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ABSTRACT The structural properties of the linker peptide connecting the cellulose-binding module to the catalytic module in
bimodular cellulases have been investigated by small-angle x-ray scattering. Since the linker and the cellulose-binding module
are relatively small and cannot be readily detected separately, the conformation of the linker was studied by means of an artificial
fusion protein, Cel6BA, in which an 88-residue linker connects the large catalytic modules of the cellulases Cel6A and Cel6B
from Humicola insolens. Our data showed that Cel6BA is very elongated with a maximum dimension of 178 Å, but could not be
described by a single conformation. Modeling of a series of Cel6BA conformers with interdomain separations ranging between
10 Å and 130 Å showed that good Guinier and P(r) profile fits were obtained by a weighted average of the scattering curves of
all the models where the linker follows a nonrandom distribution, with a preference for the more compact conformers. These
structural properties are likely to be essential for the function of the linker as a molecular spring between the two functional modules.
Small-angle x-ray scattering therefore provides a unique tool to quantitatively analyze the conformational disorder typical of
proteins described as natively unfolded.

INTRODUCTION

Cellulases, the enzymes that degrade cellulose, are central to

the biological recycling of photosynthetically fixed carbon in

the biosphere. Because of the recalcitrant nature of their

substrate (cellulose is an insoluble crystalline polysaccha-

ride), efficient cellulases have evolved a modular organiza-

tion consisting of a large catalytic module linked to a

smaller cellulose binding module (CBM) (Carrard et al.,

2000; Henrissat, 1994). These two modules are usually sep-

arated by a long and flexible linker peptide, which is often

O-glycosylated in the case of fungal cellulases (Gilkes et al.,

1991). Although the structural and functional properties of

the individual globular modules are well documented, very

little is known about the role of the linker peptide, and its struc-

tural properties are a matter of speculation. Previous studies,

however, indicate a crucial importance for the linker on the

activity of the cellulases, as the shortening or the deletion of

the linker dramatically reduces enzymatic activity on crys-

talline cellulose (Shen et al., 1991; Srisodsuk et al., 1993).

The structural properties of the linker peptide of cellulases

require characterization to better understand the mode of

action of these enzymes. At present, only limited structural

information is available, and most of it is generally inferred

from negative results. For example, the few successful crys-

tallographic structures of entire two-module glycoside hydro-

lases—obtained for enzymes with short linkers—lack

electron density for the linker residues, indicating disorder

for the residues of the linker (Fujimoto et al., 2000; Pell et al.,

2004). Significantly, no crystal structure is available for

bimodular glycoside hydrolases with long linkers. However,

we have shown recently that small-angle x-ray scattering is

a valuable tool to analyze the overall conformation of such

cellulases (Receveur et al., 2002). Using this method, we

showed that the cellulase linkers are flexible and extended,

and we have accordingly proposed a model where cellulases

can bind and move on crystalline cellulose with a caterpillar-

like motion, thus enhancing their catalytic efficiency

(Receveur et al., 2002). However, the degree of flexibility

of the linker could not be determined directly, nor was it

possible to prove definitely that the linker could adopt

a conformation that would enable this motion to take place.

This was mainly due to the inability to distinguish between

contributions from the linker and from the CBM to the

scattering curve, since both contained approximately the same

number of amino acids, and both were relatively small com-

pared to the catalytic module.

The saprophytic fungus Humicola insolens produces two
cellulases belonging to glycoside hydrolase family 6

(Henrissat and Bairoch, 1993, 1996), namely cellobiohydro-

lase Cel6A and endoglucanase Cel6B. These two cellulases
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are bimodular, with a catalytic module and a CBM connected

by a glycosylated linker peptide. In Cel6A, the N-terminal

CBM (44 residues) is separated from the C-terminal catalytic

module (360 residues) by a 52-residue linker (Fig. 1 a). In
contrast, the 348-residue catalytic module of Cel6B is

N-terminal, followed by a 36-residue linker and a C-terminal

CBM (36 residues) (Schulein, 1997). The three-dimensional

structure of the catalytic modules of both H. insolens Cel6A
(Varrot et al., 1999) and Cel6B (Davies et al., 2000) have

been solved. To overcome the insensitivity of the scattering

experiment to the small sizes of the linker and of the CBM,we

have designed and produced a chimeric double cellulase

containing two globular catalytic modules of similar sizes

connected by a very long linker. This chimera made use of the

different two-module orientations in the H. insolens Cel6A
and Cel6B cellulases. The truncation of the CBM from each

of the full-length cellulases enabled the remaining catalytic

modules in Cel6A and Cel6B to be rejoined by their respec-

tive linker peptides (Fig. 1). The resulting chimeric cellulase

(called Cel6BA), which has the N-terminal Cel6B and

C-terminal Cel6A catalytic modules connected by an

88-residue-long linker, was successfully expressed in Asper-
gillus orzyae as a soluble and active protein. Here we char-

acterize this chimeric double cellulase by a joint application of

small-angle x-ray scattering and molecular modeling. We con-

clude from this work that the cellulase linker is indeed flexible

and disordered, and adopts both compact and extended con-

formations. We analyze the distribution of these conforma-

tions in solution by molecular modeling and show that x-ray

scattering is a useful tool for the identification and quan-

tification of disorder in appropriate proteins.

