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Current methods for the functional analysis of microarray gene
expression data make the implicit assumption that genes with similar
expression profiles have similar functions in cells. However, among
genes involved in the same biological pathway, not all gene pairs
show high expression similarity. Here, we propose that transitive
expression similarity among genes can be used as an important
attribute to link genes of the same biological pathway. Based on
large-scale yeast microarray expression data, we use the shortest-
path analysis to identify transitive genes between two given genes
from the same biological process. We find that not only functionally
related genes with correlated expression profiles are identified but
also those without. In the latter case, we compare our method to
hierarchical clustering, and show that our method can reveal func-
tional relationships among genes in a more precise manner. Finally,
we show that our method can be used to reliably predict the function
of unknown genes from known genes lying on the same shortest
path. We assigned functions for 146 yeast genes that are considered
as unknown by the Saccharomyces Genome Database and by the
Yeast Proteome Database. These genes constitute around 5% of the
unknown yeast ORFome.

DNA microarrays simultaneously monitor the expression
levels of thousands of genes. The massive gene expression

data provide us with unique opportunities to analyze the func-
tional and regulatory relationships among genes. One useful
approach is to cluster genes with similar expression patterns. The
most popular clustering methods include hierarchical clustering
(1), K-means clustering (2), and self-organizing maps (3). On the
assumption that genes with similar expression profiles have
similar biological functions, functions of unknown genes can be
predicted from their expression-similarity to known genes (1, 4).

However, do genes with similar functions always have similar
expression profiles? The answer is, of course, no. First, genes
with similar functions may not have been exposed to sufficient
perturbations for their expression similarities to be revealed.
Second, for some genes with similar functions, their product
concentrations are partially or totally controlled at levels other
than transcription. Third, measurements of expression similar-
ity—e.g., Pearson’s correlation or Euclidean distance—may not
be able to completely capture the relationship between two
expression profiles for such reasons as time-shift (5). Therefore,
to identify the functional relationships between genes, we need
to look beyond clustering methods. In this paper, we propose a
method to group genes involved in the same biological process,
even those without significant expression similarity.

First, we introduce an important characteristic of biological
processes that we call transitive co-expression. Intuitively, this
refers to situations where two genes are not strongly correlated
in expression, but are both strongly correlated with the same set
of other genes. In the simplest case, suppose genes a and b have
strong expression correlation, as well as genes b and c. However,
genes a and c do not have strong expression correlation, so we
say that they are transitively co-expressed, with gene b serving as
the transitive gene. It is clear that in a biological pathway, a gene
is likely to show strong expression correlations with its neighbor
genes, but not with genes that lie far apart in the pathway. This
lack of correlation can be caused by various reasons. For

example, (i) some biological processes are protracted in time,
e.g., the cell cycle, so that expression relationships are revealed
at different time points along the process. Using transitive
co-expression, we can establish linkages between these genes to
unveil the complete pathway. (ii) genetic and biochemical net-
works of a cell must withstand substantial random perturbations.
Based on the principle of efficiency, mechanisms such as neg-
ative feedback loops limit the number of genes that fluctuate in
their expressions. Thus different sets of experiments perturb
different segments of a biological pathway to different extents,
so that the expression relationships among genes along the
pathway are revealed in a compartmentalized fashion across
experiments. Such compartmentalized pathway segments can be
associated through overlapping genes by transitive co-expression
so that the biological pathway can be revealed as a whole.

Given two genes known to be involved in the same biological
pathway, identifying transitive genes between them may allow us
to discover genes involved in the same biological process. Here,
we propose a graph-theoretic scheme to identify such transitive
genes. In our graph, vertices represent genes, and each gene pair
that is highly correlated in expression is connected with an edge,
where the edge length is a decreasing function of the expression
correlation (Fig. 1A). Given such a graph, there can be multiple
expression dependence paths between two genes—e.g., between
genes a and e. The shortest of these paths (the shortest path, SP)
would then be the most parsimonious explanation of dependence
between a and e, given our expression data. If genes a and e are
highly correlated, the shortest dependence path between them
would just be the edge connecting them; if they are not signif-
icantly correlated but are involved in the same pathway, then we
may still be able to discover their expression association by
constructing the shortest dependence path between them. The
transitive genes on the SP are likely to be important intermediate
players between the two terminal genes in the same process.

