation was

carried out with the wild-type Dam level (78 molecules per

cell). As shown in Fig. 8, increasing the Lrp level increases

the ON population during the transition period. However, the

activation is saturated above 300 copies of Lrp per cell. This

is reasonable, since overexpression of Lrp has a negative

effect on the pap transcription. Lrp may occupy not only

GATCdist but also GATCprox. When the positive and

negative effects reach equilibrium, the activation by Lrp is

saturated. Pap expression is also sensitive to the Dam

level (Fig. 9), which affects the transient time more than

the equilibrium state. Lowering the Dam level from 78

molecules/cell to 30 molecules/cell increases the transition

period and equilibrium level. The effect of Lrp and Dam on

pap expression was investigated using the Gillespie method

(Jarboe et al., 2004) with similar results. However, with the

Gillespie method only the equilibrium state was reported.

The model presented here allows investigation of both the

transition period and the equilibrium state.

Experimental verification

It has been reported that populations grown in glycerol

minimal medium arising from an ON parent (100% phase

ON cells) have an ON population of 34 6 7% at the 25th

generation (Blyn et al., 1989) or 27 6 1% from the detailed

simulation using the Gillespie method (Jarboe et al., 2004).

Our model predicts 22 6 6% at the 25th generation from an

initially ON parent (Fig. 10). Populations arising from an

OFF parent were reported to have 0.46 0.2% of ON cells at

the 25th generation (Blyn et al., 1989) or 2 6 0% (Jarboe

et al., 2004) using the Gillespie method. Our model predicts

3 6 0.6% at the 25th generation (Fig. 10). Thus the Markov

Chain model is in reasonable agreement with literature data

and the detailed Gillespie model.

To verify the population dynamics during the transition

period, we performed experiments starting from populations

with different ON fractions and measured the ON fraction up

to 100 generations. The detailed method is described in Ex-

perimental Procedure, above. The Pap pili expression was

monitored by use of a pap-lacZYA promoter fusion (Braaten

et al., 1994). Experiment 1 started with a population of

9.57% phase ON cells. Experiment 2 started with a pop-

ulation of 2.65% phase ON cells. The experimental results

are consistent with the trends predicted by our model,

although there is a consistent underestimation of the ON state
FIGURE 8 Effect of Lrp copy number on Pap pili expression. Results for

three representative simulations are shown for each Lrp level.

FIGURE 7 The effect of PapI half-life on the initial state dependency.

Simulations were performed with average PapI half-life: 37.5 min, 50 min,

and 65 min, and started from 100%ON cells. Results for three representative

simulations are shown for each PapI half-life.

FIGURE 9 Effect of Dam copy number on Pap pili expression. Results

for three representative simulations are shown for each Dam level.
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by the model after 20 generations (Fig. 11). This under-

estimation may be due to a slight discrepancy in the esti-

mated parameter values. The experimental data also confirms

the convergence of the ON cell fraction. Starting from 9.57%

ON cells, the population contains;3% ON cells eventually.

But if the ON cell fraction falls into the equilibrium region,

as in Experiment 2, it remains at this level with only small

fluctuations from generation to generation.

DISCUSSION

Mathematical modeling provides detailed characterization of

dynamics for complex systems. For phase variable tran-

scriptional control, stochastic fluctuations tend to dominate

the system behavior. Therefore, conventional deterministic

modeling approaches do not adequately represent the

behavior of such systems. Instead, stochastic approaches

such as Gillespie’s method (Gillespie, 1976) are a natural

choice. Jarboe et al. (2004) have used the Gillespie method to

model the Pap phase variation mechanism. However, be-

cause the Gillespie method explicitly accounts for the indi-

vidual reactive collisions among the molecules (Puchalka

and Kierzek, 2004), it becomes computationally expensive

for a complex system involving large number of molecules

and reactions, such as the Pap system. Here we developed a

simplified model based on the Markov Chain approach that

allows efficient simulation of population dynamics.

