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ABSTRACT The stationary states of systems with many molecular motors are studied theoretically for uniaxial and centered
(asterlike) arrangements of cytoskeletal filaments using Monte Carlo simulations and a two-state model. Mutual exclusion of
motors from binding sites of the filaments is taken into account. For small overall motor concentration, the density profiles are
exponential and algebraic in uniaxial and centered filament systems, respectively. For uniaxial systems, exclusion leads to the
coexistence of regions of high and low densities of bound motors corresponding to motor traffic jams, which grow upon
increasing the overall motor concentration. These jams are insensitive to the motor behavior at the end of the filament. In
centered systems, traffic jams remain small and an increase in the motor concentration leads to a flattening of the profile if the
motors move inwards, and to the buildup of a concentration maximum in the center of the aster if motors move outwards. In
addition to motor density patterns, we also determine the corresponding patterns of the motor current.

INTRODUCTION

Cytoskeletal motors such as kinesin, dynein, and myosin are

proteins which convert the chemical free energy released

from the hydrolysis of adenosine triphosphate (ATP) into

directed movements along filaments of the cytoskeleton. In

cells, these motors drive various transport processes, and are

also involved in cell division, cell locomotion, and

reorganization of the cytoskeleton (Schliwa and Woehlke,

2003; Howard, 2001). A lot of knowledge has been obtained

from in vitro motility assays that allow for the measurement

of single motor properties such as their velocities, average

walking distances, step sizes, and the forces they exert

(Howard, 2001). These quantities have been measured for

various types of processive motors including conventional

kinesin (Howard et al., 1989; Block et al., 1990; Svoboda

et al., 1993; Meyhöfer and Howard, 1995; Vale et al., 1996;

Schnitzer and Block, 1997), Myosin V (Mehta et al., 1999;

Veigel et al., 2002), the processive monomeric kinesin

KIF1A (Okada and Hirokawa, 1999; Tomishige et al., 2002),

and cytoplasmic dynein (Wang and Sheetz, 2000; King and

Schroer, 2000). These motility assays study systems

consisting either of mobile motors and immobilized

filaments or of immobilized motors and mobile filaments.

In addition, systems where both motors and filaments are

mobile and filaments can be displaced by motors have also

been studied (see e.g., Takiguchi, 1991; Urrutia et al., 1991;

Nédélec et al., 1997; Surrey et al., 2001; Kruse and Jülicher,

2000).

In all of these systems, motors and filaments interact via

hard core interactions arising from their mutual exclusion.

Indeed, both motors and filaments occupy a certain spatial

volume which cannot be occupied by another molecular

structure. In particular, motors bound to filaments exclude

other motors from the binding sites of the filaments. The

latter exclusion effects were first addressed in our previous

work (Lipowsky et al., 2001) in which we introduced

a general class of driven lattice gas models for this purpose.

In the following, we use these driven lattice gas models to

explore how the arrangement of the filaments affects the

motor transport in closed compartments. We consider

uniaxial and centered filament arrangements and present

results for the stationary patterns of both motor density and

motor current. Both types of arrangements are accessible to

in vitro experiments and mimic structures of the cytoskeleton

as observed in vivo. The uniaxial systems mimic the

geometry of axons or fungal hyphae, whereas centered

systems are realized, for example, in the asterlike structures

of microtubules extending from centrosomes. For the

uniaxial systems, we have previously shown that traffic

jams build up easily as a consequence of mutual exclusion

(Lipowsky et al., 2001), whereas previous work on centered

systems (Nédélec et al., 2001) did not incorporate this mutual

exclusion.

We will show in the following that uniaxial and centered

systems exhibit rather different jamming behavior. While in

uniaxial systems jammed regions grow upon increasing the

motor concentration and spread over the whole system, the

effect of jamming in centered systems is less dramatic and

jams remain small in this case. Increasing the motor

concentration, however, influences the density profile in

the nonjammed region. In addition, we show that the traffic

jams in uniaxial systems are rather insensitive to the motor

behavior at the end of the filaments. In contrast, the latter

behavior is crucial for the presence of jams in centered

systems.
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The density profiles discussed here theoretically can be

directly measured in biomimetic experiments in vitro, and, in

fact, such density profiles have recently been measured for

the case of centered or asterlike systems (Nédélec et al.,

2001). However, the latter experiment did not address the

jamming behavior, which could be studied by increasing the

motor concentration in these systems. In addition, our

theoretical density profiles can be compared to motor density

profiles measured for the corresponding systems in vivo.

Such in vivo density profiles have been reported for fungal

hyphae, which represent uniaxial systems. Seiler et al. (2000)

have observed motors localized at the tip of these hyphae,

which corresponds again to the case of low motor density. In

vivo, the motor concentration can be changed by changing

the level of expression of the corresponding gene; in that way

jamlike density profiles have recently been observed for

another fungal kinesin-like motor (Konzack, 2004; Konzack

et al., 2005). The effect of exclusion (and, thus, jamming) is

enhanced if the motors transport large cargoes such as

membranous organelles. Jamlike behavior of organelles has

been observed in axons (W. Saxton, private communica-

tion); extreme cases induced by mutations of motors (which

are lethal in later stages of development) are accompanied by

strong swelling of the axon (Hurd and Saxton, 1996; Martin

et al., 1999).

Our article is organized as follows. We introduce the

theoretical model in the following section. In the sections

Density Profiles for Uniaxial Filament Systems and Density

Profiles for Centered Filament Systems, we discuss jamming

effects in two types of filament systems and present results

for the motor density patterns obtained from Monte Carlo

simulations and from a two-state model. Finally, we relate

our results to recent experiments in the Discussion. The

Appendices describe the theoretical methods used in this

article and some analytical calculations.

