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ABSTRACT Understanding collective motions in protein crystals is likely to furnish insight into functional protein dynamics and
will improve models for refinement against diffraction data. Here, four 10 ns molecular dynamics simulations of crystalline
Staphylococcal nuclease are reported and analyzed in terms of fluctuations and correlations in atomic motion. The simulation-
derived fluctuations strongly correlate with, but are slightly higher than, the values derived from the experimental B-factors.
Approximately 70% of the atomic fluctuations are due to internal protein motion. For 65% of the protein atoms the internal
fluctuations converge on the nanosecond timescale. Convergence is much slower for the elements of the interatomic
displacement correlation matrix — of these, .80% converge within 1 ns for interatomic distances & 6 Å, but only 10% for sep-
arations ’12 Å. Those collective motions that converged on the nanosecond timescale involve mostly correlations within the
b-barrel or between a-helices of the protein. The R-factor with the experimental x-ray diffuse scattering for the crystal, which
is determined by the displacement variance-covariance matrix, decreases to 8% after 10 ns simulation. Both the number
of converged correlation matrix elements and the R-factor depend logarithmically on time, consistent with a model in which
the number of energy minima sampled depends exponentially on the maximum energy barrier crossed. The logarithmic
dependence is also extrapolated to predict a convergence time for the whole variance-covariance matrix of ;1 ms.

INTRODUCTION

An accurate description of the dynamics of protein crystals is

an important goal in molecular biophysics. Obtaining a

simplified physical description of the motions influencing

x-ray scattering from protein crystals should allow improve-

ment of models refined against diffraction data together with

a reduction in the number of independent parameters to be

adjusted. Furthermore, understanding collective internal

protein motions should provide information on dynamic

aspects of protein function.

A detailed description of protein crystal dynamics can be

obtained using molecular dynamics (MD) simulation. In the

present work, this technique is used to characterize the

positional fluctuations of individual atoms and their cross-

correlations. Atomic positional fluctuations can be derived

from x-ray crystallographic B-factors (Frauenfelder et al.,

1979), and can be compared with the fluctuations observed

in MD simulation. On the subnanosecond timescale,

simulation-derived atomic fluctuations often differ signifi-

cantly from experimental values. In recent comparisons the

inclusion of nanosecond-timescale dynamics has lead to

better qualitative agreement but fluctuations larger than the

B-factors (Hünenberger et al., 1995; Caves et al., 1998;

Eastman et al., 1999).

Cross-correlations in the atomic displacements indicate

collective motion and are therefore of potential relevance to

protein function. In MD simulations correlated motions have

been detected (Ichiye and Karplus, 1991; Amadei et al.,

1993; Walser et al., 2002) and have been used to make

deductions concerning dynamical aspects of protein func-

tion (Garcia and Hummer, 1999; Showalter and Hall, 2002;

Daniel et al., 2003; Bossa et al., 2004) but converge

relatively slowly (Clarage et al., 1995; Hünenberger et al.,

1995). Correlated motions present in protein crystals can in

principle be probed experimentally using x-ray diffuse

scattering (Caspar et al., 1988; Faure et al., 1994; Benoit

and Doucet, 1995; Héry et al., 1998).

Advances in computational resources and methodology

constantly improve the timescale and system size accessible

to MD simulation. In this work we present the results of four

10 ns simulations of crystalline Staphylococcal nuclease

with space-group P41, i.e., with four protein molecules per

unit cell. This system was chosen due to the existence of

high-resolution diffraction analyses and because it is, to our

knowledge, the only protein crystal for which the diffuse

scattering over the whole of reciprocal space has been

published (Wall et al., 1997). A detailed analysis is made of

the atomic fluctuations and cross-correlations, their conver-

gence properties are examined, and their relation to the

protein topology is determined. Finally, by comparing

calculated with the experimental x-ray diffuse scattering

results, an estimate is made of the simulation time required

for the variance-covariance matrix, and thus the correlated

motions, to converge.
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METHODS

Molecular dynamics

MD simulations were performed on the crystal unit cell of Staphylococcal

nuclease with four protein molecules and explicit solvent with the

CHARMM program (parameter set 22) (Brooks et al., 1983; MacKerell

et al., 1998).

The starting structure 2SNS (Legg, 1977) was taken from the Protein

Data Bank (Berman et al., 2000). The unresolved residues 142–149 were

added using CHARMM. Initial coordinates for these residues were obtained

from an 800 K simulated annealing MD simulation of the protein with

residues 1–139 fixed in a TIP3P (Jorgenson et al., 1983) water box. The

resulting protein structure was used to construct the crystal unit cell

according to the space group symmetry P41. 2115 TIP3P water molecules

and 48 chloride counter ions were added as solvent, leading to an electrically

neutral system of 15,993 atoms. Periodic boundary conditions were applied

to generate the crystal environment. Electrostatic interactions were

computed using the particle mesh Ewald method (Eastman et al., 1995),

for which the direct sum cutoff was 13 Å and the reciprocal space structure

factors were computed on a 483 483 64 grid using fifth-degree B-splines.