In the pap system, the Markov state space is well defined

by the DNA methylation and Lrp binding patterns at the

control region of the operon, which we termed the operon
state. The operon state is determined soon after cell division.

Once decided, it is locked for the remainder of the

generation. Thus the Markov Chain has discrete time points

defined by cell division. The transition between the operon

states is primarily governed by two competitions: competi-

tion between methylation and Lrp binding at GATCprox,
and competition between methylation and Lrp translocation

at GATCdist. Instead of simulating each individual molec-

ular interaction in the Gillespie method, the Markov Chain

approach precalculates the transition probabilities anal-

ytically based on detailed molecular mechanism of these

competitions. The Markov Chain model presented here re-

produces results obtained using the Gillespie method

(Jarboe et al., 2004) and allows investigation of more com-

putationally intensive components of pap regulation. Hence,

the Markov Chain model significantly accelerates simula-

tion and still captures the essence of population dynamics in

molecular terms.

Our model framework is based on the molecular

mechanisms, but most of the parameters are estimated since

the literature data are sparse. The model prediction was

partially validated experimentally, based both on literature

FIGURE 11 Comparison of the Markov Chain model results and our

experimental results. Error bars represent one standard deviation. (a) Both

simulation and experiment started from the ON fraction of 9.57%. (b) Both

simulation and experiment started from the ON fraction of 2.65%. Results

are shown for five representative simulations in both a and b.

FIGURE 10 Comparison of results from the Markov Chain model,

Gillespie model (Jarboe et al., 2004), and reported data (Blyn et al., 1989).

Results are presented for the wild-type model. The ON cell fraction of

populations from 100% ON cells (initially ON, shaded) and 100% OFF cells

(initially OFF, not shaded) are reported. The y axis is log scale. Error bars

represent one standard deviation.
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and data reported in this work, suggesting that the parameters

used are realistic. The consistent underestimation of the

frequency of the ON state after many generations suggests

discrepancy with the estimated parameters. In particular, we

focused on the initial state dependency of Pap expression.

Our experimental data for population dynamics from two

different initial states agreed reasonably well with the model

prediction. Furthermore, our model predicts that after a

transition period, the population will reach an equilibrium

state with ON fraction at ;3%. The length of transition

period is determined by PapI stability and the copy number

of Lrp and Dam per cell. The convergence of the ON fraction

has biological relevance. In general, the cell favors the OFF

state more than the ON state. The ON-to-OFF switch rate is

100-fold higher than the OFF-to-ON rate (Blyn et al., 1989;

Hernday et al., 2003). The default OFF state could save

cellular energy when pili expression may not be needed or

could be deleterious (Hernday et al., 2003). It is advantageous

for the population to keep only a small fraction ofONcell after

it has settled down in a new environment. The population

conserves energy by doing this. On the other hand, it can

rapidly convert to phase ON state if Pap pili confer a selective

advantage to new environmental stimuli.

If a population needs to stay in the ON state for a longer

time, for example, to better adapt to a new environment,

what should it do? Our model suggests the adaptation could

be achieved by controlling the PapI degradation and the copy

numbers of Lrp and Dam. We hypothesize that by sensing

the environmental factors, the protein degradation machinery

may make the decision to stabilize PapI, which strengths the

parent-to-daughter memory and keep the high ON fraction

longer. This hypothesis remains to be tested. The model also

suggests that Lrp has significant effects on pap expression at
a low concentration; at the high concentration, the Lrp effect

is saturated. This is confirmed by reported data that pap
expression is not affected by exogenous leucine when Lrp is

present in micromolar concentration (Braaten et al., 1994;

White-Ziegler et al., 2000). On the other hand, decreasing

Dam copy number significantly elongates the transition

period and increases the equilibrium level, both of which

contribute to adapting to environmental change.