THEORETICAL MODEL

Lattice models for molecular motors and filaments

In this article, we study the stationary profiles of the motor

density that build up within closed compartments containing

filaments. These stationary states are characterized by the

balance of bound and unbound motor currents (Lipowsky

et al., 2001). Unbinding of motors from the filaments reflects

the finite binding energy of the motor-filament complex that

can be overcome by thermal fluctuations and leads to

peculiar random walks of the motors, which consist of

alternating sequences of directed motion along filaments and

nondirected diffusion in the surrounding fluid (Ajdari, 1995;

Lipowsky et al., 2001; Nieuwenhuizen et al., 2002, 2004),

see Fig. 1 a. To study these random walks, we have recently

introduced lattice models (Lipowsky et al., 2001). One

useful feature of these models is that one can incorporate

motor-motor interactions such as the mutual exclusion in

a rather natural way (Lipowsky et al., 2001; Klumpp and

Lipowsky, 2003, 2004). Motor-motor interactions are

especially important on the filaments: motors are strongly

attracted to filaments, so that the local density of motors on

these filaments will typically be large even if the overall

motor concentration is rather small. The importance of

motor-motor interactions is further increased if motors accu-

mulate in certain regions of closed compartments.

Mutual exclusion of motors from binding sites of the

filaments has two effects:

1. Binding of motors to the filament is reduced for those

filament segments which are already occupied by many

motors. This effect is directly observed in decoration

experiments (see, e.g., Song and Mandelkow, 1993;

Harrison et al., 1993).

2. The mutual hindrance slows down the movement of

motors in regions of high motor density. This second

effect has not yet been studied experimentally, but there

are indications of it in microtubule gliding assays (Böhm

et al., 2000). In addition, there is indirect evidence for

such a slowing-down from the self-organization of

microtubules and motors, where an increase of motor

concentration can induce a transition from vortex to aster

patterns of microtubules (Surrey et al., 2001). From

computer simulations, such a transition is expected if the

motors spend more time close to the end of a filament.

This should happen if the motors are slowed down at the

filament end by a traffic jam which builds up upon in-

creasing the motor concentrations.

Bound and unbound motor movements

In the following, we describe the movements of molecular

motors as random walks on a three-dimensional cubic lattice

FIGURE 1 (a) Molecular motors perform active directed movements

characterized by the bound-state velocity vb along a cytoskeletal filament.

After unbinding from the filament, the motor undergoes nondirected

Brownian motion with diffusion coefficient Dub. As motors are strongly

attracted to filaments, mutual exclusion of motors from binding sites leads to

molecular traffic jams. We study stationary states for two geometries: (b)

uniaxial arrangements of filaments in closed tubelike compartments and (c)

radial or asterlike arrangements of filaments in closed disklike compartments.
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(Lipowsky et al., 2001; Nieuwenhuizen et al., 2002, 2004).

One or several lines of lattice sites represent one or several

filaments. The lattice constant ‘ is taken to be the repeat

distance of the filament (which is 8 nm for kinesins moving

along microtubules), so that filament sites of the lattice

correspond to binding sites of the filament. A motor bound to

a filament performs a biased random walk, which describes

the active movements along the filament. Per unit time t, it

attempts to make forward and backward steps with

probability a and b, respectively. As backward steps are

rare for cytoskeletal motors, we take b ¼ 0 in the following,

which eliminates one parameter from our systems. Rather

similar behavior is found for small nonzero values of b. With

probability g, the bound motor makes no step, and with

probability e/6, it unbinds to each of the four adjacent

nonfilament sites. The sum of all hopping probabilities per

unit time t is one, i.e., the probabilities are related by

a1b1 g1 4e=6 ¼ 1: (1)

When the motor particle reaches the end of the filament, it

does not have the possibility to step forward to another

filament site. We will consider two different unbinding

processes for this last filament site as in our previous work

(Klumpp and Lipowsky, 2003):

Thermal unbinding. The motor particle detaches from the

last filament site with probability e/6 to the unbound

site in the forward direction, but remains at the last site

with probability g9 [ g 1 a –e/6, whereas the back-

ward probability b and the sideward probability e/6

remain unchanged. Adjusting the no-step probability

implies the modified normalization

b1 g91 5e=6 ¼ 1 (2)

for the hopping probabilities at the last filament site.

Active unbinding. The motor particle detaches from the

last site with probability a in the forward direction and

with probability e/6 in the four sideward directions as

for all other filament sites. In this case, the normali-

zation of the hopping probabilities at the last filament

site is given by Eq. 1.

An unbound motor performs a symmetric random walk,

which corresponds to nondirected diffusive movement. It

attempts to step to each adjacent lattice site with equal

probability 1/6. If an unbound motor reaches a filament site,

it can bind to this site with probability pad. The random walk

probabilities can be chosen in such a way that one recovers

the measured transport properties of specific motors such as

the bound state velocity, the unbound diffusion coefficient,

and the average walking distance (see Lipowsky et al., 2001;

Klumpp and Lipowsky, 2003). (Note that the model used

here does not account for the bound state diffusion

coefficient or, equivalently, the randomness parameter of

the motor movements. This parameter can be incorporated

by introducing a second timescale for the movements of the

bound motors; see Lipowsky et al., 2001. Such an extended

model leads to density profiles that are very similar to those

described here. This indicates that the overall diffusion is

essentially governed by the unbound diffusion process.) The

unbound diffusion coefficient Dub fixes the basic timescale

t ¼ ‘2/Dub. The probabilities a, b, g, and e are determined

from the velocity vb ¼ (a – b)‘/t of a single bound motor,

the average walking distance along the filament Dxb ¼ 3vbt/
(2e), the condition b ¼ 0, and Eq. 1.