In this paper, using yeast expression data, we first validate that
the SP method is able to link functionally related genes, even
without high expression correlation, and show the results to be
highly statistically significant. In addition, we make comparisons
to hierarchical clustering to show that our method can more
precisely reveal functional relationships among genes. Finally,
given that our method can group functionally related genes
together, we make predictions for the functions of unknown
genes based on those of known genes on the same SP. We made
predictions for 146 unknown yeast genes, a significant number of
which are supported by evidence other than the data we used.

Methods
Data Processing. We used the Saccharomyces cerevisiae gene
expression profiles from the Rosetta Compendium (6), which
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includes 300 deletion and drug treatment experiments. Genes
were annotated by using the biological process ontology of Gene
Ontology (GO) (7) provided by the Saccharomyces Genome
Database (SGD) (8). To verify that genes on the same SP are
likely to be involved in the same biological process, we applied
our method to the Rosetta dataset and checked the results
against GO-annotated biological processes in the three major
cellular compartments: mitochondria, cytoplasm, and nucleus.
Genes are separated according to their subcellular localizations
because sometimes a GO process category may actually encom-
pass distinct processes. Although similar in nature, these pro-
cesses may occur in different cellular compartments and thus are
not necessarily tightly controlled in regulation. For example,
‘‘protein biosynthesis’’ can take place in the mitochondria and
the cytoplasm, and ‘‘membrane transport’’ processes in different
compartments are distinct. We refine the process categories by
sorting genes into the three major cellular compartments.

After removing the genes without GO process annotation and
the 20 genes for which there are less than 80 experimental
measurements in the Rosetta Compendium, we were left with
266 mitochondrial, 398 cytoplasmic, and 659 nuclear GO-
annotated genes. For each of the three sets of genes, we
calculated the expression similarities of all gene pairs {a, b} using
Ca,b, the minimum of the absolute value of leave-one-out Pear-
son correlation coefficient estimates. This estimate is a mea-
surement robust against single experiment outliers and sensitive
to overall similarities in expression patterns.

Graph Construction and SP Computation. We constructed three
graphs, one for each set of the 266 mitochondrial genes, the 398
cytoplasmic genes, and the 659 nuclear genes. In each graph, two
genes were assigned an edge if their absolute expression corre-
lation Ca,b was higher than � � 0.6. This cut-off, while conser-
vative, nonetheless retains a sufficient number of connected
gene pairs in the graph. The edge length between vertices a and
b is da,b � f(Ca,b) � (1 � Ca,b)k. The powering factor k is used
to enhance the differences between low and high correlations.
Because the length of a path is the sum of the individual edge
lengths, by exaggerating the differences between edge lengths,
the SPs will be more likely to cover more transitive genes. Thus
by increasing k we gain more power to reveal transitive co-
expression. We set k � 6 because for k � 6, the numbers of

transitive genes stabilizes (detailed results at www.biostat.harvard.
edu�complab�SP�). To ensure the quality of SPs, we consider
only SPs with total path lengths �0.008.

We used Dijkstra’s algorithm to identify the SPs between a
source vertex to all other vertices in a graph. The central idea of
Dijkstra’s algorithm is the ‘‘relaxation’’ operation, which is based
on the fact that every subpath of a SP is also a SP. For instance,
in Fig. 1 A, suppose that a is the source vertex and that we already
have the SP from a to d via b and c. By relaxing each edge leaving
d we attempt to see what is the SP from a to all other vertices that
can be directly reached from d, in particular vertex e. If the path
from a to e going through d is shorter than the current best SP
estimate for e, then this estimate is updated to the new path. A
detailed introduction to Dijkstra’s algorithm can be found in ref.
9 and other algorithm textbooks. Exploiting the sparse nature of
our graph, we implemented a priority queue of vertices with a
Fibonacci heap to achieve O[n log(n) � m] time complexity,
where n is the number of vertices and m is the number of edges
in the graph. To determine the SPs starting from v source
vertices, we applied Dijkstra’s algorithm to each of the v vertices.
Thus the overall time complexity is O[nv log(n) � mv].