APPENDIX: DERIVATION OF SWITCHING
MATRIX A

The switching matrix A is derived entry by entry from the pap regulatory

mechanism. (See Table 1 for notations. Note that P in the formula stands for

probability.)

Intermediate state A ! stable state 1

1. Lrp binding at GATCprox / Lrp translocation:

P1ðA/1Þ ¼ Klrpð2Þ
Klrpð2Þ1Kdam

� Ktranð1Þ
Ktranð1Þ1Kdam

:

2. GATCprox fully methylated / Lrp binding at GATCprox / Lrp

translocation:

P2ðA/1Þ ¼ 1

3

Kdam

Klrpð2Þ1Kdam
� Klrpð3Þ
Klrpð3Þ1Kdam

� Ktranð2Þ
Ktranð2Þ1Kdam

:

Probability (intermediate stateA/ stable state 1)¼P1(A/ 1)1P2(A/ 1).

Intermediate state A ! stable state 2

1. Lrp binding at GATCprox / GATCdist hemimethylated / Lrp

translocation:

P1ðA/2Þ5 Klrpð2Þ
Klrpð2Þ1Kdam

� Kdam

Ktranð1Þ1Kdam

� Ktranð3Þ
Ktranð3Þ1Kdam

:

2. GATCprox fully methylated / Lrp binding at GATCprox /
GATCdist hemimethylated / Lrp translocation:

P2ðA/2Þ5 1

3

Kdam

Klrpð2Þ1Kdam
� Klrpð3Þ
Klrpð3Þ1Kdam

� Kdam

Ktranð2Þ1Kdam
� Ktranð4Þ
Ktranð4Þ1Kdam

:

3. GATCprox fully methylated / GATCdist hemimethylated / Lrp

binding at GATCprox / Lrp translocation:

P3ðA/2Þ5 1

3

Kdam

Klrpð2Þ1Kdam
� Kdam

Klrpð3Þ1Kdam

� Klrpð3Þ
Klrpð3Þ1Kdam

� Ktranð4Þ
Ktranð4Þ1Kdam

:

4. GATCdist hemimethylated / Lrp binding at GATCprox / Lrp

translocation:

P4ðA/2Þ5 2

3

Kdam

Klrpð2Þ1Kdam
� Klrpð2Þ
Klrpð2Þ1Kdam

� Ktranð3Þ
Ktranð3Þ1Kdam

:

5. GATCdist hemimethylated / GATCprox fully methylated / Lrp

binding at GATCprox / Lrp translocation:

P5ðA/2Þ5 2

3

Kdam

Klrpð2Þ1Kdam
� 1
2

Kdam

Klrpð2Þ1Kdam

� Klrpð3Þ
Klrpð3Þ1Kdam

� Ktranð4Þ
Ktranð4Þ1Kdam

:

Probability (intermediate state A / stable state 2) 5 P1(A/2) 1

P2(A/2) 1 P3(A/2) 1 P4 (A/2) 1 P5(A/2).

Intermediate state A ! stable state 4

1. Lrp binding at GATCprox/ GATCdist hemimethylated/ GATCdist

fully methylated:
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P1ðA/4Þ5 Klrpð2Þ
Klrpð2Þ1Kdam

� Kdam

Ktranð1Þ1Kdam

� Kdam

Ktranð3Þ1Kdam
:

2. GATCdist hemimethylated/ Lrp binding at GATCprox/ GATCdist
fully methylated:

P2ðA/4Þ5 2

3

Kdam

Klrpð2Þ1Kdam
� Klrpð2Þ
Klrpð2Þ1Kdam

� Kdam

Ktranð3Þ1Kdam
:

3. GATCdist hemimethylated / GATCdist fully methylated / Lrp

binding at GATCprox:

P3ðA/4Þ5 2

3

Kdam

Klrpð2Þ1Kdam
� 1
2

Kdam

Klrpð2Þ1Kdam

� Klrpð2Þ
Klrpð2Þ1Kdam

:

Probability (intermediate state A / stable state 4) 5 P1(A/4) 1

P2(A/4) 1 P3(A/4).