MATERIALS AND METHODS

Purification of the chimeric cellulase and the
isolated catalytic modules

The chimeric cellulase, Cel6BA, was generated by the overlap extension

PCR (OE-PCR) method (Higuchi et al., 1988; Ho et al., 1989) using the

entire coding regions for the H. insolens Cel6A and Cel6B genes as DNA

templates to amplify individual gene fragments. To construct Cel6BA, an

upstream OE-PCR fragment encoding the secretion signal peptide and the

catalytic module and linker regions was amplified from the N-terminal

portion of the H. insolens Cel6B gene using the oligonucleotide primers,

59-CGACAACATCACATCAAGCTCTCC* and 59-TCACCTGGCTGCC-

AGGGTTACCGCCTCCAGGG. An adjoining downstream OE-PCR frag-

ment encoding only the linker and catalytic module regions was amplified

from the C-terminal portion of the H. insolens Cel6A gene using the oli-

gonucleotide primers, 59-CCCTGGAGGCGGTAACCCTGGCAGCCAG-

GTGA and 59-CCCCATCCTTTAACTATAGCGAAATGG*. The upstream

and downstream OE-PCR fragments were then reassembled as a full-length

chimeric Cel6B-Cel6A gene encoding the Cel6BA protein by an additional

PCR step using a pair of flanking 59- and 39-end oligonucleotide primers (see

asterisk symbols above). The final PCR fragment was cleaved with BamHI

and XbaI restriction endonucleases and then cloned into an Escherichia coli-

Aspergillus shuttle expression vector that utilizes a fungal a-amylase

promoter and glucoamylase terminator (Christensen et al., 1988) for the

transcriptional control of the inserted chimeric Cel6B-Cel6A gene. The

chimeric Cel6B-Cel6A gene construct was verified by DNA sequencing. For

the expression of the Cel6BA protein, the resulting plasmid was co-

transformed with an acetamidase selection plasmid (pTOC202) into A.

oryzae JaL228 as described previously (Kelly and Hynes, 1985). Established

procedures were employed in all DNA manipulations (Sambrook et al.,

1989). After fermenter cultivation, the culture supernatant was filtered

through three layers of Whatman GF filters (2.7, 1.6, and 1.2 mm,

respectively; Whatman, Albertslund, Denmark), and concentrated by ultra-

filtration (Filtron equipped with a 10 kDa cutoff filter; Pall Filtron,

Northborough, MA). The concentrated culture supernatant was adjusted to

pH 8.5 using 1 M Tris-HCl, pH 8.5 and subsequently applied onto a Q-

Sepharose FF column (2.6 3 18 cm; Pharmacia, Uppsala, Sweden), pre-

equilibrated in 20 mM Tris-HCl, pH 8.5 at 4�C using at flow rate of 300 ml

h�1. Cel6BA was detected in the column flowthrough, which was

concentrated using an Amicon filtration unit (10-kDa cutoff filter; Amicon,

Millipore, Bedford, MA). Cel6BA was subsequently applied onto a

Sephacryl S-200 HR column (1.6 3 90 cm; Pharmacia), pre-equilibrated

in 20 mM Tris-HCl, 0.2 M NaCl, pH 8.5 at 4�C and eluted at a flow rate of

30 ml h�1. Fractions containing homogenous Cel6BA, as estimated using

SDS-PAGE, were pooled and kept at �18�C. The finally purified Cel6BA

showed a molecular weight of ;95 kDa as estimated by SDS-PAGE. The

single catalytic modules Cel6A and Cel6B from H. insolens were cloned and

FIGURE 1 (a) Schematic cartoon (not to scale) of the modular

organization of the Cel6B and Cel6A cellulases and of the chimeric variant

Cel6BA from H. insolens. (b) Prediction of a long-disorder region (thick

black line) in Cel6BA by PONDR, and sequence of the 88-residue linker of

Cel6BA predicted as disordered.
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expressed in A. oryzae (Rasmussen et al., 1991) and purified as previously

described (Fort et al., 2000; Varrot et al., 1999).

Sample preparation and x-ray
scattering experiments

The lyophilized proteins were diluted in 50 mM sodium phosphate buffer,

pH 8.5 for the chimeric cellulase and in 50 mM sodium phosphate buffer, pH

7.5 for the isolated catalytic modules. Glycerol (10%, v/v) was added to the

buffer as a radiation scavenger for x-ray scattering experiments. The proteins

were then washed extensively through a microconcentrator equipped with

a Filtron polyvinylidene membrane (Pall Filtron) to remove contaminating

salts. The filtrate was used as the buffer for the x-ray scattering experiments.

The protein concentration of each sample was determined by its absorbance

at 280 nm using extinction coefficients calculated from the sequence

(Schülein et al., 1993).

Data collection was performed at the European Synchrotron Radiation

Facility (Grenoble, France) on beamline ID02. The wavelength l was 1.0 Å.

The sample-to-detector distance was set to 3.0 m for the single catalytic

modules, and to 2.0 m for the Cel6BA chimera, and these values resulted in

scattering vectors q ranging from 0.01 Å�1 to 0.22 Å�1 and from 0.013 Å�1

to 0.34 Å�1, respectively. The scattering vector is defined as q¼ 4p/l sin u,

where 2u is the scattering angle. The detector was a Thomson x-ray image

(Thomson Scientific Instruments, Carlton, Australia) intensified optically,

coupled to a European Synchrotron Radiation Facility-developed fast-read,

low-noise CCD camera. During acquisitions, 40 successive frames of 0.5 s

with 4-s intervals (the dead time) between each frame were recorded for each

sample. During the dead time, fresh protein solution was injected into the

beam in a 1.5-mm Lindemann-type quartz capillary using a remote-

controlled syringe coupled with the data acquisition program. Using this, no

protein solution was irradiated longer than 0.5 s. Background scattering was

measured after each protein sample-run using the buffer solution. The

temperature was set at 20�C. Each protein or buffer frame was inspected to

confirm the absence of possible bubble formation or radiation-induced

aggregation effects on the scattering pattern. This allowed the individual

frames to be averaged. The averaged dataset for the buffer recorded from the

immediately subsequent data collection was subtracted from the averaged

protein dataset after proper normalization and correction for the detector

response. The absolute calibration of scattered intensities was made with

a lupolen sample used as a standard on the ID02 beamline.