Analyzing the SP Between Two Genes Involved in the Same Biological
Process. GO is a set of controlled biological vocabularies orga-
nized in a rooted directed acyclic graph. For our purposes it can
be treated as a tree. Nodes in the tree refer to biological process
categories. A parent node refers to a more general annotation
than that of its children. SGD annotates each known yeast gene
with one or more nodes in the GO tree. From all available
annotations, we want to select those process categories that do
not include too many genes to guarantee the functional homo-
geneity of member genes, and that do not include too few genes
to provide sufficient numbers of genes for the purpose of
validation. Using an approach similar to that proposed by
Hvidsten et al. (10), we retrieved such process categories from
GO by traversing the tree breadth-first from the root and
selecting nodes that satisfy the properties that (i) the node
contains more than � � 30 genes and (ii) each of the node’s
children contains less than � genes. We define such GO nodes
as informative nodes, and the biological process categories they
represent as the informative categories.

To test the validity of the SP method, we need to see whether
genes on the same SP share the same GO process annotations.
Given any two genes from the same informative process category
(terminal genes), we determine whether there is a SP connecting
them. If there is a SP including one or more transitive genes, we
check the GO process annotations of these genes. A transitive
gene is termed a level 0 (L0) match if it is annotated in the
informative node in the GO tree from which the terminal genes
are selected; it is termed a level 1 (L1) match if it shares the same
direct parent node with the terminal genes (Fig. 1B). For all SPs
connecting all gene pairs in each informative category, we count
the total number of transitive genes as well as the numbers of L0
and L1 matches. For each cellular compartment we sum over the
results of its informative categories and calculate the L0 and L1
match ratios relative to the total number of transitive genes.

Using a Permutation Test to Assess the Statistical Significance of the
SPs. For the purpose of validating the SP method, we need to
evaluate the numbers of L0 and L1 matches, taking into account
the numbers of such matches expected under the null hypothesis.
Keeping the graph structure constant, we randomly permute the
gene labels over the vertices to decouple gene annotations from
their expression profiles. We then perform the SP method over
these graphs, and calculate the L0 and L1 match ratios. This is
done for 1,000 iterations. The distribution of L0 and L1 match
ratios generated under the null hypothesis is compared with the
observed quantities. The P values so derived give us an assess-

Fig. 1. (A) Application of the shortest-path (SP) algorithm to gene expression
data. Nine genes are depicted in the graph. The distance between two genes
is a decreasing function of their correlation. For example, there are multiple
expression dependence paths leading from gene a to gene e. Among them,
the shortest dependence path is a–b–c–d–e, with genes b, c, and d serving as
the transitive genes. This is the most parsimonious summary of the expression
relationship between the terminal genes a and e. (B) Level 0 (L0) and level 1
(L1) matches of genes on the SP a–b–c–d–e defined according to their
relationships in the Gene Ontology (GO) classification tree. With respect to the
terminal genes a and e, the transitive gene b is a L0 match because it is
annotated in the informative node where a and e are annotated; the transitive
gene c is a L1 match because it shares the same direct parent as the two
terminal genes; the transitive gene d is neither a L0 nor a L1 match.
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ment of the ability of the SP method to reveal biological
relationships between genes based on microarray data.

Predicting the Functions of Unknown Genes. We use the SP method
to classify previously unannotated yeast genes by adding the 3,255
ORFs unknown to SGD into the graphs of known genes in the
mitochondrial, cytoplasmic, and nuclear compartments. As before,
an edge is constructed between two genes if their absolute expres-
sion correlation is higher than 0.6. For all pairs of known genes, we
determine the SPs connecting them. For the purpose of functional
prediction, we would like to assign a putative function that is as
specific as possible to the gene. Given all known genes on a SP, we
achieve this by tracing back their annotations along the GO process
tree and finding their lowest common ancestor. If the lowest
ancestral node is at least 4 levels below the root of the GO tree, that
is, it defines a sufficiently specific gene function, we then assign this
function to the unknown genes on the SP. Analogous to the L0 and
L1 matches, here the L0 prediction then corresponds to the lowest
common ancestor, and the L1 prediction to its direct parent. In this
way, the function represented by the lowest common ancestor can
be more specific than that defined by the informative nodes. Under
two circumstances an unknown gene may be assigned with multiple
functions: (i) Because known genes on a SP may each have multiple
functions, they may share several lowest common ancestors in the
GO tree. (ii) An unknown gene may reside in different SPs with
different lowest common ancestors. For each predicted gene func-
tion, we provide both the number of support SPs from which the
prediction was derived and the number of unique known genes on
those support SPs (support genes). The more support genes there
are, the more confidence we have in the corresponding prediction.
Note that a gene can be assigned putative functions in multiple
graphs, because many genes are known to function in multiple
cellular compartments.