Intermediate state A ! stable state 5

Probability (intermediate state A / stable state 5) 5 1 2 P(A/1) 2

P(A/2) 2 P(A/4).

Intermediate state B ! stable state 2

1. Lrp binding at GATCprox / Lrp translocation:

P1ðB/2Þ 5 Klrpð2Þ
Klrpð2Þ1Kdam

� Ktranð3Þ
Ktranð3Þ1Kdam

:

2. GATCprox fully methylated / Lrp binding at GATCprox / Lrp

translocation:

P2ðB/2Þ5 1

2

Kdam

Klrpð2Þ1Kdam
� Klrpð3Þ
Klrpð3Þ1Kdam

� Ktranð4Þ
Ktranð4Þ1Kdam

:

Probability (intermediate state B / stable state 2) 5 P1(B/2) 1

P2(B/2).

Intermediate state B ! stable state 4

1. Lrp binding at GATCprox / GATCdist fully methylated:

P1ðB/4Þ 5 Klrpð2Þ
Klrpð2Þ1Kdam

� Kdam

Ktranð3Þ1Kdam
:

2. GATCdist fully methylated / Lrp binding at GATCprox:

P2ðB/4Þ 5 1

2

Kdam

Klrpð2Þ1Kdam
� Klrpð2Þ
Klrpð2Þ1Kdam

:

Probability (intermediate state B / stable state 4) 5 P1(B/4) 1

P2(B/4).

Intermediate state B ! stable state 5

Probability (intermediate state B / stable state 5) 5 1 2 P(B/2) 2

P(B/4).

Intermediate state C ! stable state 2

1. Lrp binding at GATCprox / Lrp translocation:

P1ðC/2Þ 5 Klrpð1Þ
Klrpð1Þ1Kdam

� Ktranð5Þ
Ktranð5Þ1Kdam

:

2. GATCprox hemimethylated / Lrp binding at GATCprox / Lrp

translocation:

P2ðC/2Þ5 2

3

Kdam

Klrpð1Þ1Kdam
� Klrpð2Þ
Klrpð2Þ1Kdam

� Ktranð3Þ
Ktranð3Þ1Kdam

:

3. GATCprox hemimethylated / GATCprox fully methylated / Lrp

binding at GATCprox / Lrp translocation:

P3ðC/2Þ5 2

3

Kdam

Klrpð1Þ1Kdam
� 1
2

Kdam

Klrpð2Þ1Kdam

� Klrpð3Þ
Klrpð3Þ1Kdam

� Ktranð4Þ
Ktranð4Þ1Kdam

:

Probability (intermediate state C / stable state 2) 5 P1(C/2) 1

P2(C/2) 1 P3(C/2).

Intermediate state C ! stable state 3

1. Lrp binding at GATCprox / GATCdist fully methylated:

P1ðC/3Þ 5 Klrpð1Þ
Klrpð1Þ1Kdam

� Ktranð5Þ
Ktranð5Þ1Kdam

:

2. GATCdist fully methylated / Lrp binding at GATCprox:

P2ðC/3Þ 5 1

3

Kdam

Klrpð1Þ1Kdam
� Klrpð1Þ
Klrpð1Þ1Kdam

:

Probability (intermediate state C / stable state 3) 5 P1(C/3) 1

P2(C/3).