The system was energy-minimized to a root-mean square (RMS) force

gradient of 10�3 (kcal/mol Å). Then, the system was uniformly heated to

300 K during 30 ps and equilibrated for 100 ps with velocity scaling in the

NVE ensemble and another 200 ps without velocity scaling in the NPT

ensemble with P ¼ 1 bar and T ¼ 300 K. The temperature and pressure

coupling were enforced with the Nosé-Hoover algorithm (Andersen, 1980;

Nosé and Klein, 1983; Hoover, 1985), using the temperature and pressure

piston masses 2000 kcal ps2 and 500 u, respectively. Subsequently the NPT

production runs were performed. Coordinates were written every 50 fs.

Before analysis, all coordinate sets of a trajectory were superposed on a unit

cell reference structure (the mean structure of that trajectory) to remove

overall unit cell translation and rotation.

Four 10 ns MD simulations were performed, differing only in the

treatment of the crystalline environment. In three simulations (named T1,

T2, and T3) a tetragonal constraint was imposed, i.e., in which the unit cell

dimensions a and b scale identically and independently of c. This corre-

sponds to the P41 experimental space group symmetry (Legg, 1977). In the

fourth simulation (denoted O1) an orthogonal constraint was used, i.e., in

which a, b, and c scale independently, thus allowing for deviations from P41.

Convergence of time series

The convergence of any given observable or time series, O(t) was

investigated as follows. First, the trajectory was grouped into n time-

windows of length Dt which may overlap. Then, the observable was

calculated on each subtrajectory yielding n measurements {Oi(Dt)}. The

mean and variance of these sets and their dependence on Dt were used to

study convergence. If, for all time-windows with Dt . Dt*, the observable

has the same value to within e . 0, then Dt* is considered to be the

convergence time.

X-ray diffuse scattering

The x-ray diffuse intensity at any given point q in reciprocal space is given

by the difference between the total and Bragg scattering (Waller, 1925;

Zachariasen, 1946; Cochran, 1963), i.e.,

IdiffðqÞ ¼ ItotðqÞ � IBraggðqÞ; (1)

}+
kk9

fke
�Wk fk9e

�Wk9e
iq � ðrk�rk9Þ½eq

TÆuku
T
k9æq � 1�; (2)

where fk and rk are the scattering power and the mean position vector of the

kth atom, respectively, uk is the displacement vector of atom k from rk,
Wk ¼ 1

2
qTÆukuTk æq is the Debye-Waller factor, and Æ�æ denotes the time or

ensemble average. Equation 2 introduces the displacement variance-

covariance matrix, ÆukuTk9æ. The displacements uk can be directly calculated

from an MD trajectory and the variance-covariance matrix is then readily

computed.

In the present work an improved version of the program SERENA

(Micu and Smith, 1995) was used to calculate three-dimensional scattering

intensities. These intensities were compared with experimental diffuse scat-

tering data from the same crystal reported in Wall et al. (1997). In Wall et al.

(1997), the Bragg peaks in the experimental scattering pattern were removed

by an image filtering technique. The resulting three-dimensional experi-

mental diffuse scattering pattern comprises 55,691 data points in the range

kqk , 0.62 Å�1 and arises from the diffuse scattering of the complete unit

cell, i.e., proteins and solvent.

The agreement between the theoretical and experimental x-ray diffuse

scattering data was investigated using diffuse scattering calculated on several

timescales, Dt, as described in Methods (Convergence of time series). The

agreement factor, R, is defined as

R4t ¼ Æmin
s;cf g

1

Nq

+
q

�
�
�
�

I
expðqÞ � ½sIsim4t ðqÞ1 c�

I
expðqÞ

�
�
�
�æ; (3)

where Æ�æ denotes the average over all subtrajectories of length Dt, Nq is the

number of scattering vectors, and s and c are coefficients for intensity scaling
and background intensity, respectively.

Correlation matrix

The variance-covariance matrix, ÆukuTk9æ, characterizes the protein collective
motions. However, the large number of independent elements makes ÆukuTk9æ
cumbersome to calculate for the whole unit cell. Here, the correlation matrix,

Ckk9, for the relative displacements of all Ca-atoms in the unit cell was

calculated instead, where Ckk9 is given by

Ckk9 ¼
ÆuT

k � uk9æ
ðÆuT

k � ukæ ÆuT

k9 � uk9æÞ
1
2

: (4)

For an atom pair (kk9) the correlation matrix element, Ckk9 is determined

by the trace of the variance-covariance matrix, i.e., ÆuTk � uk9æ ¼ TrÆukuTk9æ:
The differences between Ckk9 and ÆukuTk9æ are twofold. Firstly, anisotropic

correlations, i.e., off-diagonal elements which describe correlations between

the displacements in, e.g., the x and y directions, are not included in Ckk9.

And secondly, ÆukuTk9æ is amplitude-weighted whereas Ckk9 is normalized.

Alternative measures that overcome these problems are discussed in Héry

et al. (1998). However, for the present purposes Ckk9 provides a convenient

way of determining the correlated motions present.