Results
SP Method Clusters Genes Involved in the Same Biological Process.
We constructed the graphs for all yeast genes with GO process
annotations in mitochondria (266 genes), cytoplasm (398 genes),
and nucleus (659 genes). Using the procedure defined in Meth-
ods, we obtained 4, 8, and 22 informative GO categories for
genes in the graphs of mitochondria, cytoplasm, and nucleus,
respectively. The numbers of genes in those informative cate-
gories range from 31 to 174. In each graph, given any two genes
belonging to the same informative GO process category, we
identify the SP connecting them. We check the GO process
classification of the transitive genes on the SP to identify the L0
and L1 matches, as discussed in Methods.

For each compartment, we summarize the results in Fig. 2A.
In the cytoplasm and mitochondria graphs the SP method
achieved surprisingly accurate results, where it successfully
called 84%�64% and 69%�59% of the transitive genes at the
L1�L0 levels, respectively. The nuclear graph shows relatively
lower match ratios of 51%�39% at the L1�L0 levels. This result

can be attributed to regulatory mechanisms exerted at levels
other than transcription in the nucleus, for example regulated
import�export of nuclear proteins. For the L1�L0 match ratios
in all compartments, our method showed better performance
than the 1,000 iterations of the permutation test, giving us P
values less than 0.001. This demonstrates the significant power
of the SP method in revealing biological relationships between
genes based on microarray data.

It should be noted that, first, the match ratios we compute are
in fact conservative. Because GO annotation is based only on
positive biological evidence and is sparse in SGD, genes that are
not classified as L1 or L0 matches may still be functionally
related to the terminal genes on the SP. Second, we believe one
major source of errors is the heterogeneity of perturbations in
the Rosetta Compendium, where experimental conditions over-
all were not specifically designed for any particular biological
process. Thus genes on a SP may be involved in several distinct
biological processes that are nonetheless affected simultaneously
by nonspecific perturbations. With experiments specifically de-
signed for particular biological processes, we believe our ap-
proach will achieve higher accuracy.

SP Method Reveals Functional Relationships Between Genes with Low
Expression Similarity. Among the identified SPs, particularly in-
teresting are those with low expression similarities between the
terminal genes. In fact, over all three graphs, for more than 85%
of the SPs that include at least one transitive gene, their terminal
genes have weak expression correlations (�0.6) (Fig. 2B). This
finding means that, in the graph, there is no edge between those
terminal gene pairs; their relationships are revealed only by
transitive co-expression by transitive genes. In a considerable
subset of the SPs, transitive co-expression is even more pro-
nounced. In fact, there are significant numbers of SPs with very
weak expression correlations between the terminal gene pairs
(�0.3). In the cytoplasm graph, there are 2,083 such SPs, which
make up 26% of the total SPs. Even for transitive genes in these
SPs, we achieved a L1 match ratio of 74%. This result confirms
that our method can successfully reveal the relationship between
functionally related gene pairs through transitive co-expression,
even if their expression correlation is not significantly high.

An example is the SP we identified in the graph of cytoplasm,
RPL37A–RPL37B–RPS29B–RPS29A–RPL29–RPS21A from
the GO process ‘‘protein biosynthesis.’’ The correlation matrix of
the 6 genes is shown in Fig. 3A. In this SP, the expression
correlation between the terminal genes is only 0.12. In addition,
it is apparent that genes farther apart on the SP have lower
expression correlations. All 6 genes encode ribosomal proteins
and participate in protein biosynthesis. However, it is clear that
they are not tightly coregulated as a group. We compare our
method to standard hierarchical clustering methods based on
expression correlations from the same Rosetta Compendium
dataset. Among different linkages of hierarchical clustering,
single linkage is the closest to the SP method in its greedy