The radius of gyration Rg was derived from the scattering curve using the

Guinier approximation IðqÞ ¼ Ið0Þ expð�q2R2
g=3Þ (Guinier and Fournet,

1955), where I(q) is the scattered intensity and I(0) is the forward scattering

intensity. In dilute solution, I(0)/c is proportional to the molecular massM of

the scattering object, where c is its concentration, and to the excess scattering

of the object relative to the buffer. The distance distribution function P(r)
was calculated by the Fourier inversion of the scattering intensity I(q) using

GNOM (Svergun, 1992) and GIFT (Bergmann et al., 2000).

X-ray scattering curve modeling

Cel6BA models were constructed following the method used for antibody

hinge peptides (Perkins et al., 1998; Boehm et al., 1999). Briefly, a 90-

residue linker was built in an extended conformation using the BIO-

POLYMER package of INSIGHT98 (Molecular Simulations, San Diego,

CA). Its conformation was randomized using the DISCOVER3 package of

INSIGHT98 (Molecular Simulations). After an initial 300 cycles of energy

minimization, the linker was subjected to 1000 fs of dynamics temperature

equilibration at 771 K, then a 100,000-fs dynamics simulation was carried

out at 771 K. In the latter simulation, a linker conformation was saved every

100 fs, giving 1000 linker conformations. To create the 1000 Cel6BA

models, the main-chain atoms of the linker N-terminal residue were

superimposed on the main-chain atoms of the C-terminal residue of Cel6B

(PDB code 1dys). Likewise, the N-terminal residue of Cel6A (PDB code

1bvw) was superimposed on the C-terminal residue of the linker. The

duplicated N- and C-terminal residues of the linker were removed. For the

P(r) profile fitting, 124 of these 1000 models were selected to represent

C- and N-terminal separations of Cel6A and Cel6B that varied from 6 Å to

129 Å in 1 Å steps.

In addition to the variable linker conformations, the linker is also

heterogeneously O-glycosylated. Mass spectrometry measurements showed

that the linker contains an average additional mass of 9000 Da arising from

glycosylation, and this corresponds to ;50 sugar residues (M. Schülein,

unpublished data). The glycosylation sites were predicted to occur at serine

and threonine residues on the Cel6BA linker using the Net-O-Glyc program

fromExpasy (http://www.cbs.dtu.dk/services/NetOGlyc-3.0/) (Hansen et al.,

1998). Thirty potential glycosylation sites were identified on the 88-residue

linker. As the exact nature of the sugar residues carried by recombinant

Cel6BA is not known, every other of the 30 potential O-linked glycosylation

sites was selected for attachment of a NeuNAc�Gal�GalNAc trisaccharide

(Boehm et al., 1999), resulting in 16 sites carrying a total of 48 sugar

residues. Since no significant difference in the curve fits between the

glycosylated and unglycosylated structures was noticed, no further

glycosylation analyses were undertaken.

Each Cel6BA model was used to calculate x-ray scattering curves for

comparison with the experimental curves. Each set of atomic coordinates for

a model was placed within a three-dimensional grid of cubes. A sphere of

equal volume to the cube was placed at the center of each cube if a user-

specified cutoff for the minimum number of atoms contained within a cube

was satisfied. For the Cel6BA model, a cube side-length of 5.44 Å in

combination with a cutoff of 4 atoms consistently produced sphere models

within 2% of the total dry volume of 109.0 nm3 calculated from its

composition. Since the hydration shell surrounding glycoproteins is detected

by x-ray scattering, spheres were added to the surface of the dry models

using HYPRO (Ashton et al., 1997), based on a hydration of 0.3 g H2O/g

glycoprotein and a water molecule volume of 0.0245 nm3. The optimal total

of hydrated spheres for the Cel6BA model is 892 (143.6 nm3).

The x-ray scattering curve I (q) was calculated assuming a uniform

scattering density for the spheres using the Debye equation as adapted to

spheres (Perkins and Weiss, 1983),

IðqÞ
Ið0Þ ¼ gðqÞ

�
n
�1
1 2n

�2 +
m

j¼1

Aj

sin qrj
qrj

�

gðqÞ ¼ ð3ðsin qR� qR cos qRÞÞ2=q6
R

6
;

where g(q) is the squared form-factor for the sphere of radius r, n is the

number of spheres filling the body, Aj is the number of distances rj for that
value of j, rj is the distance between the spheres, and m is the number of

different distances rj. Other details, including those of calibration studies

used to validate this approach, are given elsewhere (Boehm et al., 1999;

Perkins, 2001). X-ray curves were calculated from the hydrated sphere

models without corrections for wavelength spread or beam divergence, as

these are considered to be negligible for synchrotron x-ray data. X-ray

scattering models generated in this waywere then assessed using a goodness-

of-fit R-factor defined by analogy with protein crystallography and based on

the experimental curves, in the q-range extending to 0.2 Å�1 (denoted as R;

Beavil et al., 1995).