Absolute values of Ckk9

There is no unique way of removing global rotation from MD trajectories

(Hünenberger et al., 1995; Karplus and Ichiye, 1996; Abseher and Nilges,

1998; Zhou et al., 2000). Furthermore, MD algorithms that periodically

remove global translation and rotation of the simulated system potentially

introduce artifactual anticorrelations. To understand this, consider a one-

dimensional system composed of two particles at positions x1(t) ¼ 0 and

x2(t) ¼ x(t) where x(t) is an arbitrary displacement. Then Eq. 4 yields

Cx1x2 ¼ 0. In the center-of-mass frame, however, is x1ðtÞ ¼ �1=2 xðtÞ and
x2ðtÞ ¼ 11=2 xðtÞ; and hence Cx1x2 ¼ �1.

To investigate the amplitude of the effect of removing global protein

motion on Ckk9 we examined a 100-ps segment of the MD simulation T1

without the removal of global translation and rotation. The correlation

coefficients, Ckk9 were directly computed from this trajectory segment using

Eq. 4. Subsequently, global translation and rotation were removed and again

Ckk9 was computed. Removal of global translation and rotation reduces the
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correlation coefficient by ;�0.1 for intra- and interprotein motions almost

independently of the interatomic distance (results not shown). Consequently,

the average values ofCkk9 given in Figs. 4, 7, and 8A are underestimated by;0.1.

Convergence of Ckk9

To study the convergence properties of Ckk9 each trajectory was divided into

non-overlapping subtrajectories as described in Methods (Convergence of

time series). For each subtrajectory the correlation matrix was computed. For

each Dt, the correlation matrices for each subtrajectory were averaged

elementwise to yield the mean, ÆCkk9, Dtæ, and standard deviation, sCkk9;4t
.

The relative error, DCkk9, Dt, is then

4Ckk9;4t ¼
sCkk9;4t

jÆCkk9;4tæj
: (5)

For all quantities, the subscript Dt highlights the dependence on the

length of the subtrajectories. The convergence criterion chosen was

ðsCkk9;4t
, 0:05Þ _ ð4Ckk9;4t, 0:2Þ, where _ symbolizes the logical or. It

was checked that the qualitative results do not depend on the specific choices

of sCkk9;4t
or DCkk9, Dt. If the number of subtrajectories is small (n & 10) the

statistics worsen, leading to an overestimation of the number of converged

elements due to a small but non-zero probability that matrix elements

coincidentally satisfy the convergence criterion. The amplitude of this effect

was estimated using a corresponding number of random matrices. The true

converged fraction of the correlation matrix, fCcorr
kk9
, was then calculated as the

difference fCkk9
� fCrand

kk9
where fCkk9

and fCrand
kk9

were calculated from Ckk9 and the

random matrices, respectively.

RESULTS

We first compare the MD simulation with experiment on

three levels: the crystal parameters and average structure, the

atomic fluctuations, and the x-ray diffuse scattering. Sub-

sequently, correlations in Ca-atom motions are investigated.

Crystal parameters and average structure

The average values for the MD unit cell sides and volumes

are given in Table 1. For the trajectories Tx (x ¼ 1,2,3)

and O1 these values deviate by less than 0.8% and 2.8%

from the experimental values, respectively. The unit cell

volume averaged over all simulations is within (0.35 6

0.23)% of experiment.

To compare the simulation structure with the experimental

coordinates (i.e., 2SNS) the average MD protein structure

was computed as a time average Rave ¼ Æ[i;TxRTx
i ðtÞæt,

whereRi
Tx(t) is the coordinate vector of protein i (i¼ 1, . . . , 4)

in the simulation Tx. [ denotes the union of sets which was

performed in such a way that each Ri
Tx(t) was optimally

superposed (by minimizing the RMS deviation, or RMSD)

on a reference structure (the single-protein mean structure).

Thus, for certain analyses the trajectories Tx were merged

into a single-protein trajectory with effective length of 120 ns.

The RMSD of Rave from experiment was computed for the

experimentally resolved residues 1–141. The result for all

non-hydrogen atoms is 1.67 Å, and for the Ca-atoms is

1.29 Å.

Fluctuations of single atoms

X-ray crystallographic B-factors, Bk, arise from the fluctua-

tions of the individual atoms k around their space-group

symmetric positions as given by

Æu2

kæ ¼
3

8p
2 Bk: (6)

The fluctuations may arise from internal protein motions,

from translation and rotation of the protein molecules in the

unit cell, and from motions of the unit cells relative to each

other. Experimentally, other effects such as lattice distortion

and refinement errors may also contribute. The relative mo-

tions of unit cells are suppressed in the simulations due to the

imposition of periodic boundary conditions. Thus, the remaining

fluctuations contain components from whole-molecule

translation and rotation and from internal motion. The pro-

tein fluctuations were derived from the trajectories Ri
Tx(t),

x¼ 1,2,3, and the results are compared with the experimental

B-factors in Fig. 1. The MD simulation fluctuations correlate

well with those derived experimentally as supported by a

correlation coefficient of 0.89. However, the MD fluctua-

tions tend to be slightly larger, especially in the loop regions.

Fig. 1 also shows that whole-molecule translations and

rotations contribute ;0.25 Å2 to the total MS fluctuations.