Mutual exclusion of motors is taken into account by

rejecting all hopping attempts to lattice sites which are

occupied by other motors. We take the motor particles to

have a linear size comparable to the filament repeat distance

‘ and to occupy a volume ‘3. If the motors are attached to

larger cargoes, exclusion is enhanced. In particular, a large

cargo of linear size n‘, when bound to the filament,

effectively covers between n‘ and (2n � 1)‘ filament sites

depending on the bound density. However, the functional

relationships between the different densities and current are

rather similar (MacDonald et al., 1968; McGhee and von

Hippel, 1974). We will briefly discuss this case at the end of

the article in Discussion.

These lattice models for systems with many molecular

motors are related to driven lattice gas models which have

been studied extensively in the context of nonequilibrium

phase transitions (Katz et al., 1983; Krug, 1991). In the

models studied here, the driving, i.e., the active directed

movement, is restricted to the linear subspaces correspond-

ing to the filaments.

In the following, we will usually express all lengths and

times in units of the filament repeat distance ‘ and the basic

timescale t, respectively. This means that the bound and

unbound motor densities rb and rub that we will consider in

the following are local particle number densities satisfying

0# rb# 1 and 0# rub# 1, which corresponds to 0# rb#

1/‘3 and 0# rub # 1/‘3 in dimensionful units. Dimensionful

units will be used when presenting results for specific motor

molecules.

Filament arrangements and
compartment geometries

In this article, we study two types of filament arrangements

within closed compartments as shown in Fig. 1, b and c. The
first type is a uniaxial filament system where a closed

cylindrical tube contains a number Nf of uniaxially arranged

filaments, i.e., filaments oriented parallel to the cylinder axis

and with the same orientation. We denote the coordinate

parallel to the filament by x and the coordinates perpendic-

ular to it by y and z. The tube has length L and radius R.
The second type of system which we will study is

a centered filament system, i.e., a radial or asterlike

arrangement of filaments within a closed disklike compart-

ment. The number of filaments is again Nf. In this case, we
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denote the radial coordinate by r. The linear extension of the

compartment along the direction of the filaments, i.e., the

disk radius, is denoted by L and the disk height by h.
In both cases, we take all filaments to have the same

length, which is equal to the corresponding linear extension

of the compartment, i.e., to the tube length and to the disk

radius in the case of uniaxial and centered filament systems,

respectively. Shorter filaments lead to very similar results.

An example would be filaments in radial arrangements that

are nucleated from a centrosome and extend from r¼ Rc, the

centrosome radius, to the disk radius r¼ R. In addition, since
the compartments are closed, the number of motors, denoted

by N, stays constant within each compartment.

DENSITY PROFILES FOR UNIAXIAL
FILAMENT SYSTEMS

We first consider uniaxial arrangements of filaments within

a closed tube as shown in Fig. 1 b. On the one hand, placing

one or several filaments and motors inside a tube should be

experimentally feasible. The tube could be either a glass tube

as used for micropipettes, a topographic channel as used for

filament guiding (Clemmens et al., 2003), or a liquid

microchannel on a chemically structured surface (Gau et al.,

1999; Brinkmann and Lipowsky, 2002). In all cases, tube

diameters down to a few micrometers can be achieved. On

the other hand, tubelike geometries are also quite common in

cells, the most prominent example being the axon of a nerve

cell, a tubular cell compartment with a diameter in the range

of few micrometers and a length of up to a meter, which

contains tens of microtubules per mm2 (Alberts et al., 2002);

typical distances of the microtubules are in the range of 100

nm. Similar compartments, the hyphae, exist in the case of

fungal cells. In addition, some compartments inside the cell

have tubular shapes and contain filaments such as strands of

cytosol crossing vacuoles in plant cells, again with diameters

in the micron range.

We will now focus on the case of a single filament, since

the case of Nf isopolar parallel filaments in a tube with cross-

section f is essentially equivalent to a single filament in

a tube with cross-section f/Nf, provided that the filaments

are equally distributed within the tube. (If the filaments are

concentrated in a certain region, i.e., if the distance between

filaments is small compared to the distance between

filaments and the tube wall, depletion of motors is enhanced;

depletion effects are rather weak, however.) Let us consider

a cylindrical tube of length L and radius R with one filament

located along its symmetry axis. Imagine now that a certain

number of motors are placed in this tube. In the absence of

ATP, the system attains an equilibrium state, where binding

to and unbinding from the filament balance each other

locally, i.e., at every single binding site. Both the bound and

the unbound motor densities are constant and related by the

radial equilibrium condition

padrubð1� rbÞ ¼ erbð1� rubÞ � erb; (3)

where the terms (1 � rb) and (1 � rub) describe mutual

exclusion of bound and unbound motors, respectively, with

(1 � rub) � 1 for typical experimental situations.

When ATP is added to the system, the motors start to

move along the filament. We use the convention that the

filaments are oriented in such a way that the bound motors

move to the right. The motor current along the filament

builds up a density gradient, which generates a diffusive

current. In the stationary state, this diffusive current balances

the drift current of bound motors. As a first approximation,

we assume that Eq. 3 is also valid in the presence of ATP

(which is justified if the velocity vb is sufficiently small, as

we will show below). The balance of currents can then be

expressed by

vbrbð1� rbÞ ¼ Dubf
@rub

@x
’ Dubf

e

pad

@

@x

rb

1� rb

: (4)

It follows from this relation that, for low motor densities,

the motor density increases exponentially along the filament

and that motors accumulate at the right end of the filament,

further increasing the importance of exclusion effects there.

Simulation results

Typical density profiles as obtained from Monte Carlo

simulations are shown in Fig. 2 a. If the total number N of

motors is relatively small—one example is provided by N 5

100 in Fig. 2—motors are essentially localized at the right

end of the tube. Crowding of motors occurs only in a short

region at the end of the filament where motors form a kind of

traffic jam. To the left of the traffic jam, the density has an

exponential profile as predicted by the simple balance of

active directed currents and diffusive currents. If a motor

detaches from the filament in the crowded region, it will

diffuse back over a certain distance and most likely rebind to

the filament in the region to the left of the traffic jam. In the

jammed region rebinding is strongly reduced, since essen-

tially all binding sites are already occupied. Upon rebinding

to the filament, the motor will move relatively fast to the

right until it ends up in the jammed region again.