P(r) profiles for the 124 x-ray scattering models were generated using the

program GNOM (Svergun, 1992) with the maximal distances derived from

the scattering models. To calculate an appropriately-weighted summation of

these in a distribution that was more populated at shorter separations, the

weighting factorW for each separation, that gave the best fit to the data, was

determined from

W ¼ w=ð11 e
0:2dÞ where d ¼ 51

s

5
;

in whichw¼ 3 at s¼ 0 Å, increasing by steps of 0.2 up tow¼ 14 at s¼ 55 Å,

thendownby steps of 0.2 tow¼0 at s¼125 Å, and s is the separationbetween

the C-terminus of the first module and the N-terminus of the second module.
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RESULTS

Solution structure of the isolated
catalytic modules

Small-angle x-ray scattering experiments were performed on

the isolated catalytic modules Cel6A and Cel6B (Fig. 1) to

compare their solution structures with their crystal structures.

The protein concentration ranged from 4 to 17 mg/ml for the

Cel6Amodule and from 3 to 11 mg/ml for the Cel6Bmodule.

No aggregation was observed in both cases. The scattering

data are linear in a Guinier plot in the low q-region and are

nicely fitted by the Guinier law (data not shown). For both

proteins, the radius of gyration Rg inferred from the slope of

the fit does not varywith the concentration, indicating the lack

of interparticle effects. The Rg of the catalytic modules of the

two proteins are equivalent with a value of 20 Å (Table 1). The

distance distribution functions have a bell-shaped appearance

that is typical of sphericalmolecules, with similarDmax values

(56 Å and 59 Å for Cel6A and Cel6B, respectively; Table 1).

The Rg/Ro ratio (where Ro is the Rg of a spherical protein with

the same hydrated volume) is 1.03 for Cel6A and 1.06 for

Cel6B.Cel6B is thus slightly less compact thanCel6A. This is

consistent with the enclosed active-site tunnel of Cel6A and

the open substrate-binding cleft of Cel6B. The comparison of

the experimental scattering curves with the crystal structures

(PDB codes: 1bvw and 1dys for Cel6A and Cel6B, respec-

tively) using the program CRYSOL (Svergun et al., 1995)

showed excellent agreements, and this indicated that the two

proteins do not undergo any conformational change and

remain globular in solution (Fig. 2).

Molecular dimensions of the chimeric double
cellulase Cel6BA

Wemeasured the solution scattering of the biologically active

construct Cel6BA at concentrations varying from 2 to 13 mg/

ml. In the Guinier region, the scattering data were linear,

indicating that the protein was not aggregated (Fig. 3). The Rg

was calculated at each concentration in a q-range extending
out to qRg , 1.0. Small repulsive interactions resulted in

a decrease of the Rg with increasing concentration. Extrap-

olation to zero concentration gave an Rg value of 47.3 Å

corresponding to one single molecule in solution with no in-

terparticle interaction. The Rg of a globular protein containing

the same number of amino acids as Cel6BA would be much

smaller (Millett et al., 2002). This suggests that the linker

between the two catalytic modules possesses an extended

conformation.

The extended linker conformation was further confirmed

by the distance distribution function P(r) of Cel6BA (Fig. 4).

The P(r) function is the histogram of all the interatomic

distances within the molecule. The experimental P(r) profile
exhibits a main peak at an r-value of ;30 Å and a long tail

up to amaximumdimension of 178 Å, indicating that Cel6BA

is highly elongated. The main peak is assigned to the in-

tradomain distances within each of the globular catalytic

modules, whereas the tail of the curve corresponds to the

interdomain distances between the two modules. In the

Cel6BA chimera, the proportion of residues in the linker (88

amino acids and;48 carbohydrates) compared to those in the

catalytic modules (708 amino acids) is small. The difference

between the sum of the Dmax values of the catalytic modules

(115 Å) and that for the Cel6BA chimera (178 Å) reveals that

the length of the linker of the full-length chimera protein can

be quite expanded at 63 Å. However, the theoretical P(r)
profile for a rigid dumbbell-shaped protein with two globular

spherical modules of the same size and separated by an

extended linker would exhibit two distinct peaks, the first

peak at an r-value corresponding to the radius of each sphere,

FIGURE 2 Fit of the experimental scattering curves with the crystal struc-

tures (red line) for the isolated catalytic modules in (a) Cel6A and (b) Cel6B.

TABLE 1 Radius of gyration Rg and maximum dimension Dmax

determined by x-ray scattering for the isolated catalytic modules

Cel6A and Cel6B (50 mM sodium phosphate buffer, pH 7.5) and

for the double cellulase Cel6BA (50 mM sodium phosphate,

pH 8.5)

Protein Cel6A module Cel6B module Cel6BA

Rg (Å) 20.2 6 0.2 19.9 6 0.4 47.3 6 0.5

Dmax (Å) 56 6 2 59 6 2 178 6 3

Residues 360 348 796 1 sugars

Mw (kDa) 39.7* 37.6* 93–96y

*Calculated from the sequence.
yDetermined by mass spectrometry.
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and the second peak corresponding to the distance between

the two spheres (see Fig. 7 a below). The region of low in-

tensity between the two peaks would correspond to the in-

teratomic distances between relatively few linker residues,

including its O-glycosylation, and the two spheres. In dis-

tinction to this, the experimental P(r) profile showed that the
second peak cannot be observed, and that the intermediate

distances are much more populated, thus leading to a very

broad shoulder from 55 Å to 178 Å. This broad shoulder

suggests that the linker adopts all the possible separations

between the two catalytic modules, and corresponds to the

observation of conformational disorder. Putative disordered

regions in proteins can be identified by analysis of the se-

quence using computing methods such as PONDR (Li et al.,

1999). Intrinsically disordered proteins are indeed usually

rich in charged or polar residues, and poor in hydrophobic

residues (see Fig. 1 b for the sequence of the linker of

Cel6BA). PONDR was run on full-length Cel6BA and

predicted a long disordered region from residue 343–434with

a prediction score of 0.96. These 92 residues correspond

precisely to the linker (Fig. 1 b). This result supports the

observation that the linker is disordered, separating the two

catalytic modules by a wide range of distances achieved

through many different conformations.