Fig. 2. Summary of the performance of the SP method. (A) The percentages of L0- and L1-matched transitive genes in the three cellular compartments. Values
shown above the bars are the numbers of genes. All match ratios at L0 and L1 are statistically significant at P � 0.001 by permutation test. (B) The percentages
of SPs with at least one transitive gene in which terminal genes show weak (�0.6) and very weak (�0.3) expression correlations. C(1, n) denotes the expression
correlation between the terminal genes. Values shown above the bars are the numbers of SPs.
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approach to building clusters by incrementally joining the clos-
est, most correlated genes. For the SP mentioned above, using
the 398 genes in the cytoplasm graph, the minimum hierarchical
clustering subtree covering the 2 SP terminal genes (RPL37A
and RPS21A) contains 276 genes (Fig. 3B). Among them, 144
are not ribosomal genes. Even genes involved in carbohydrate
metabolism, osmosensory signaling, and fatty acid biosynthesis
are included. Such remarkable contrasts between hierarchical
clustering and the SP method are common in our results. As
another example, the genes on the SP COR1–RIP1–SDH2–
SDH4–STF1 in the mitochondria graph are all involved in
oxidative phosphorylation. The correlation between the two
terminal genes is 0.16. By hierarchical clustering, the minimum
subtree covering the 2 SP terminal genes contains 241 genes,
which constitutes 91% of the genes in the mitochondria graph.
The weakness of the hierarchical clustering method is that once
a gene is assigned to a cluster, comparisons with other genes are
no longer done at the gene-to-gene level but at the cluster-to-

gene or cluster-to-cluster level. Thus it does not offer us as
parsimonious a description of the expression dependence as does
the SP method. The same drawback also exists in other com-
monly used clustering methods, such as K-means clustering.
Examples of such comparisons are available at our web site
(www.biostat.harvard.edu�complab�SP�).

Prediction of the GO Process Category for Unknown Genes. After
validating that the SP method can link functionally related genes, we
used it to classify previously unannotated yeast genes. We used two
rules to predict gene function. (i) A general rule: given all known
genes on a SP, if their lowest common ancestor on the GO tree is
more than 3 levels below the root, we then assign this function to
the unknown genes on the SP. Over all SPs in the graphs of
cytoplasm, mitochondria, and nucleus, we have made predictions
for 80, 54, 115 genes, respectively, which are considered as unknown
by SGD. (ii) Using a conservative rule, we consider those SPs that
satisfy the general rule and that contain only one unknown gene.

Table 1. Validation of the predictions made by the conservative rule for 24 genes without SGD GO process annotation, against their
YPD cellular role annotation (as of March 2002)

Gene GO process category prediction (L0) YPD annotation

ADH1 Main pathways of carbohydrate metabolism Carbohydrate metabolism [E]
ADH5 Amino acid metabolism Other metabolism [E]; carbohydrate metabolism [E]
BMS1 Nucleobase, nucleoside, nucleotide metabolism RNA processing�modification [E]
BUD28 Protein biosynthesis Cell polarity [E]
CLC1 Actin cytoskeleton organization Vesicular transport [E]; cell polarity [E]
COR1 ATP synthesis coupled proton transport Energy generation [E]; small molecule transport [P]
CPR7 Cell cycle Protein folding [P] [protein folding, G1 phase of cell cycle (19)]
ELP3 Transcription, DNA-dependent Pol II transcription [E, P]; protein modification [P]; chromatin�chromosome structure [P]
ERB1 35S primary transcript processing RNA processing�modification [E] [involved in 35S primary transcript processing (11)]
GPH1 Carbohydrate metabolism Carbohydrate metabolism [E]; cell stress [E]
GSP1�Ran Protein biosynthesis; ribosome biogenesis; 35S primary

transcript processing; G2�M transition of mitotic cell cycle
Cell cycle control [E]; nuclear–cytoplasmic transport [E]; RNA processing�modification [E]

MAK16 Ribosome biogenesis; RNA processing RNA processing�modification [E]
NFI1�SIZ2 Protein metabolism and modification; protein degradation Cell cycle control [E]; protein modification [E]
NOC3 Ribosome biogenesis; 35S primary transcript processing Protein synthesis [E] [involved in the biogenesis of the 60S ribosomal subunit (13)]
NUG1 RNA metabolism Nuclear–cytoplasmic transport [E] [export of ribosomal subunit] (20)
PRO2 Biosynthesis Amino acid metabolism [E]
QCR8 ATP synthesis coupled proton transport Energy generation [E]; small molecule transport [P]
RIB5 Amino acid and derivative metabolism Other metabolism [E]
RIP1 ATP synthesis coupled proton transport Energy generation [E]; small molecule transport [P]
RSM26 Protein biosynthesis Energy generation [E]; cell cycle control [E]; protein synthesis [P] [protein of the

mitochondrial ribosome small subunit (21)]; cell stress [E]
THR1 RNA processing Amino acid metabolism [E]
UGP1 Carbohydrate metabolism Carbohydrate metabolism [E]
XKS1 Protein metabolism and modification Carbohydrate metabolism [E]
YGL068W Protein biosynthesis Energy generation [P]; cell cycle control [E]; protein synthesis [P] [homolog of