These observations imply the coexistence of a low-density

region with an exponential density profile and a crowded

high-density region, separated by a relatively sharp domain

wall or interface which corresponds to the beginning of the

traffic jam. If the number of motors in the tube is increased,

the jammed region spreads further to the left and the domain

boundary is shifted toward smaller values of the spatial

coordinate x, as shown in Fig. 2 for N 5 350. Now, motors

diffuse backward over larger distances, since attempts to

rebind to the filament fail, if the binding sites are already

occupied.

Finally, if the motor concentration is very large, there is

only one domain with a high density of bound motors: The
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filament is crowded over its whole length and the bound

density profile is essentially constant except for the regions

close to the two ends of the filament (see the case N 5 1000

in Fig. 2). In this case, motors may diffuse back over the

whole system length, but both the diffusive current and the

bound current along the filament are very small.

The corresponding profiles of the bound motor current

along the filament are shown in Fig. 2 b. The diffusive

current of unbound motors integrated over the tube cross-

section has the same absolute value, but the opposite sign.

The current depends strongly on the position x along the

filament as long as the filament is not completely jammed.

Like the motor densities, it increases exponentially in the low

density region. In the jammed region at the right end of the

tube, the current decreases rapidly. It reaches its maximum

close to the end of the traffic jam. Note that the maximal

current accessible in these systems is smaller than vb/4, i.e.,
smaller than the maximally possible current in a system with

constant densities such as a tube system with periodic

boundary conditions (Klumpp and Lipowsky, 2003). For the

case of the completely jammed filament, the current profile is

nearly flat, whereas the absolute current is small.

To obtain a global characterization of transport in the

system, we determined the average current defined by

�JJb [
1

L

Z L

0

dx jbðxÞ: (5)

This quantity exhibits a maximum at an optimal motor con-

centration as a function of the total number N of motors in the

system, i.e., as a function of the overall motor concentration

(see Fig. 3). For small N, it grows linearly with the number of

motors, whereas for large N it decreases again since motion

of the bound motors is slowed down by the increasing traffic

jam. However, this decrease of the currents is rather slow,

since additional motors introduced into the system can only

rarely find free binding sites. For the system shown in Fig. 3,

the maximal current occurs for N ’ 350 motors, which

corresponds to the intermediate case of the profiles in Fig. 2.

A second quantity, which gives a global characterization

of the profiles, is the traffic jam length L* of the crowded

domain. L* can be defined by the condition rb(x*) 5 1/2 via

L*5 L – x*. Results for L* are also shown in Fig. 3. The three
cases discussed above can now be distinguished as follows.

For very small L*/L, crowding of motors only occurs in

a small region at the filament end and the profile decays

exponentially to the left over a large fraction of the system

size. For intermediate values of L*/L with 0 � L�=L � 1,

the density profiles exhibit coexistence of domains with high

and low bound motor densities. Finally, for L*/L � 1 the

whole filament is crowded. Comparing the functional

dependence of the traffic jam length L* with the average

bound current �JJb shows that the optimal transport occurs

when a large part of the filament is crowded, L� ’ 0:8L, but
the traffic jam is not yet too dense.

Two-state model

To get some further insight into the properties of these self-

organized density profiles, we studied the stationary states of

these systems using a two-state model. In this model, which

is described in detail in Appendix A, the dependence of the

concentration profiles on the radial coordinate is neglected

and motors can be in two states, namely bound and unbound.

This approximation is justified, because the profile of the

FIGURE 2 Profiles of (a) the bound

motor density rb and (b) the corre-

sponding bound motor current jb as

functions of the coordinate x along the

filament in the closed tube for three

different motor numbers N as obtained

from Monte Carlo simulations. The

tube has length L ¼ 200‘ and radius

R ¼ 25‘. The transport parameters

are a ¼ 0:01� 2e=3 ’ 9:93 3 10�3,

b¼ 0, g¼ 0.99, e¼ 10�4, andpad¼ 1.

FIGURE 3 Average current �JJb of bound motors (solid circles) and traffic

jam lengthL* (open circles) as functions of the total numberN ofmotors in the

tube. Geometry and parameters of motion are the same as in Fig. 2. The data

points at N/L ¼ 0.5, 1.74, and 5 correspond to the profile shown in Fig. 2.
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unbound motor density depends only weakly on the radial

coordinate. The two-state approximation captures most of

the relevant features of these profiles and numerical solutions

for the stationary profiles are obtained much faster than by

Monte Carlo simulations.

For the uniaxial systems, the two-state model as defined in

Appendix A is given by

vbrbðxÞ½12rbðx11Þ�5fDub½rubðx11Þ2rubðxÞ� (6)

and

vbrbðxÞ½12rbðx11Þ�2vbrbðx21Þ½12rbðxÞ�
5~ppadrubðxÞ½12rbðxÞ�2~eerbðxÞ½12rubðxÞ�: (7)

These equations express the balance of bound and unbound

currents and the binding to and unbinding from the filament,

respectively (see Appendix A).

For the nonjammed low density region, some analytical

results can be obtained from these equations which are

presented in Appendix B. In particular, an exponential

increase of the density profile is obtained as rb � Nex/j

(except for the region close to the left boundary) with a length

scale j as given by Eq. B6.

To obtain results for arbitrary densities, we solved the two-

state Eqs. 6–7 numerically. Some profiles of the bound motor

density as well as the average current as a function of the

number of motors are shown in Fig. 4 for a relatively large

system with L 5 1000. Although the main features are the

same as for the smaller system discussed above, some

additional details can be seen here. The current increases

linearly with the number N of motors for small N, but at
a certain point, N ’ 500 or N=L ’ 0:5 in Fig. 4 b, the slope
begins to change. The current then increases more slowly,

but again nearly linearly, until it reaches its maximum. This

change in slope of the current corresponds to the formation

of a plateau in the density profile, where the density in the

traffic jam is approximately constant and changes only little

upon addition of motors.