One possible reason why the simulation-derived fluctua-

tions are slightly larger than experiment may be the as-

sumption made in deriving the experimental B-factors that

the fluctuations are harmonic. This assumption has been

shown to lead to an underestimation of fluctuation mag-

nitudes (Garcı́a et al., 1997). To examine the consequences

of this assumption, the fluctuations for each atom were

recalculated from Gaussian fits to the simulation-derived

atomic positional densities. The results, which correspond to

the experimental isotropic B-factors, are presented in Fig. 1.

Use of the Gaussian assumption does indeed significantly

reduce the fluctuations, especially in the loop regions.

However, the approximation does not account for most of the

difference with experiment, the MD fluctuations remaining

higher than experiment.

The atomic mean-square fluctuations can be decom-

posed as

Æu2

kæ ¼ ÆðIuk 1
Tuk 1

RukÞ2æ ð7Þ
¼ ÆIu2

kæ1 ÆTu2

kæ1 ÆRu2

kæ1Kk; ð8Þ

TABLE 1 The average values for the MD unit cell sides and

volumes for the simulations (T1–3,O1) and the experimental

values (Wall et al., 1997)

a [Å] b [Å] c [Å] V [Å3]

Exp. 48.5 48.5 63.4 149,132.65

T1 48.3 6 0.2 48.3 6 0.2 63.8 6 0.4 148,555 6 419

T2 48.6 6 0.2 48.6 6 0.2 63.0 6 0.4 148,706 6 413

T3 48.6 6 0.2 48.6 6 0.2 62.9 6 0.5 148,695 6 392

O1 49.9 6 0.7 47.6 6 0.3 62.6 6 0.8 148,634 6 399
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where Æuk2æ is the total mean-square fluctuation of atom k,

the displacements Iuk,
Tuk, and

Ruk describe the fluctuations
due to the protein internal motion, whole-molecule trans-

lation, and whole-molecule rotation, respectively, and Kk

represents correlations between the displacements Xuk,
X ¼ {I,T,R}. The mean-square fluctuations of the displace-

ments Xuk were calculated from the MD trajectories as

follows: to calculate Iuk a new trajectory was created in

which the protein whole-molecule motion was removed by

superposing all coordinate sets of a single-protein trajectory,

Ri(t), on a single-protein reference structure (the mean

structure of Ri(t)). To calculate the whole-molecule rigid-

body displacements, Tuk and Ruk, a new trajectory was

created by superposing the mean structure of Ri(t) on each

coordinate set of Ri(t). For protein internal motions the

mean-square fluctuation is ÆÆIu2kææk ¼ 0.74 Å2. In compar-

ison, whole-molecule translation contributes ÆÆTu2kææk ¼
0.13 Å2 and the whole-molecule rotational contribution is

ÆÆRu2kææk ¼ 0.16 Å2. The whole-molecule rotational contri-

bution converged on the 1-ns timescale with an average

molecule-rotation angle of (1.2 6 0.1)�. The translational

contribution converged more slowly, on the 10-ns timescale.

Thus, the total mean-square fluctuation ÆÆu2kææk ¼ 1.07 Å2

arises mostly (69%) from internal protein motion, with

whole-molecule translation and rotation contributing equally

to 27%. Although cross-correlations between the atomic

displacements Xuk, ÆKkæk ¼ 0.04 Å2 contribute only 3% of

the mean-square fluctuations, their average magnitude Æ|Kk|æk
¼ 0.09 Å2 corresponds to 8% of the total fluctuations. This

indicates that X ¼ {I,T,R} is not an optimal basis for

decomposition, due to the fact that, for a nonrigid body, the

internal and whole-molecule motion cannot be strictly

distinguished, leading to Kk 6¼ 0.

A related question is whether the simulation-derived

ÆIuk2æ values in Fig. 1 have converged. To examine this, the

analysis scheme introduced in Methods was applied. The

results for all simulations are quantitatively similar. Those for

simulation T1 are depicted in Fig. 2. For the majority (;65%)

of atoms the fluctuations reach a plateau after 2–4 ns and

the error bars gradually reduce during the progression of the

simulation. This behavior is exemplified by C29
a in the figure,

which is situated in a turn between twob-strands. For a smaller

fraction (;15%) of atoms, however, the fluctuations sig-

nificantly increase throughout the simulation, as exemplified

in the figure by C49
a :Most of these atoms are located either in

a highly-flexible loop region (residues 46–51) or in the very

mobile C-terminus that was not visible crystallographically

(residues 142–149).As a result, due to this smaller fraction the

fluctuation averaged over the whole molecule increases

steadily with time. The fluctuations of the remaining 20% of

atoms exhibit more complex behavior, one example being

C112
a , which is situated in a coil region.

X-ray diffuse scattering

X-ray diffuse scattering is determined by the variance-

covariance matrix, Eq. 2, and thus originates from cross-

correlations in atomic displacements. Fig. 3 presents the

time-dependence of the agreement factor, RDt, between the

FIGURE 1 Mean-square Ca-atom fluctuations calculated from the MD

trajectories and from experiment. The simulation-derived fluctuations are:

the total Æuk2æ, including internal motion and whole-molecule translation and

rotation (SIM: total); the total Æuk2æ with a Gaussian fit to the atomic

positional distribution (SIM: Gaussian, see text); the contribution from

internal motion (SIM: intra); and the contribution from whole-molecule

translation and rotation (SIM: whole mol.). The decomposition of motions is

described in detail in the text, see Eqs. 7 and 8. Experimental values were

computed from B-factors using Eq. 6. B-factors were not reported in the

starting structure used for the MD simulations (2SNS). Therefore, the

experimental B-factors shown here are from 1STN (Hynes and Fox, 1991),

a room-temperature structure refined at 1.7 Å with an R-factor of 0.162 and

very similar unit cell parameters (a¼ b¼ 48.5 Å and c¼ 63.5 Å). Segments

of secondary structures are indicated, see Fig. 8.