Escherichia coli L7�L12 ribosomal protein (22)]

The gene with underlined names have YPD annotations that either agree or are closely coupled to our predictions. ‘‘[E]’’ denotes experimental evidence; ‘‘[P]’’
denotes computational prediction. We provide additional references in parentheses if (i) the YPD cellular role annotation is not sufficiently specific (ERB1, NUG1),
(ii) YPD has misclassified (NOC3), or (iii) computational cellular role predictions included by YPD match our prediction (CPR7, RSM26, YGL068W).

Fig. 3. (A) The correlation matrix for the shortest path RPL37A–RPL37B–RPS29B–RPS29A–RPL29–RPS21A. The gene names and their correlations in the Rosetta
dataset are indicated. The magnitudes of the correlations are represented by the colors: red, high; blue, low. (B) The minimum subtree covering the two terminal
genes in the SP (RPL37A and RPS21A) contains 276 genes.
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These are predictions for which we have higher levels of confidence,
because these unknown genes are each functionally bounded by all
of the other genes on the SP. Using the conservative rule, we made
predictions for a total of 75 unique genes.

While some genes do not have GO biological process anno-
tations in SGD, the biological processes that they are involved in
are annotated in the ‘‘Cellular Role’’ category in the Yeast
Proteome Database (YPD; www.incyte.com�sequence�
proteome�databases�YPD.shtml). We obtained the YPD cellu-
lar role annotations for 24 genes (Table 1) of the total 75 genes
predicted with the conservative rule, and we used them as a
positive internal control for our prediction. Among the 24 genes,
the predictions for 16 matched the experimentally derived
annotations in YPD; 3 matched computationally derived anno-
tations in YPD. By ‘‘match’’ we mean that our prediction and the
YPD annotation are either identical or closely coupled. In
addition, we identified a case (NOC3) in which the YPD cellular
role annotation did not correspond to its cited experimental
reference, whereas our prediction matched the experimental
conclusions perfectly. This amounts to a successful prediction
ratio of 83%, again validating our SP method.

For example, COR1, RIP1, and QCR8 are all predicted to be
involved in ‘‘ATP synthesis coupled proton transport.’’ YPD
annotates them as ‘‘energy generation’’ and ‘‘small molecule
transport.’’ ERB1 is predicted to be involved in ‘‘35S primary
transcript processing.’’ In a recent study it was found to be
essential for 35S primary transcript processing (11). The nuclear

trafficking protein GSP1�Ran was assigned with a set of diverse
functions in both the cytoplasm and the nucleus graphs, includ-
ing ‘‘protein biosynthesis,’’ ‘‘ribosome biogenesis,’’ and ‘‘G2�M
transition of mitotic cell cycle.’’ Evidence in the literature
suggests that it plays a central role in a large number of biological
processes and is a master regulator of cell cycle and proliferation
(12), which explains our putative functional assignments. The
fact that we made predictions about GSP1�Ran from both
nucleus and cytoplasm graphs agrees with the multiple subcel-
lular localizations of this nuclear trafficking protein.

We predicted NOC3 to be in the GO category ‘‘ribosome
biogenesis’’ and ‘‘35S primary transcript processing.’’ While this
did not agree with its YPD annotation ‘‘protein biosynthesis,’’ a
close inspection of the YPD-cited reference (13) revealed that
NOC3 is in fact involved in the biogenesis of the 60S ribosomal
subunit, which exactly matched our prediction.

The 51 novel genes predicted with the conservative rule for which
no biological process annotation is available in either database are
listed in Table 2. The additional 95 novel genes predicted by using
the general rule that are unknown to both databases are listed on
our web site (www.biostat.harvard.edu�complab�SP�). Together,
we have assigned functions to around 5% of the unknown yeast
ORFome. While some unknown genes have been assigned three-
letter gene symbols, their cellular roles remain uncharacterized. For
a significant portion of the genes listed we found partial experi-
mental support, each to a different extent. We present some
examples below.