Intermediate state C ! stable state 4

1. GATCprox hemimethylated / Lrp binding at GATCprox /
GATCdist fully methylated:

P1ðC/4Þ5 2

3

Kdam

Klrpð1Þ1Kdam
� Klrpð2Þ
Klrpð2Þ1Kdam

� Kdam

Ktranð3Þ1Kdam
:

2. GATCprox hemimethylated / GATCdist fully methylated / Lrp

binding at GATCprox:
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P2ðC/4Þ5 2

3

Kdam

Klrpð1Þ1Kdam
� 1
2

Kdam

Klrpð2Þ1Kdam

� Klrpð2Þ
Klrpð2Þ1Kdam

:

3. GATCdist fully methylated / GATCprox hemimethylated / Lrp

binding at GATCprox:

P3ðC/4Þ5 1

3

Kdam

Klrpð1Þ1Kdam
� Kdam

Klrpð1Þ1Kdam

� Klrpð2Þ
Klrpð2Þ1Kdam

:

Probability (intermediate state C / stable state 4) 5 P1(C/4) 1

P2(C/4) 1 P3(C/4).

Intermediate state C ! stable state 5

Probability (intermediate state C / stable state 5) 5 1 2 P(C/2) 2

P(C/3) 2 P(A/4).

aA1 aA2 0 aA4 aA5

0 aB2 0 aB4 aB5

0 aC2 aC3 aC4 aC5

2
4

3
5:

In summary, the entries of switching matrix A 5 are

aA1 5 P1ðA/1Þ1P2ðA/1Þ
aA2 5 P1ðA/2Þ1P2ðA/2Þ1P3ðA/2Þ1P4ðA/2Þ

1P5ðA/2Þ
aA3 5 0

aA4 5 P1ðA/4Þ1P2ðA/4Þ1P3ðA/4Þ
aA5 5 12aA12aA22aA32aA4

aB1 5 0

aB2 5 P1ðB/2Þ1P2ðB/2Þ
aB3 5 0

aB4 5 P1ðB/4Þ1P2ðB/4Þ
aB5 5 12aB12aB22aB32aB4

aC1 5 0

aC2 5 P1ðC/2Þ1P2ðC/2Þ1P3ðC/2Þ
aC3 5 P1ðC/3Þ1P2ðC/3Þ
aC4 5 P1ðC/4Þ1P2ðC/4Þ1P3ðC/4Þ
aC5 5 12aC12aC22aC32aC4:

REFERENCES

Arkin, A., J. Ross, and H. H. McAdams. 1998. Stochastic kinetic analysis
of developmental pathway bifurcation in phage l-infected Escherichia
coli cells. Genetics. 149:1633–1648.

Blyn, L. B., B. A. Braaten, C. A. Whiteziegler, D. H. Rolfson, and
D. A. Low. 1989. Phase variation of pyelonephritis-associated pili in
Escherichia coli—evidence for transcriptional regulation. EMBO J. 8:
613–620.

Boye, E., M. G. Marinus, and A. Lobnerolesen. 1992. Quantitation of
dam methyltransferase in Escherichia coli. J. Bacteriol. 174:1682–
1685.

Braaten, B. A., X. W. Nou, L. S. Kaltenbach, and D. A. Low. 1994.
Methylation patterns in pap regulatory DNA control pyelonephritis-
associated pili phase variation in Escherichia coli. Cell. 76:577–588.

Chen, C. F., J. Lan, M. Korovine, Z. Q. Shao, L. Tao, J. Zhang, and E. B.
Newman. 1997. Metabolic regulation of Lrp gene expression in
Escherichia coli K-12. Microbiology. (UK). 143:2079–2084.

Chen, S. L., Z. Q. Hao, E. Bieniek, and J. M. Calvo. 2001. Modulation of
Lrp action in Escherichia coli by leucine: effects on non-specific binding
of Lrp to DNA. J. Mol. Biol. 314:1067–1075.

Gibson, M., and J. Bruck. 2000. Efficient exact stochastic simulation of
chemical systems with many species and many channels. J. Phys. Chem.
104:1876–1889.

Gillespie, D. T. 2001. Approximate accelerated stochastic simulation of
chemically reacting systems. J. Chem. Phys. 115:1716–1733.

Gillespie, D. T. 1976. General method for numerically simulating stochastic
time evolution of coupled chemical reactions. J. Comput. Phys. 22:
403–434.