Modeling of the x-ray scattering curve for the
Cel6BA chimera

The observed scattering curve I(q) (Fig. 5 a, dotted line) is
produced by the sum of all the different conformations the

protein can adopt in solution. The size of the broad shoulder in

theP(r) profile (Fig. 4) indicates thus that there is a distribution
of conformations with varying distances between the Cel6A

FIGURE 3 Guinier plot of the scattered intensity of Cel6BA in 50 mM

sodium phosphate, pH 8.5 buffer. The radius of gyration Rg is inferred from

the slope of the straight line fitting the data in the q-range qRg # 1.0. Protein

concentration (from top to bottom): 13 mg/ml, 10.1 mg/ml, 6.9 mg/ml,

4.9 mg/ml, and 2.1 mg/ml.

FIGURE 4 Experimental distance distribution profile P(r) of the double

cellulase Cel6BA (solid line), superimposed with the distance distribution

profiles of the catalytic modules Cel6A (dotted line) and Cel6B (dashed line).

FIGURE 5 Calculated scattering curves for two-module Cel6A and

Cel6B structures with and without the 88-residue intermodule linker. (a)
The 12 scattering curves correspond to every 10th model generated in which

the C-terminal a-carbon atom of the Cel6Amodule was separated by 10 Å to

120 Å in 10 Å steps from the N-terminal a-carbon atom of the Cel6B

module. No linker is present. The minimum at 0.17 Å�1 is indicated by an

arrow (see text). The experimental curve is indicated by the dotted line. (b)

The 12 scattering curves correspond to the 12 models of a, but now have

linkers attached between the Cel6A and Cel6B modules. Although the same

general features are observed as in a, the minimum at q of 0.17 Å�1 (arrow)
now varies from curve to curve. (c) The effect of simulations with

glycosylated linker structures is shown. (d) The goodness-of-fit R-factors

calculated from the comparison of the modeled and experimental scattering

curves are shown as functions of the separation of the Cel6A and Cel6B

modules with and without the linker peptide.
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and Cel6B domains, and that themore extended structures are

less populated than the more compact structures. Therefore, it

is not possible to describe the scattering curve I(q) of the
chimeric double cellulase Cel6BA by one single conforma-

tion of the molecule. Consequently, we employed molecular

modeling of the linker region with different end-to-end sep-

arations to establish whether a conformational distribution of

linker lengths would account for the experimental data.

The length of the linker of ;63 Å in the Cel6BA chimera

is much shorter than the 287 Å extension of a theoretical 88-

residue b-strand or the 127 Å length of a theoretical 88-

residue a-helix. This, together with the fact that the linker

adopts several conformations of different lengths, shows that

the linker is not an extended regular polypeptide chain, but

instead adopts a much more compact structure.

In the following, the assumptions required to perform

a multiconformational analysis for Cel6BA were explored.

Firstly, models of the fusion proteinwithout the linker peptide

were generated by increasing the separation between the

Cel6A and Cel6B crystal structures in 6 Å steps up to 129 Å.

The resulting scattering curves exhibited a pronounced mini-

mum at 0.17 Å�1 that did not vary with the separation,

whereas the I(q) intensities in the q-range below 0.05 Å�1

showed a large dependence on the separation (Fig. 5 a).
However, the experimental scattering curve shows no features

such as any clear minima (Fig. 5 a). In the next step, 1000

randomized linker conformations were generated by a molec-

ular dynamics simulation using BIOPOLYMER and DIS-

COVER3 (Materials and Methods). When the Cel6A and

Cel6B domains used to generate Fig. 5 awere connected with
a linker of appropriate length, the minimum at 0.17 Å�1

decreased in magnitude (Fig. 5 b). The addition of 16

O-linked NeuNAc�Gal�GalNAc trisaccharides at Ser and Thr
residues of the linker representing its glycosylation (Materials

andMethods) further reduced the minimum at 0.17 Å�1 (Fig.

5 c). It was concluded that better agreement with the observed

scattering curve in the reciprocal space may be achieved by

taking into account the linker, its disorder, and its glycosyl-

ation.

The goodness of fit (R-factor) provides a monitor of the

agreement between the modeled and experimental curves: the

smaller the R-factor, the better the fit. The R-factors from

comparison of the modeled x-ray scattering curves calculated

for separations between 1 Å and 129 Å with the experimental

scattering curve (Fig. 5 d) varied between 7% and 45%. The

best R-factors resulted from models in which the separation

was ;20 Å for the linker-free models, and ;32 Å for the

models with linkers, and not from those with the experimen-

tally determined maximum value of 63 Å estimated above

(Fig. 4). TheR-factors also showed that changes in the relative
orientation of the Cel6A andCel6Bmodules s at a fixed linker
separation of 32 Å did not significantly affect the curve-fit

procedure.