FIGURE 2 Protein internal RMS fluctuations for all Ca-atoms averaged

over subtrajectory lengths Dt (shaded lines) shown for a single protein of

trajectory T1. Highlighted in black are the average overall Ca atoms and

three examples of different time-dependence. Error bars denote the standard

deviation. For clarity, only error bars for Ca
29 are shown.

Fluctuations and Correlations in Proteins 2557

Biophysical Journal 88(4) 2554–2563



simulation with the lowest R-factor (T3) and the experimen-

tal scattering data from Wall et al. (1997). RDt reduces to

;10% within the first 500 ps and then continues to decrease

slowly on the nanosecond timescale, reaching 8.1% at 10 ns.

The continued decrease of RDt with time indicates that the

scattering has not yet converged in the simulation but that

the scattering intensity more closely resembles the experi-

ment when the nanosecond-timescale dynamics are included.

The dashed line shows the least-squares fit of Rð4t;A;BÞ ¼
A1B lnð4t=½ns�Þ and demonstrates that the agreement factor

decays logarithmically with time. Again, for all simulations,

RDt is similar. The R-factors and fit results from each sim-

ulation are given in Table 2.

Correlations in Ca-atom displacements

The B-factor results in Fig. 1 and the diffuse scattering

R-factor plot in Fig. 3 suggest that the agreement with

crystallographic experiment is sufficient to warrant a more

probing analysis of the simulation data. To do this, the

correlations in Ca-atom motion are now examined and

related to the interatomic distances and protein topology. The

convergence properties of the Ca displacement correlation

matrix are also investigated.

In Fig. 4 are shown the displacement correlation matrix

elements, Ckk9, for intra- and interprotein atom pairs,

calculated for trajectory T1 and plotted against their cor-

responding interatomic distances, rkk9. The average values of
Ckk9 as a function of rkk9 are indicated by the shaded lines.

Intraprotein motions of atom pairs separated by less than

;20 Å are mostly positively correlated. For larger atomic

separations the values of Ckk9 range approximately from

�0.5 to 10.5 for both distributions, i.e., for intra- and

interprotein atom pairs. For rkk9 , 20 Å the intraprotein

motions exhibit a significantly higher degree of correlation

than motions between different proteins. At larger separa-

tions intra- and interprotein motions on average appear

slightly anticorrelated. However, as described in Methods,

this anticorrelation is an artifact due to the MD algorithm

periodically removing the center-of-mass translation and

rotation of the unit cell. Consequently, motions of atoms

separated by rkk9 * 20 Å are uncorrelated.

We now investigate the convergence properties of Ckk9.

To address this issue, the absolute and relative errors, sCkk9;4t
,

and DCkk9, Dt, respectively, were computed for non-over-

lapping subtrajectories with lengths Dt¼ 0.1, . . . , 5.0 ns and
the converged fraction, fCcorr

kk9
, was calculated as described in

Methods. Only intraprotein motions showed a significant

degree of convergence. Hence, only these correlations are

discussed in the following. Fig. 5 presents the dependence of

the intraprotein fCcorr
kk9

on Dt . Apart from in simulation T2, the

converged fraction increases roughly logarithmically with

Dt. Fig. 5 also shows that the degree of convergence varies

significantly between the simulations. For the equivalent

simulations Tx (x ¼ 1,2,3) one finds fT2 . fT1 . fT3,
indicating that simulation T2 possesses the highest degree

of convergence. In contrast, Table 2 indicates that the

agreement factors R display the reverse order, with simu-

lation T3 in best agreement with experiment. This apparent

conflict may be resolved by considering a simulation

restricted to a region of phase space significantly smaller

than that explored in the experiment. The variance-

covariance matrix may appear to approach convergence in

this simulation. If, then, the simulation crosses a free-energy

barrier into another, previously unexplored region of phase

space, then the variance-covariance matrix will appear to be

far from convergence, whereas the elements themselves may

resemble the experimental values more closely.

Also of interest is whether the matrix elements, Ckk9,

converge to the same value in different simulations. This

can be investigated by calculating fCcorr
kk9

for the merged

trajectories Tx and Tx 1 O1 (x ¼ 11213), respectively. If

Ckk9 converges to the same value in all simulations, it

contributes to fCcorr
kk9
; otherwise, it does not. On the other hand,

if Ckk9 does not converge in any single simulation then it is

FIGURE 3 Dependence of the x-ray diffuse scattering agreement factor,

RDt on the averaging time interval Dt . The dashed line represents a least-

squares fit (see text and Table 2). The figure shows results for the simulation

T3. The results from the other simulations are very similar. Error bars denote

the standard deviation.