Until now, we have assumed thermal detachment, i.e., that

detachment at the end of the filament occurs with the same

rate as detachment at any other site of the filament. As

mentioned before (see Eq. 2), a second possibility is active

unbinding, i.e., that motors detach with an increased rate at

the end by making an active step which leads to unbinding.

There is some indirect evidence for a quicker detachment of

kinesin motors at the microtubule end from experiments and

computer simulation of the formation of aster and vortex

patterns of microtubule by motors (Surrey et al., 2001). In

simulations, quick detachment at the microtubule end leads

to the formation of vortex (or spiral-like) structures, whereas

slow detachment is necessary for the formation of asterlike

centered arrangements. Kinesin is able to form both asters

and vortices, suggesting that detachment at the microtubule

end is relatively quick, whereas the kinesin-related motor,

Ncd, only forms asters and thus probably detaches slowly at

the microtubule end (Surrey et al., 2001).

We have determined density profiles for both cases using

the two-state approach (see Fig. 5). These density profiles

show that the jamming behavior is rather insensitive to the

motor behavior at the end of the filaments. Except for the

region very close to the filament end, the profiles for the two

cases agree well. In particular, the domain wall or interface

represented by the steep increase of the density profile at the

beginning of the traffic jam is the same in both cases. This

observation shows that the traffic jam is not due to the slow

unbinding at the end, but due to the accumulation of motors

with an exponential density profile, which follows from the

balance of bound drift current and unbound diffusive

currents in a uniaxial geometry. On the other hand, the

density profile within the jammed region depends strongly

on the detachment rate at the filament end. Although there is

a weak increase of the bound density inside the jammed

region for small detachment rate at the filament end, the

bound density decreases strongly in this region in the case of

an increased detachment rate at the end (see Fig. 5).

Comparing the density profiles obtained from the two-

state model with those obtained from simulations for the

same parameter set, we find quite good agreement in the case

where the entire filament is crowded by motors. For smaller

overall motor concentrations, qualitative agreement is still

FIGURE 4 Two-state model. (a) Pro-

files of the bound motor density rb as

a function of the spatial coordinate x

parallel to the filament and (b) average
bound motor current �JJb as a function of

the number N of motors in the tube as

obtained from the numerical solution of

the discrete two-state model. The cho-

sen tube has length L¼ 1000 and radius

R ¼ 25. The parameters of motion are

vb ¼ 0.01, Dub ¼ 1/6, e ¼ 10�4, and

pad ¼ 1. The numbers of motors in a
are from right to left) N ¼ 100, 200,

300, 400, 500, 1000, 1500, 2000, 2500,

3000, 3500, and 4000.
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good, but there are small quantitative discrepancies. We find

that the length scale j of the exponential increase of the

density is smaller in the two-state model than in the

simulations. Correspondingly, the crowded region is slightly

longer in this approximation. This difference is due to

neglecting a depletion zone close to the filament in the two-

state model. Close to the filament, the unbound motor

density is smaller than its radial average in the low-density

region. Taking it as independent of the radial coordinate, we

thus overestimate binding of motors to the filament.

Therefore there are more motors bound to the filament in

the two-state model than in the simulations, which results in

a longer traffic jam, and the maximum of the current is

shifted to a smaller number of motors in the system.

To obtain a quantitative description of the radial density

profiles, we have solved the full three-dimensional diffusion

equation for the low-density region and derived an analytical

expression for the depletion layer close to the filament as

shown in Appendix C. It follows from the latter expression

that the radial profile of the unbound density is nearly flat far

from the filament and exhibits a logarithmic depletion zone

close to the filament. This confirms the observation that the

unbound motor density depends only weakly on the radial

coordinate which justifies the two-state approach. Compar-

ing the results from this calculation with the simulation of the

full model, good agreement is found. In Fig. 6, we have

plotted both the longitudinal (Fig. 6 a) and radial profiles

(Fig. 6 b) as obtained by both methods. The radial profiles

exhibit the predicted depletion layer close to the filament in

the low density region to the left of the traffic jam. In the

crowded region, the unbound density is enhanced close to

the filament in comparison to the value far from the filament.

The full diffusion equation also leads to a condition for

the length scale j given by Eq. C6 and we obtain j ’ 37:4
for the parameters used in Fig. 6, in good agreement with

the value from simulations which is j ’ 37. In contrast, the

two-state approximation yields the smaller value j ’ 24,

because it overestimates the current of motors binding to the

filament.

DENSITY PROFILES FOR CENTERED
FILAMENT SYSTEMS

In this section, we consider profiles of the motor concentra-

tion in centered filament systems or asterlike arrangements of

filaments as shown in Fig. 1 c. Such arrangements can be

formed for microtubules in vitro either by nucleation from

microtubule-organizing centers (Holy et al., 1997) or by self-

organization of microtubules and motor complexes (Nédélec

et al., 1997; Surrey et al., 2001). Centered filament systems

mimic the most common organization of microtubules in

cells. Motivated by the restructuring of this organization

during cell division and the formation of the mitotic spindle

(Hyman and Karsenti, 1996), many experiments have

focused on the case where the filaments are also mobile.

In the following, we consider immobilized asterlike

arrangements of filaments which are not reorganized by the

action of motors. The asters consist of Nf filaments of length

L arranged radially in a thin disk of radius L and height h. We

take the filaments to extend from r ¼ 0 to r ¼ L within the

disk, but again smaller filaments lead to very similar results.