A further 1000 linker-conformations were generated from

a second molecular dynamics procedure in which the

C-terminal a-carbon atom of Cel6B and the N-terminal

a-carbon atom of Cel6A were fixed at a separation of 32 Å.

The starting linker model comprised an extended C-shaped

unglycosylated loop. As the molecular dynamics simulation

proceeded, the linker adopted a quasiglobular structure. The

R-factors dropped from 14.7% for the starting model to an

acceptable level of 7–8% after 400 models. No further re-

duction was observed up to 1000 models (Fig. 6). This

showed that the best single representation of Cel6BA in

solution resulted from a model with a quasiglobular linker

conformation. However, the separation of 32 Å and not 63 Å

meant that this model was not able to account for the high

Dmax given by the distance distribution function P(r) (Fig. 4).
The final calculations were based on the P(r) profiles (real

space) of the models linked with a range of separations (Fig. 5

d). The comparison of the experimental P(r) profile with three
of these models with N-terminal–C-terminal separations of

10 Å (short linker), 60 Å (intermediate linker), and 120 Å

(long linker) showed large discrepancies between the single

peak seen experimentally and the double peak obtained from

these three models (Fig. 7 a). Good agreement between the

experimental and modeled P(r) profiles requires a summation

of an appropriate broad range of separations between the

Cel6A and Cel6B modules. One has to apply a weighting

scheme such that the weight of a model becomes smaller as

the intermodule separation increases. After a procedure in

which several weighting schemes were tested we obtained

the best results with a function that gave an appropriate dis-

tribution of weights (inset to Fig. 7 b) when applied to the 124
models of Fig. 5 d with intermodule separations of 6 Å to

129 Å in 1 Å steps. The R-factor of this I(q) curve fit (Fig. 8)
was 7.4%, which is similar to the best of the single-

conformation models shown in Fig. 6. Unlike the quasiglob-

ular linker model, however, the resulting weighted P(r)
profile shows good agreement with the experimental P(r)

FIGURE 6 The refinement of a compact linker structure between the

Cel6A and Cel6B modules. A total of 1000 linker conformations were

generated in the course of an energy minimization by a molecular dynamics

procedure. The a-carbon molecular views of the first and last models are

shown as insets, together with a 20 Å scale bar.
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profile (Fig. 7 b). The success of this fit showed that the best

agreement is obtained with a range of models, i.e., that con-

formational disorder is present. Typical examples of four

models taken from the 124 structures in Fig. 8 show that the

linker is conformationally variable in the solution structure

of this fusion protein.

DISCUSSION

To study the conformational disorder in the cellulase linker

we monitored the scattering properties of a double-headed

cellulase with two large catalytic modules separated by an

88-amino-acid-long linker (Fig. 1). Contrarily to a normal

cellulase where the CBM is too small and could not be dis-

criminated from the linker, the scattering curve of this

engineered arrangement is sensitive to the contributions of the

two large globular modules at the extremities of the linker.

This enabled us to infer structural information on the linker

and to determine whether it possesses a static or variable

conformation.

We have shown that the intermodule linker peptide in the

chimeric double cellulase Cel6BA adopts a wide range of

conformations in solution, together with very different end-

to-end distances. This is consistent with the prediction of

disorder in the linker region by PONDR, the shape of its

experimental P(r) profile, and the modeling of Cel6BA as

a double-domain structure with variable linker conforma-

tions. The modeling was able to restore the major features of

the experimental P(r) profile (Fig. 7 b), and gave a reasonable
I(q) curve fit in reciprocal space out to a q-value of 0.1 Å�1

(Fig. 8). It has already been reported that the presence of

random surface loops in proteins can lead to a marked

FIGURE 7 Analysis of P(r) profiles for models of the Cel6A and Cel6B

module structure. (a) The P(r) profiles of three models with intermodule

separations of 10 Å, 60 Å, and 120 Å were represented by histograms of the

distribution of their inter-Ca–Ca distances (red, green, and blue). These are

compared with the experimental P(r) profile calculated using GNOMwith an

assumedmaximum length of 180 Å (black dotted line). (b) The modeled P(r)
profile (red) was calculated from a weighting scheme based on 124 models

with intermodule separations between 6 Å and 129 Å in 1 Å steps. Eachmodel

possessed a linker that was energy-minimized (see Fig. 6) in order that each

linker adopted a stereochemically reasonable conformation. These models

haveR-factors as shown in Fig. 6. Theweighted summation of the 124models

generated the P(r) profile with a single peak maximum as shown in red. The

experimental P(r) curve is shown as the dotted line. The relative weights for
the 124 models are shown as an inset, with that at 15 Å set as 1.

FIGURE 8 Comparison between the experimental (dotted line) and

calculated (solid line) scattering curves I(q). The calculated I(q) curve

corresponds to the weighted summation of the 124 models used to generate

the P(r) profile of Fig. 4. The R-factor is 7.4%. The a-carbon views of four

typical molecular structures that were used for the weighted summation are

shown below the curve fit.
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smoothening of prominent features in the scattering curve

(Petoukhov et al., 2002). Here, we have shown that the

randomization of a linker peptide joining two large globular

modules can likewise lead to the smoothening of such

features, as shown by the comparisons between Fig. 5, a and
b. Similarly, a proper description of the heterogeneous

O-glycosylation would also further improve the quality of

the I(q) curve fit, as shown by Fig. 5 c. A good approximation

of the experimental x-rayP(r) profile ofCel6BAwas obtained

by describing the proteins in solution by a series of Cel6BA

models with intermodule separations ranging from 6 Å to

129 Å in steps of 1 Å, combined with a distribution of weights

that displayed a peak at 15 Å. The weighting scheme might

be optimized by the use of, for example, a genetic algorithm to

minimize the difference between the observed and calculated

P(r) profiles. At the present time, the P(r) profile generated

from our weighting scheme is sufficiently accurate to indicate

the existence of conformational disorder in the linker, and to

describe the resulting distribution of intermodule separations.