TABLE 2 Agreement factors RDt510 ns between the

experimental diffuse x-ray pattern (Wall et al., 1997) and the

scattering obtained from each trajectory

RDt¼10 ns A B Dt*R¼0.00 Dt*R¼0.04

T1 8.15 9.90e-2 �7.07e-3 1.2 ms 4.2 ms

T2 8.35 9.91e-2 �6.45e-3 4.8 ms 9.6 ms

T3 8.08 9.81e-2 �7.45e-3 0.52 ms 2.4 ms

O1 8.56 9.86e-2 �5.49e-3 63 ms 43 ms

A and B are results of least-squares fits (see text) and the remaining two

columns give extrapolated convergence times Dt* for specified values of R.
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unlikely to converge in the merged trajectories. Therefore,

the maximum value of fCcorr
kk9

for the merged trajectories is

determined by the simulation with the lowest degree of

convergence, i.e., T3. fCcorr
kk9

for the merged trajectories are

also shown in Fig. 5. For Dt ¼ 2.5 ns the convergence of Tx

and Tx 1 O1 differ by 5% and 13% from T3, respectively.

Thus, the majority (87%) of the converged matrix elements

converged to the same value in all four simulations.

In Fig. 6 the intraprotein fCkk9
is plotted against the

interatomic distance, the fraction calculated from a random

matrix, fCrand
kk9

(see Methods), being negligible (9 6 1)10�4.

For shorter distances, rkk9 & 6 Å, .80% of the intraprotein

correlation matrix converges on the timescale of Dt¼ 1.0 ns.

This fraction drops to ;10% for rkk9 ¼ 12 Å and becomes

effectively zero for separations larger than 15 Å.

Also of interest is the dependence of the correlation matrix

on the protein topology. To assess this, only converged

elements of the intraprotein correlation matrix are examined.

Due to the covalent bonding structure, one might expect the

correlations between atoms local in the sequence to be larger

than those between neighboring atoms which are nonlocal in

sequence. The mean values, ÆCkk9, Dtæ, for atom pairs that are

local in sequence, defined here as D¼ jk – k9j, 10 (note that

for Ca-atoms k and k9 are identical with the residue numbers),

are compared in Fig. 7 with pairs that are nonlocal in sequence

(D $ 10) as a function of Ærkk9æ. Indeed, the displacement

correlations between atoms that are local in sequence are on

average larger than those between atoms that are nonlocal in

sequence. The difference is ;0.1, independent of Ærkk9æ.
Furthermore, the inset in Fig. 7 clearly demonstrates that the

degree of correlation for nonlocal atoms decreases only

slowly with increasing separation. Closely resembling the

average distance-dependence for all matrix elements shown

in Fig. 4 A, the magnitude of the converged elements

decreases approximately exponentially with Ærkk9æ with

a decay length of 10.6 Å for Ærkk9æ , 25 Å, beyond which

ÆCkk9æ ¼ 0.

Finally, we investigate where atoms, for which the

intraprotein correlation matrix elements have converged,

are located within the protein. In Fig. 8 A are shown the

converged pairs of Ca-atoms in the simulations Tx (x¼ 1,2,3)

with Dt ¼ 2.5 ns. 94 percent of all nearest and 68% of all

FIGURE 4 Displacement correlation

matrix elements for all Ca-atoms plot-

ted against their average distance, rkk9,

for intraprotein motions (A) and inter-

protein motions (B). Both graphs were

computed for the full trajectory T1 with

length 10 ns. The shaded lines show the

average values for distance intervals of

width 1 Å. The atomic distance, rkk9,

between two atoms k and k9, was

calculated as rkk9 ¼ min R{jjrk � rk9 1
Rjj}, where R is a lattice vector and

thus rkk9 is the minimum distance

between atom k and any crystal image

of atom k9 created by the periodic

boundary conditions.

FIGURE 5 Fractions of converged correlation matrix elements, fCcorr
kk9
, at

different lengths, Dt of subtrajectories for all simulations, and two merged

trajectories. Results are shown for intraprotein motions.

FIGURE 6 Fraction of the intraprotein correlation matrix elements that

has converged, fCkk9
, versus the atomic separation, rkk9. Results presented are

for subtrajectory length Dt ¼ 1.0 ns.
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second-nearest backbone neighboring pairs converged in all

four proteins in the unit cell. Most of the regions in which the

correlations converged are located in secondary structural

elements. The correlations between atoms located in

a-helices converge for sequence distances D & 7. In

contrast, the atom pairs within b-strands converge only for

D & 2. The off-diagonal elements are converged atom pairs

that are nonlocal in sequence. The majority of these are

correlations between secondary structure elements. For al-

most all the strands in the Staphylococcal nuclease b-barrel

the interstrand correlations have converged. Moreover, there

is some convergence between a1 and a2, and pronounced

convergence between a2 and a3. Correlations between the

a- and b-elements in general have not converged. Finally,

a comparison between Figs. 1 and 8 demonstrates that the

converged correlations exist in regions of low mean-square

fluctuation.

DISCUSSION AND CONCLUSIONS

Molecular dynamics simulations of crystalline Staphylococ-

cal nuclease have been performed and analyzed in terms of

B-factors, the atomic displacement correlation matrix, and

x-ray diffuse scattering.