In that case, active directed currents of motors along the

filaments and diffusive motor currents will again be balanced

in a stationary state. For the aster geometry some theoretical

and experimental results for low motor densities have

recently been reported by Nédélec et al. (2001). We confirm

their main theoretical result, an algebraic density profile far

from the center of the aster, and extend the study of

concentration profiles in asters by exploring the effect of

mutual exclusion. (Note that in the experiments of Nédélec

et al., 2001, the dynamics is more complicated, since they

used mobile filaments and their motor constructs can also

displace these filaments with respect to each other, so that the

motor density profiles and the filament patterns develop in

coordination. After some time, however, these systems reach

a steady state, in which the filament pattern is stationary—

although not completely immobile—and can, on average, be

represented by a fixed filament system. In addition, once the

asterlike structure is formed, the filaments are usually

sufficiently separated from each other, with the exception

of the center of the aster, so that the additional dynamics

plays only a minor role. Indeed, in the low density case, the

theoretical density profiles agree well with the experimental

profiles, as we will discuss below. To exclude the more

complicated dynamics, one could immobilize the filaments

once the stationary state has been reached or, alternatively,

use centered microtubule systems nucleated from centro-

somes, Holy et al., 1997, and conventional kinesins, which

cannot bind to two filaments at the same time.)

FIGURE 5 Two-state model. Profiles of the bound motor density rb for

active and thermal unbinding of motors at the filament end. A motor at the

end of the filament detaches with the same probability as at any other

filament site (thermal unbinding, solid lines) or by a forward step, i.e., with

rate a (active unbinding, dashed lines). L ¼ 600, R ¼ 25, parameters of

motion as in Fig. 4; and N ¼ 200, 800, 1400, 2000, and 2600 (from right to

left).
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Two-state equations for centered systems

Centered filament systems are implemented in the two-state

model by substituting the coordinate n used in the general

expressions with the radial coordinate r, by using Eqs. A4–

A6 for the bound and unbound motor currents and

introducing a geometrical weight factor f(r) � f0r as

described in Appendix A. The latter factor implements the

fact that with increasing r, the volume available for unbound

diffusion increases. The two-state model equations are then

given by

vbrbðrÞ½12rbðr11Þ�5Dub fðrÞ½rubðr11Þ2rubðrÞ� (8)

vbrbðrÞ½12rbðr11Þ�2vbrbðr21Þ½12rbðrÞ�
5~ppadrubðrÞ½12rbðrÞ�2~eerbðrÞ½12rubðrÞ�; (9)

for the case of motors moving outwards in an aster. If motion

of motors is directed inwards, i.e., if vb , 0, the two-state

equations are given by

vbrbðr11Þ½12rbðrÞ�5fðrÞDub½rubðr11Þ2rubðrÞ� (10)

vbrbðr11Þ½12rbðrÞ�2vbrbðrÞ½12rbðr21Þ�
5~ppadðrÞrubðrÞ½12rbðrÞ�2~eerbðrÞ½12rubðrÞ�: (11)

In the low density limit, these equations lead to the algebraic

density profile rb ; rh reported by Nédélec et al. (2001) (see
Appendix B). The exponent h ; vb is positive if motors

move outwards and negative if motors move inwards.

Numerical results

To study the effect of hard core exclusion in asters, we used

the parameters given by Nédélec et al. (2001) for the motor

constructs used in their experiments. In the numerics all

parameters are given in units of the microtubule periodicity

‘ 5 8 nm and the step time ts 5 10 ms. Parameters of the

bound state are vb 5 0.8 mm/s 5 ‘/ts and ~ee50:01 t21
s

corresponding to unbinding after 100 steps, and those of the

unbound state are Dub 5 20 mm2/s 5 3125 ‘2/ts and

~ppad52:6 mm2s21=‘25405:6 t21
s . Parameters which corre-

spond to kinesin with beads as used by Lipowsky et al.

(2001) lead to similar results. All results shown in the

following are obtained for an aster of Nf 5 300 microtubules

of length 50 mm 5 6250 ‘, which is confined in a slab of

height 9 mm 5 1125 ‘.

Motors moving inwards

We consider first the case where motors move inwards. For

this case, experimental results have been reported by

Nédélec et al. (2001). Accumulation of motors in the center

of the aster is observed by fluorescence microscopy. Profiles

of the total motor concentration, i.e., the concentration

averaged over bound and unbound motors,

�rrðrÞ5rbðrÞ1fðrÞrubðrÞ
11fðrÞ ’ 1

fðrÞrb1rub;
1

f0

r
h21

1
~ee

~ppad

r
h
;

(12)

can be extracted from the fluorescence images. The last

expression is valid for small motor densities and sufficiently

large values of r and predicts that the density profile exhibits
a crossover from a decay ;rh21 for small r to ;rh for large

r. This crossover behavior is seen in the experimental data of

Nédélec et al. (2001).

For small overall motor concentrations, the numerical

solution of the master equations exhibits the power law

behavior predicted theoretically by neglecting exclusion

effects. For the chosen parameters we find rub(r) ; rh with

h ’ 20:54 from the data for N 5 104 shown in Fig. 7 a in

agreement with Eq. B14. In the center of the aster, a traffic

jam is obtained already for small total number of motors. The

traffic jam is, however, rather short and, in contrast to the

case of uniaxially aligned filaments, does not grow sub-

stantially in length when the number of motors in the system

is increased (see Fig. 7 a). Jamming of motors occurs only

for small r (&20 ‘ ’ 0:2mm). For this range of r, no

experimental data are available. In contrast to the case of

FIGURE 6 (a) Profiles of the bound

motor density rb (thick line) and the

radius-dependent unbound motor den-

sity rub as functions of the spatial

coordinate x parallel to the filament.