Henderson, I. R., P. Owen, and J. P. Nataro. 1999. Molecular switches—
the ON and OFF of bacterial phase variation. Mol. Microbiol. 33:
919–932.

Hernday, A., B. Braaten, and D. Low. 2004. The intricate workings of
a bacterial epigenetic switch. Adv. Exp. Med. Biol. 547:83–89.

Hernday, A., B. Braaten, and D. Low. 2003. The mechanism by which
DNA adenine methylase and PapI activate the pap epigenetic switch.
Mol. Cell. 12:947–957.

Hernday, A., M. Krabbe, B. Braaten, and D. Low. 2002. Self-perpetuating
epigenetic pili switches in bacteria. Proc. Natl. Acad. Sci. USA. 99:
16470–16476.

Jarboe, L. R., D. Beckwith, and J. C. Liao. 2004. Stochastic modeling of the
phase-variable pap operon regulation in uropathogenic Escherichia coli.
Biotechnol. Bioeng. 88:189–203.

Landgraf, J. R., J. C. Wu, and J. M. Calvo. 1996. Effects of nutrition and
growth rate on Lrp levels in Escherichia coli. J. Bacteriol. 178:6930–
6936.

Puchalka, J., and A. M. Kierzek. 2004. Bridging the gap between stochastic
and deterministic regimes in the kinetic simulations of the biochemical
reaction networks. Biophys. J. 86:1357–1372.

McAdams, H. H., and A. Arkin. 1997. Stochastic mechanisms in gene
expression. Proc. Natl. Acad. Sci. USA. 94:814–819.

Nou, X. W., B. Braaten, L. Kaltenbach, and D. A. Low. 1995. Differential
binding of Lrp to two sets of pap DNA-binding sites mediated by PapI
regulates pap phase variation in Escherichia coli. EMBO J. 14:5785–
5797.

Nou, X. W., B. Skinner, B. Braaten, L. Blyn, D. Hirsch, and D. Low. 1993.
Regulation of pyelonephritis-associated pili phase-variation in Escher-
ichia coli—binding of the Papl and the Lrp regulatory proteins is con-
trolled by DNA methylation. Mol. Microbiol. 7:545–553.

Rasmussen, L. J., A. Lobnerolesen, and M. G. Marinus. 1995. Growth-rate-
dependent transcription initiation from the Dam P2 promoter. Gene.
157:213–215.

Rasmussen, L. J., M. G. Marinus, and A. Lobnerolesen. 1994. Novel
growth-rate control of Dam gene-expression in Escherichia coli. Mol.
Microbiol. 12:631–638.

Van der Woude, M., B. Braaten, and D. Low. 1996. Epigenetic phase
variation of the pap operon in Escherichia coli. Trends Microbiol. 4:
5–9.

Van der Woude, M. W., L. S. Kaltenbach, and D. A. Low. 1995. Leucine-
responsive regulatory protein plays dual roles as both an activator and

2552 Zhou et al.

Biophysical Journal 88(4) 2541–2553



a repressor of the Escherichia coli pap fimbrial operon. Mol. Microbiol.
17:303–312.

Van der Woude, M. W., B. A. Braaten, and D. A. Low. 1992. Evidence for
global regulatory control of pilus expression in Escherichia coli by Lrp
and DNA methylation—model-building based on analysis of pap. Mol.
Microbiol. 6:2429–2435.

White-Ziegler, C. A., A. Villapakkam, K. Ronaszeki, and S. Young. 2000.
H-NS controls pap and DAA fimbrial transcription in Escherichia coli
in response to multiple environmental cues. J. Bacteriol. 182:6391–
6400.

Wolf, D. M., and A. P. Arkin. 2002. Fifteen minutes of fim: control of type
1 pili expression in E. coli. OMICS. 6:91–114.

Markov Chain Simulation of pap Operon 2553

Biophysical Journal 88(4) 2541–2553