The average protein structures in all simulations are in

accord with the experimental reference structure (1.3 Å

average Ca RMSD). The unit cell edge parameters and

volume are also well reproduced, indicating that protein

packing is described correctly.

Isotropic B (thermal) factors are widely used to derive

atomic fluctuations from x-ray crystallographic protein

FIGURE 7 ÆCkk9, Dtæ versus Ærkk9æ for atom pairs local or nonlocal in

sequence. For the local-in-sequence data error bars are drawn along the

principal axes of each (Ckk9, Dt, rkk9)D-distribution. The dotted line connects

data points for atom pairs that are local in sequence. The inset shows the

non-local-in-sequence data over the full distance range and shows a profile

similar to Fig. 4 A. Results are shown for trajectory T2 with a subtrajectory

length Dt ¼ 1.0 ns. Error bars denote the standard deviation.

FIGURE 8 (A) Pairs of Ca-atoms for which the protein-internal displacement correlations converged. The regions of secondary structural elements are

indicated and their average correlation coefficients are given in parentheses. The results shown are for the merged trajectories Tx (x ¼ 11213) with

subtrajectory length Dt ¼ 2.5 ns. The gray-scale indicates the number of proteins for which Ckk9 converged. (B) Structure of Staphylococcal nuclease with
secondary structural elements indicated.
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structures. The question arises, however, as to whether an

unambiguous description of the dynamics involved can be

derived from B-factor data in the absence of detailed

additional information. B-factors contain static and dynamic

components (Frauenfelder et al., 1979; Chong et al., 2001).

Part of the static disorder may be temperature-independent.

However, as the temperature of a protein is lowered some of

the dynamic disorder may become static as proteins freeze

into structurally inhomogeneous conformational substates.

Separation of static from dynamic disorder is therefore

nontrivial.

One approach is to fit simplified displacement models

directly to the B-factor distribution. However, this approach
suffers from the drawback that many such qualitatively-

different models may yield fits of similar quality. Thus, it has

been shown that a rigid-body translation/libration/screw

(TLS) displacements model (Schomaker and Trueblood,

1968), in which the whole protein is considered as rigid and

internal dynamics is absent, accurately reproduces most

(Diamond, 1990) or all of protein B-factor distributions

(Kuriyan and Weis, 1991). Alternatively, TLS models in

which parts of the protein are considered rigid (e.g., aromatic

side chains) have also been shown to successfully fit B-factor
data (Howlin et al., 1989; Winn et al., 2001). An alternative

model involves rigid-protein TLS degrees of freedom

together with the internal dynamics described by normal

mode eigenvectors with refinable amplitude factors

(Diamond, 1990; Kidera and G�oo, 1990; Joti et al., 2002).
Moreover, a very simplified Gaussian vibrational model, in

which the protein is described as an elastic network of locally

interconnected Ca-atoms in the absence of whole-molecule

motion, was also shown to produce B-factor distribu-

tions that agree very well with experiment (Tirion, 1996;

Bahar et al., 1997; Kundu et al., 2002). Very recently, it

has been demonstrated that B-factor distributions are

closely correlated to local protein packing densities (Halle,

2002).

The availability of the above variety of fundamentally

different models, all of which reproduce experiment, testifies

to a lack of information that can be directly extracted from

B-factor distributions. Thus, additional information must be

supplied. For the dynamical contribution, this additional

information is conveniently furnished by molecular simula-

tion, in the form of the dynamical equations and the

associated atomic model and force field. MD simulation

offers a direct way of determining protein internal and

whole-molecule motion (Hünenberger et al., 1995; Héry

et al., 1998). However, due to computational limitations only

part of the dynamics of the system is explored, i.e., in the

present simulations of Staphylococcal nuclease, fluctuations

are sampled occurring on the nanosecond timescale and on

lengthscales shorter than the box size of the simulation, i.e.,

the unit cell. That longer timescale fluctuations exist, which

are not sampled in the simulation, can be inferred from the

present results. Furthermore, correlated motions between

unit cells, such as commonly produce diffuse scattering

streaks and rings associated with the reciprocal lattice, are

also suppressed by the imposition of periodic boundary

conditions.

Although in the simulations the fluctuations derived from

the whole-molecule rigid-body external dynamics resemble

the distribution of the total mean-square fluctuations, their

contribution to the total mean-square fluctuations is sig-

nificantly smaller than that from internal motions. Internal

and whole-molecule motions were found to contribute

;0.74 Å2 (69%) and ;0.29 Å2 (27%) to the total mean-

square fluctuations, respectively. Only in the regions of the

secondary structural elements are both contributions of

comparable magnitude. Furthermore, the present results

indicate that the separation of the fluctuations into whole

molecule translation, rotation, and internal motion does not

provide an adequate basis for describing B-factors. There-
fore, the TLS-model may not provide a physically consistent

description if the protein is represented as a single rigid-

body.