The lines for the unbound density show

the profile at different distances from

the filament (u ¼ 1 to u ¼ 25, bottom to

top in the left part of the jam and top to

bottom right of the jam). The dashed

line indicates the exponential ;exp(x/
37.4) as obtained from the linearized

equations C1–C3. (b) Radial profile of

the unbound density in the low density

region, x ¼ �40 (s), �20 (h), 0 ()),

20 (n), 40 (3), and in the crowded region, x¼ 80 (d). The solid line shows the analytical result given in Eq. C5. The simulation data at all positions in the low

density region agree with each other and with the analytical result, which shows that the profile has the product form (Eq. C4). The transport parameters are as in

Fig. 2, and the tube has length L ¼ 201 and radius R ¼ 25.
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uniaxial systems, the motor behavior at the end of the

filaments is crucial for the presence of jams in centered

filament systems: If motors unbind actively at the filament

ends (in the center of the aster), traffic jams are absent (as

shown in Fig. 8 a). In the regions with low motor densities,

the density profiles for thermal (slow) and active (fast)

detachment at the ends of the filaments agree perfectly.

The main effect of the mutual exclusion is that density

profiles get more and more flat with increasing motor

concentration in the system (see Fig. 7 a). This means that

the power law profile is found only for small overall motor

concentrations. The average current in the system again

exhibits a maximum at an optimal motor concentration. The

maximum occurs at a motor concentration, where the bound

motor density becomes nearly constant and the power law

behavior is hardly identified.

Motors moving outwards

For motors moving outwards in an aster we obtain profiles as

shown in Fig. 7 b. For small numbers of motors (and not too

close to the boundaries) the bound density follows the power

law obtained from the linear equations. Now the exponent h

is positive but small. With increasing motor concentration,

the profile of the bound density again gets more and more flat

and the filaments become more and more crowded. As in the

case of outward movements, however, the jams at the end of

the filaments grow only very weakly and remain rather small

(&50 ‘ ’ 0:5mm). The motor behavior at the filament ends

is also crucial for the presence of these jams in this case, and

jams are absent if motors unbind quickly at the filament ends

(see Fig. 8 b).
The new feature compared to the previous case is that the

profile of the total motor concentration, which is rather flat

for small motor concentration, develops a pronounced

maximum in the center of the aster as the number of motors

is increased beyond the optimal motor concentration (see

Fig. 7 b). This can be understood in the following way: If no
ATP is added to the system, motors will accumulate in the

center of the aster, simply because they bind strongly to the

filaments, and, in the center, the number of binding sites per

unit area is maximal. If ATP is added, motors are driven

outwards by active directed motion. Now if the number of

motors in the system is increased, so that the motor

movements are slowed down by the exclusion effect, the

outward drift is suppressed and accumulation in the center is

successively restored.

DISCUSSION

We have presented theoretical results for the density profiles

of molecular motors in arrays of cytoskeletal filaments.

Motors were described as particles which move actively, i.e.,

in a directed manner, when they are bound to cytoskeletal

FIGURE 7 Concentration profiles for

motors moving (a) inwards and (b)

outwards in asterlike arrays of filaments

as functions of the radial coordinate r.
Parameters are for motor complexes as

described by Nédélec et al. (2001), see

text. The numbers of motors are (from

bottom to top) N ¼ 104 (s), 105 ()),

106 (n), 107 (h), 108 (�), and 109 (8).

The profiles shown are profiles of the

total motor concentration �rr ’ rb=

fðrÞ1rub. Because of the logarithmic

scale, discrete data points are only

indicated for small r.

FIGURE 8 Thermal versus active un-

binding of motors at the filament end in

centered systems. Profiles of the bound

motor density rb as a function of the

radial coordinate r for motors moving

(a) inwards and (b) outwards in asterlike

filament arrays. At the end of the

filaments, motors detach with the same

probability as at any other filament site

(solid lines) or by a forward step, i.e.,

with rate a (dashed lines). The inset in

b shows the region close to the filament

ends where the profiles for the two cases

differ. The parameters are as in Fig. 7.
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filaments, but undergo nondirected diffusion upon unbinding

fromfilaments. In addition,motor particles interact viamutual

exclusion. On the one hand, these models are designed to

describe the generic behavior of the movements of molecular

motors; on the other hand, the model parameters can be

adapted to the transport properties of specific motor

molecules. In general, these models involve certain simpli-

fications compared to real systems. We have therefore tested

a few modifications of the models to check that a more

detailed modeling does not change our conclusions.

Mutual exclusion of motors is obviously enhanced, if the

motors carry large cargoes such as latex beads or vesicles.

Furthermore, microtubules consist of 12–14 protofilaments,

which correspond to 12–14 parallel tracks (see also

Nieuwenhuizen et al., 2002, 2004). For the uniaxial

geometry, we have performed simulations of lattice models

for which these two features have been incorporated. In these

latter simulations, motors which occupy a cubic volume of

M3 lattice sites move on a microtubule consisting of 12

protofilaments arranged in a tubular geometry. In the

simulations we chose M ¼ 3 and M ¼ 5. These cargoes

can mimic small vesicles with diameters of some tens of

nanometers. In vivo, the cargo diameters lie between a few

nanometers for a single protein or RNA molecule and

hundreds of nanometers for a large organelle. In addition,

these model cargoes attach to the filament only with one of

their surface sites, which represents the motor. Therefore,

those cargoes which are not bound to the filament have an

additional rotational degree of freedom. The resulting

density profiles are averaged over M subsequent lattice sites,

because the unrealistic cubic shape of the cargoes and the

rigidity of their attachment to the motors leads to an artificial

sublattice structure in the crowded region. We then obtain

density profiles that resemble the ones discussed above, but

the value of the bound density in the crowded region is

smaller, because a smaller number of motors can block the

filaments. In particular, a motor bound to one protofilament

also blocks binding sites of the adjacent protofilaments

because of the steric hindrance induced by its large cargo.