Moreover, our experiments have been performed in buffer con-

ditions similar to those of other wild-type cellulases, where

the protein is the most active and a change in the pH or ionic

strength might modulate this distribution.

The distribution of conformations obtained in ourmodeling

study based on the experimental data definitely indicates the

existence of conformational disorder in the linker, and that

compact linkers are the most frequent. The single Cel6BA

model that fits best the I(q) data in reciprocal space is that with
an intermodule separation of 32 Å. The distribution of 124

Cel6BA models that best fits the I(q) data shows a maximum

at an intermodule separation of 15 Å. The resulting best single

model with a 32 Å intermodule separation corresponds to the

average conformation weighted by the distribution of confor-

mations (inset to Fig. 7 b). The maximum in the distribution

means that the most compact linker conformations are the

most stable, but these are able to unwind into longer linkers

with a relatively low energy cost. Even though the linker

separation would be different in the case of the native Cel6A

and Cel6B proteins, the peak of the distribution of linker

lengths suggests that the most stable linker conformations

position the catalytic module and the CBM at a distance

comparable to one cellobiose unit (in crystalline cellulose, the

cellobiose repeat unit is 10.4 Å long). After hydrolysis, the

flexibility of the linker conformationwould allow the catalytic

module to readily diffuse away to hydrolyze another gly-

cosidic bond, while leaving the CBM attached to the cellulose

surface. Such a mechanism would permit the progressive and

efficient hydrolysis of cellulose by the enzyme. The corollary

is that any strong restriction to the independence of the

movement of the two modules of cellulase would result in

a decreased overall efficiency. The particular conformational

properties of the linker probably offer the best compromise

between the requirement for a tight binding to cellulose by the

bindingmodule and the need to reach fresh hydrolysis sites by

the catalytic module.

The structural properties of the fungal cellulase linkers are

contained in their sequences and O-glycosylation, and are

not modified by noncovalent interactions with the appended

functional modules. The observed range of linker conforma-

tions is most satisfactorily explained by the effect of

O-glycosylation. Indeed it is interesting to note that the

maximum extension of the linker observed here is larger than

that expected for a random coil. A random coil peptide

containing 88 residues would have an Rg of ;26–27 Å and

therefore a Dmax of 52–55 Å (Millett et al., 2002), compared

to the length of 64 Å observed here. The steric restraint

introduced by O-glycosylation probably drives the equilib-

rium toward more extended conformations. It is interesting

to compare the results obtained here with those we reported

earlier for cellulase Cel45 from H. insolens (Receveur et al.,
2002) . The linkers of Cel6A and Cel6B are, on average, less

glycosylated than that of Cel45 (M. Schülein, unpublished),

and are much less extended in the chimeric Cel6BA than in

Cel45. Comparisons of the Dmax values of the globular

modules to those of the intact cellulase gave a length of 50 Å

for 36 residues in Cel45 (Receveur et al., 2002), whereas this

is only 64 Å for 88 residues in Cel6BA. This suggests that

a higher level of O-glycosylation stabilizes conformations

with a larger separation between the two globular modules.

The role of the linker of bimodular cellulases is likely to

ensure an independent action of the two functional modules

through the achievement of a wide range of conformations.

Adequate linker properties are probably attainable by vary-

ing the number of residues in the linker, the extent of glycosyl-

ation, the amino-acid composition, and so on, and this could

explain why there is nothing apparently conserved in the

amino-acid sequence of intermodule linkers.

Even though the work presented here was done on a

chimeric double cellulase that does not exist in nature, such

a construct is biologically relevant. First, a number of multi-

modular glycosidases that comprise more than one catalytic

module are known (a cellulase from the fungus Neo-
callimastix patriciarum contains three catalytic modules;

Xue et al., 1992). Secondly, a survey of the linker lengths in

fungal modular glycoside hydrolases (B. Henrissat, un-

published) shows that many have lengths in the range of

40–120 residues. A few are even longer, such as a bimodular

xylanase from the fungus N. patriciarum whose linker is

annotated as containing over 480 residues to separate the

catalytic module from the CBM (Black et al., 1994). The

88-residue linker studied here is therefore not exceptionally

long. Finally, in our previous study on the H. insolens Cel45
cellulase in both its native full-length form and with

a CBM-deleted form (Receveur et al., 2002), we have shown

that the linker conformation was not affected by the presence

or absence of the CBM. We believe therefore that the

wide conformational variability found in the linker in the

engineered double-headed cellulase is realistic and represen-

tative of the linker present in natural cellulases. The re-

currence of these linkers in enzymes degrading insoluble
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polysaccharides is an indication of the clear evolutionary

advantage in joining globular functional modules through a

flexible, elongated, and unfolded peptide region. The pre-

sence of disordered regions in proteins is not restricted to

cellulases nor to glycoside hydrolases, and there is a growing

interest for proteins whose function requires the lack of folded

globular structure (‘‘natively unfolded proteins’’) (Dunker

and Obradovic, 2001; Uversky, 2002; Wright and Dyson,

1999).