Table 2. Predictions of GO process category made by the conservative rule for 51 genes with neither SGD GO process annotation nor
YPD cellular role annotation

GO process category prediction (L1f L0) Gene [no. unique support genes, no. support SPs, graph]

Amino acid metabolismf amino acid biosynthesis YHR029C [9, 14, C]
Cell cyclef DNA replication and chromosome cycle TOS4 [5, 5, N]
Cell cyclefM phase YPL267W [2, 1, N]
Cell cyclef mitotic cell cycle TOS4 [6, 8, N]
Cell organization and biogenesisf cytoplasm organization and

biogenesis
YNR046W* [5, 4, N]

Cytoplasm organization and biogenesisf organelle organization
and biogenesis

RIM21 [2, 1, M]

Cytoplasm organization and biogenesisf ribosome biogenesis PUF6 [14, 46, N], RRP12* [3, 2, N], YDR324C* [6, 6, N], YGR128C* [2, 1, C], YIL019W* [2, 1, C],
YJL010C* [3, 2, N], YML093W* [2, 1, C], YML093W* [2, 1, M] (23), YML093W* [3, 2, N],
YPL146C* [4, 3, N]

DNA metabolismf DNA repair YBR089W [2, 1, N]
Carbohydrate metabolismf catabolic carbohydrate metabolism PST2 [2, 1, M] (24)
Metabolism of energy reservesf trehalose metabolism TFS1 [2, 1, C]
Metabolismf biosynthesis YDR165W [2, 1, N], YLR132C* [118, 117, C], YPL246C [3, 2, C] (16)
Metabolismf coenzymes and prosthetic group metabolism YLR356W [2, 1, N]
Metabolismf nucleic acid metabolism DAT1 [3, 2, N], YBR267W [7, 6, N], YDL063C [5, 4, N], YDR165W [2, 1, N], YGR128C* [4, 4, N],

YGR145W [2, 1, M], YLR132C* [3, 2, N], YLR287C [4, 4, N], YNL311C [2, 1, N], YOR004W*
[4, 3, N], YOR042W [2, 1, N], YPR045C [5, 8, N]

Metabolismf protein metabolism and modification RNY1 [3, 3, C], TOS5 [2, 1, C] (16), YDR165W [114, 113, C] (23), YKL053C-A [16, 62, M],
YKL195W* [25, 37, M] (16), YLR356W [46, 45, C], YLR434C [119, 124, C]

Mitotic cell cyclef S phase of mitotic cell cycle YBR089W [2, 1, N] (25)
Monosaccharide metabolismf hexose metabolism YCR013C* [3, 2, C] (18)
Nucleic acid metabolismf RNA metabolism YDR324C* [3, 1, N], YML093W* [3, 2, C]
Protein biosynthesisf protein synthesis initiation LSG1 [3, 2, C]
Protein complex assemblyf cytochrome c oxidase biogenesis YKL053C-A [3, 3, M]
Protein metabolism and modificationf protein biosynthesis RNQ1 [9, 8, M] (16), YGL069C* [24, 44, M] (26), YGL102C* [4, 4, C] (27)
Protein-mitochondrial targetingf mitochondrial translocation RNQ1 [3, 2, M]
Ribosome biogenesisf ribosomal large subunit assembly YDR496C [2, 1, M], YML093W* [2, 1, N]
Ribosome biogenesisf rRNA processing YDR496C [12, 38, N]
RNA metabolismf RNA processing BCP1* [8, 14, N], TCI1 [2, 1, M], TCI1 [2, 1, N], YGR145W* [5, 5, N]
rRNA processingf 35S primary transcript processing BCP1* [5, 5, N], PUF6 [2, 1, M], YDR101C [9, 24, N], YHR085W* [4, 5, N], YJL010C* [2, 1, N],

YML093W* [2, 1, M]
Transcriptionf transcription, DNA-dependent RIO2* [5, 6, N], YNL114C* [4, 3, N]
Transcription, DNA-dependentf transcription, from Pol I promoter SAS10* [7, 6, N], YDR101C [13, 16, N], YGR210C [3, 2, N], YMR310C [3, 2, N], YNL182C* [8, 9, N]