The simulation-derived total mean-square fluctuations are

significantly larger than those derived from the experimental

B-factors (cf. Fig. 1), as has been observed in previous MD

studies (Hünenberger et al., 1995; Garcı́a et al., 1997; Caves

et al., 1998; Eastman et al., 1999). Although part of the

difference with experiment is due to the harmonic assump-

tion made in deriving the experimental B-factors, most of the

difference has other origins. One possible contribution is the

presence of crystallization agents, ligands and/or large-size

ions, e.g., sulfate, in the experiment (which are absent in the

simulation) which, due to steric hindrance and/or salt-

bridges, could restrict protein motion. Also, the simulation

setup and performance (e.g., the building of unresolved

residues, length of equilibration) or inaccuracies of the force

field, may have an influence. Furthermore, the uncertainties

in experimental B-factors may be large. For example, the Ca

mean-square fluctuations derived from 1SNM (Loll and

Lattman, 1990), a Staphylococcal nuclease structure similar

to 1STN, are on average 30% larger than those shown in

Fig. 1.

A large fraction (;65%) of the fluctuations converges on

the nanosecond timescale. The nonconverged segments

comprise the experimentally unresolved C-terminus region

(residues 142–149), a highly flexible loop (residues 46–51),

and some coil regions for which the fluctuations vary non-

monotonically with the simulation length.

Additionally, the convergence properties of the atomic

displacement cross-correlation matrix, Ckk9, have been deter-

mined here as a function of the length of the simulations. In

molecular simulations, collective properties often converge

on longer timescales than single-particle properties, and poor

sampling of the displacement correlation matrix in protein

MD has been previously noted (Clarage et al., 1995;

Hünenberger et al., 1995). Here, it is found that parts of

the protein-internal interatomic displacement correlation
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matrix converge on the nanosecond timescale whereas other

parts do not. A crucial factor is the atomic separation. For

atoms separated by & 7 Å more than 50% of Ckk9 converge

on the nanosecond timescale in the simulations. The

magnitude of the converged matrix elements decays, on

average, approximately exponentially with distance, with

a decay length of 10.6 Å. Furthermore, convergence is seen

between the strands comprising the b-barrel of the protein

and between some neighboring a-helices, but not between

the a- and b-regions of the protein.

For intraprotein motion, the converged fraction of Ckk9

grows logarithmically with the simulation length, cf. Fig. 5,

a finding consistent with the logarithmic decay of the diffuse

scattering R-factor with time (Fig. 3), which is determined

by the convergence of the variance-covariance matrix. A

physical model consistent with this logarithmic time-

dependence is as follows. For the variance-covariance matrix

to converge the system must fully sample the accessible

protein energy landscape. For proteins, the energy landscape

consists of multiple minima separated by a distribution of

barrier heights (Frauenfelder et al., 1991, 1999). The num-

ber, NM, of minima sampled is a measure of the fraction of

the energy landscape sampled and thus the degree of

convergence of the variance-covariance matrix. The config-

urational sampling within a single minimum is very fast,

whereas transition rates between minima are slower and

depend exponentially on the barrier height DE, occurring
with an average transition time, tT ; exp(DE/kBT). If the
neighboring minima are of higher energy than the original

minimum, the system will return to the original minimum

within a time shorter than tT. Therefore, the sampling of

neighboring minima will converge on a timescale tT given by
the maximum barrier height crossed between the original and

neighboring minima. The observation that the variance-

covariance matrix converges on a logarithmic timescale there-

fore implies that NM increases proportionally to, or as a

polynomial function of, the maximum barrier height crossed,

i.e., NM ; DE ; log(t).
Finally, the present results allow us to estimate how long

an MD simulation might have to be to fully sample the

collective motions within crystalline proteins. The protein

collective motions are described by the displacement

variance-covariance matrix, which in turn determines the

x-ray diffuse scattering. Hence, the comparison with x-ray

diffuse scattering experiments enables us to estimate the

simulation length required for the variance-covariance matrix

to converge. Convergence of the diffuse scattering, and thus

the variance-covariance matrix, can be defined as occurring

when the agreement factor between simulation and exper-

iment reaches RDt # e, where e accounts for systematic and

experimental errors. The required simulation length depends

on the choice of e and the system size. Estimates for the

convergence time Dt* are given in Table 2 for the entire

Staphylococcal nuclease unit cell and two e-values. For a
realistic value of e ¼ 0.04 the convergence time is of the

order 1 ms for the tetragonally constrained simulations, i.e.,

100 times longer than the present simulations.
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Héry, S., D. Genest, and J. C. Smith. 1998. Rigid-body motion and x-ray
diffuse scattering in crystalline lysozyme. J. Mol. Biol. 279:303–318.

Hoover, W. G. 1985. Canonical dynamics: equilibrium phase-space
distributions. Phys. Rev A. 31:1695–1697.

Howlin, B., D. S. Moss, and G. W. Harris. 1989. Segmented anisotropic
refinement of bovine ribonuclease A by the application of the rigid-body
TLS model. Acta Crystallogr. A. 45:851–861.

Hünenberger, P. H., A. E. Mark, and W. F. van Gunsteren. 1995.
Fluctuation and cross-correlation analysis of protein motions observed in
nanosecond molecular dynamics simulations. J. Mol. Biol. 252:492–503.

Hynes, T. R., and R. O. Fox. 1991. The crystal structure of staphylococcal
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