Small-angle x-ray scattering is probably the method of

choice to characterize and quantify the structural properties of

natively disordered proteins or protein regions.Many types of

natively disordered proteins begin to emerge (Tompa, 2002),

such as those implicated in molecular recognition processes

and which fold upon encounter with physiological partners

(Longhi et al., 2003), and the entropic chains that serve as

flexible hinges or molecular springs between distinct func-

tional modules such as the linkers described here. In con-

clusion, the work reported here establishes the first direct

experimental measurement of the conformational variability

of the linkers of plurimodular fungal glycoside hydrolases.We

show that full-length cellulases exist in solution as a set of

conformers with very different relative distances between the

two functional modules resulting from the ability of their

linkers to adopt both compact and extended structures. Such

structural properties are typical of those required for themodel

of action proposed by Receveur et al. (2002), in which cel-

lulases can move on their substrate with a caterpillar-like

motion to achieve an efficient hydrolysis.
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348:201–207.

Dunker, A. K., and Z. Obradovic. 2001. The protein trinity-linking function
and disorder. Nat. Biotechnol. 19:805–806.

Fort, S., V. Boyer, L. Greffe, G. J. Davies, O. Moroz, L. Christiansen, M.
Schulein, S. Cottaz, and H. Driguez. 2000. Highly efficient synthesis of
b(1-4)-oligo- and -polysaccharides using a mutant cellulase. J. Am.
Chem. Soc. 122:5429–5437.

Fujimoto, Z., A. Kuno, S. Kaneko, S. Yoshida, H. Kobayashi, I. Kusakabe,
and H. Mizuno. 2000. Crystal structure of Streptomyces olivaceoviridis
E-86 b-xylanase containing xylan-binding domain. J. Mol. Biol. 300:
575–585.

Gilkes, N. R., B. Henrissat, D. G. Kilburn, R. C. Miller, Jr., and R. A.
Warren. 1991. Domains in microbial b-1, 4-glycanases: sequence con-
servation, function, and enzyme families. Microbiol. Rev. 55:303–315.

Guinier, A., and F. Fournet. 1955. Small Angle Scattering of X-Rays.
Wiley Interscience, New York.

Hansen, J. E., O. Lund, N. Tolstrup, A. A. Gooley, K. L. Williams, and S.
Brunak. 1998. NetOglyc: prediction of mucin type O-glycosylation sites
based on sequence context and surface accessibility. Glycoconj. J. 15:
115–130.

Henrissat, B. 1994. Cellulases and their interaction with cellulose. Cell-
ulose. 1:169–196.

Henrissat, B., and A. Bairoch. 1993. New families in the classification of
glycosyl hydrolases based on amino-acid sequence similarities. Biochem.
J. 293:781–788.

Henrissat, B., and A. Bairoch. 1996. Updating the sequence-based classi-
fication of glycosyl hydrolases. Biochem. J. 316:695–696.

Higuchi, R., B. Krummel, and R. K. Saiki. 1988. A general method of in
vitro preparation and specific mutagenesis of DNA fragments: study of
protein and DNA interactions. Nucleic Acids Res. 16:7351–7367.

Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease. 1989.
Site-directed mutagenesis by overlap extension using the polymerase
chain reaction. Gene. 77:51–59.

Kelly, J. M., and M. J. Hynes. 1985. Transformation of Aspergillus niger
by the amdS gene of Aspergillus nidulans. EMBO J. 4:475–479.

Li, X., P. Romero, M. Rani, A. K. Dunker, and Z. Obradovic. 1999.
Predicting protein disorder for N-, C-, and internal regions. Genome
Inform. Ser. Workshop Genome Inform. 10:30–40.

Longhi, S., V. Receveur-Brechot, D. Karlin, K. Johansson, H. Darbon, D.
Bhella, R. Yeo, S. Finet, and B. Canard. 2003. The C-terminal domain of
the measles virus nucleoprotein is intrinsically disordered and folds upon
binding to the C-terminal moiety of the phosphoprotein. J. Biol. Chem.
278:18638–18648.

Millett, I. S., S. Doniach, and K. W. Plaxco. 2002. Toward a taxonomy of
the denatured state: small angle scattering studies of unfolded proteins.
Adv. Protein Chem. 62:241–262.

Pell, G., L. Szabo, S. J. Charnock, H. Xie, T. M. Gloster, G. J. Davies, and
H. J. Gilbert. 2004. Structural and biochemical analysis of Cellvibrio
japonicus xylanase 10C: how variation in substrate-binding cleft in-
fluences the catalytic profile of family GH-10 xylanases. J. Biol. Chem.
279:11777–11788.

Perkins, S. J. 2001. X-ray and neutron scattering analyses of hydration
shells: a molecular interpretation based on sequence predictions and
modelling fits. Biophys. Chem. 93:129–139.

Perkins, S. J., A. W. Ashton, M. K. Boehm, and D. Chamberlain. 1998.
Molecular structures from low angle x-ray and neutron scattering studies.
Int. J. Biol. Macromol. 22:1–16.

Perkins, S. J., and H. Weiss. 1983. Low-resolution structural studies of
mitochondrial ubiquinol:cytochrome C reductase in detergent solutions
by neutron scattering. J. Mol. Biol. 168:847–866.

Conformations of a Cellulase Linker 2831

Biophysical Journal 88(4) 2823–2832



Petoukhov, M. V., N. A. Eady, K. A. Brown, and D. I. Svergun. 2002.
Addition of missing loops and domains to protein models by x-ray
solution scattering. Biophys. J. 83:3113–3125.

Rasmussen, G., J. M. Mikkelsen, M. Schülein, S. A. Patkar, F. Hagen,
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