The last two levels of the predicted GO processes are shown. Essential genes—i.e., genes with lethal null phenotypes—are marked with *. For each prediction,
we show in square brackets the number of support SPs, the number of unique support genes, and the graph in which the prediction is made. References to
experimental supports are noted in parentheses. ‘‘C’’ denotes cytoplasm, ‘‘M’’ denotes mitochondria, and ‘‘N’’ denotes nucleus.
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One intriguing gene for which we made predictions is RNQ1.
It is known to form the [PIN�] prion, and it possesses a
glutamine- and asparagine-rich domain characteristic of other
yeast prions (14). The function of RNQ1, however, is so far
unknown. We predicted it to be involved in both ‘‘mitochondrial
translocation’’ and ‘‘protein biosynthesis.’’ Interestingly, the
prion responsible for the [PSI�] determinant, SUP35, not only
is an important factor for protein translation termination but
also is implicated in the system of cotranslational translocation
into the mitochondria (15). In addition, a large-scale transcrip-
tion profiling study found RNQ1 to be clustered with genes
involved in protein biosynthesis (16).

There are numerous other interesting cases. BRX1 is predicted to
be ‘‘ribosome biogenesis.’’ In fact, a very recent experimental study
showed that it is involved in ribosomal large subunit assembly (17).
YCR013C was predicted to be involved in ‘‘hexose metabolism.’’
There is evidence based on SAGE data (18) that supports our
prediction. In total, for 11 of the 51 genes we have collected
suggestive experimental evidences corroborating our predictions
(Table 2). Most of the evidence comes from gene expression
studies. To determine the biological function and verify our pre-
dictions of those genes, further experimental work is required.

Discussion
Systematic approaches to the functional annotation of genes
identified in the genome sequencing projects are urgently
needed in the postgenomic era. The rapid increase in large-scale
gene expression data provides us unique opportunities to meet
this need. However, the development of methodology to dis-
cover novel gene functions by using expression data has so far
been slow. With its 300 deletion and drug-treatment experi-
ments, the Rosetta Compendium (6) is to date the most system-
atic expression profiling of the yeast genome published. In its
original publication, by clustering approaches the authors iden-
tified and experimentally confirmed 8 novel gene functions. The
Compendium has since remained mostly unexplored. In this
paper we have proposed a systematic approach to predict gene
functions based on such large-scale data. Applying it to the
Rosetta Compendium, we assigned putative functions to 75
unknown yeast genes in SGD by using the conservative rule. We
have shown that a positive internal control based on 24 genes
gives a successful prediction ratio of 83%. Based on the general

prediction rule, we assigned functions to an additional 95
unknown yeast genes. Together these assignments make up 5%
of the unknown yeast ORFome. While impressive, the Compen-
dium contains only a tiny fraction of possible perturbations. We
believe the method can achieve even better results with more
comprehensive expression datasets.

The strength of our method is its utilization of transitive co-
expression, an important feature among genes of the same biolog-
ical process. To link such genes, we applied the SP algorithm. In
contrast with traditional clustering approaches, ours is able to group
not only functionally related genes with correlated expression
profiles but also those without. Moreover, the expression depen-
dence relationships between individual genes are given by the SPs.
Using transitive co-expression, we are able to capture the functional
relationships between genes beyond ‘‘synexpression’’ (6). While
clustering is a useful approach to group genes with similar expres-
sion patterns, it is not sensitive to other types of expression
relationships such as transitive co-expression. As we have seen, the
SP method offers a complementary and informative tool for
large-scale expression data analysis.

Another advantage of the SP method over traditional clustering
methods is that it transparently and actively uses available biological
knowledge as a guide to discover additional relevant genes. Clus-
tering methods first group genes according to their expression
profiles, then make inferences on the functions of genes within
clusters. In contrast, our method starts with two genes with a known
biological function, then uses them as a bound to identify interme-
diate genes related to them. Such active incorporation of biological
annotation into the knowledge discovery process is one of the
current challenges in microarray data analyses.

The SP method is scalable to larger graphs. For our prediction
based on the nuclear graph with 3,914 vertices (genes) and 20,815
edges, determination of the SP from the 659 known genes as the
source vertices took only 7 min on a 700-MHz Pentium III
processor running Linux. Because for a given graph the com-
putation needs to be done only once and is easily distributed over
multiple processors, the SP method is applicable to the tran-
scriptomes of higher eukaryotes such as the human and mouse.
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