Finally, let us relate our results to experiments. We have

determined profiles of the motor density and motor currents

in uniaxial and centered filament systems. On the one hand,

these systems are directly accessible to experiments in

biomimetic model systems in vitro. Density profiles as

discussed here have so far only been measured for the case of

centered or asterlike systems (Nédélec et al., 2001) (see

Density Profiles for Centered Filament Systems, above, for

a discussion of the dynamics in these experiments). The

latter experiment shows the power law profile that is

obtained from the theory for low motor densities. Higher

motor densities and the corresponding jamming behavior

have not been explored in this experiment, but could be

studied in the same way by increasing the overall motor

concentration. For the latter case, our theoretical study makes

detailed predictions for the density and current profiles

which could be checked in such an experiment. In addition, it

would be quite interesting to construct other filament

arrangements and compartment shapes and to study the

corresponding motor transport experimentally.

On the other hand, we can also compare our theoretical

results about motor traffic in closed compartments with

experimental studies on motor traffic in biological cells,

where, however, additional phenomena such as the dynamics

of the filaments, the regulation of the motor activity, and the

presence of other cellular structures also play important

roles. Using fluorescence probes, several groups have

measured the density profiles of molecular motors in vivo.

One particularly interesting system is that of the kinesin

motors in fungal hyphae. These hyphae are tubular compart-

ments which contain uniaxial filament systems. In one

experiment, strong localization of kinesin has been observed

at the tip of these fungal hyphae (Seiler et al., 2000). The

cometlike density profiles of these motors localized at the tip

correspond to the case of low motor density in our model.

However, this localization is only found for kinesin mutants

lacking a certain regulatory domain, i.e., for motors which

move actively, but which are not regulated by cargo binding

(see also Verhey et al., 1998). The underlying regulatory

mechanism is the deactivation of the motor via folding of its

tail if no cargo is bound to it (Coy et al., 1999; Seiler et al.,

2000). The deactivated motors do not exhibit active

movement along filaments and can diffuse back over larger

distances. Further regulatory mechanisms have mainly been

discussed for the case of axons where the question, whether

and how motors are transported back, is most prominent

(Goldstein and Yang, 2000). The mechanisms include local

degradation of motors at the axon terminal (Dahlström et al.,

1991) and backward transport by motors of opposite

directionality (Hirokawa et al., 1990, 1991).

Very recently, another fungal kinesin was also shown to

localize at the tip of the hyphae and to exhibit these

cometlike profiles. In this case, larger motor concentrations

were induced by increasing the level of expression of the

corresponding gene. This leads to density profiles with

regions of high motor density which increase in length with

increasing expression level (Konzack, 2004; Konzack et al.,

2005). According to our model, these density profiles should

represent growing traffic jams. It would be highly desirable

to repeat these experiments in vitro.

In summary, we have discussed theoretically the station-

ary density and current profiles of molecular motors in

uniaxial and centered asterlike arrangements of cytoskeletal

filaments. In particular, we have explored the effects of

exclusion and jamming which can be addressed in these

systems by varying the overall motor concentration. The two

types of filament systems, which we studied, exhibit

different density profiles and different jamming behavior.

For small overall motor concentrations, the profiles are

exponential in uniaxial systems, but algebraic in centered

systems except for the crowded region close to the filament
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ends. Increasing the overall motor concentration, the jammed

region grows in the uniaxial geometry, resulting in the

coexistence of large regions of high and low density of

bound motors; whereas the crowded region remains small in

centered systems, in which larger overall motor concen-

trations lead to a flattening of the profile if the motors move

inwards, and to the buildup of a concentration maximum in

the center of the aster if motors move outwards. In addition,

the jamming in the uniaxial systems is rather insensitive to

the motor behavior at the ends of the filaments, while the

latter behavior is crucial for the presence of jams in centered

systems.

Both geometries studied here mimic arrangements of

filaments in cells and are accessible to in vitro experiments.

The predictions for both geometries can thus be tested

experimentally. Some density profiles have already been

determined experimentally. These profiles correspond

mainly to the case of low motor density (Nédélec et al.,

2001; Seiler et al., 2000)—only one recent experiment

(Konzack, 2004; Konzack et al., 2005) addresses higher

motor densities—and are in agreement with our theoretical

description.

APPENDIX A: THEORETICAL METHODS

Monte Carlo simulations

We performed Monte Carlo simulations for the case of uniaxial arrange-

ments of filaments, where filaments are located within cylindrical tubelike

compartments and aligned parallel to the cylinder axis, which we take to be

the x axis. We take the filaments to have the same length L as the tube, but

we checked that shorter filaments lead to very similar results. The cylindrical

tube with radius R is taken to consist of all channels, i.e., lines of lattice site

parallel to the filament, with u[ (y2 1 z2)1/2 # R and 0# x# L. Reflecting

boundary conditions are implemented by rejecting all moves to lattice sites

outside this range. Within the closed tube the number N of motors is fixed.

Each Monte Carlo step, corresponding to a unit of the basic timescale t,

consists of N Monte Carlo moves. At each move, a motor particle is chosen

randomly and updated according to the random walk probabilities.

Two-state model

Our Monte Carlo simulations show that the stationary profiles of the

unbound motor density depend only weakly on the coordinates perpendic-

ular to the filaments. To determine the stationary state, we can therefore use

a two-state approximation, in which all unbound channels are treated as

equivalent and the motors can be in two states, bound and unbound. The

stationary state is then characterized by the balance of bound and unbound

currents, jb and jub, respectively, as given by

jbðnÞ5fðnÞjubðnÞ (A1)

with 0, n, L, and by the change of the bound current as a function of the

spatial coordinate n arising from the binding and unbinding of motors, which

leads to

jbðnÞ2jbðn21Þ5 ~ppadrubðnÞ½12rbðnÞ�2~eerbðnÞ½12rubðnÞ�:
(A2)

The latter equation expresses the fact that, in the stationary state, the sum

of all outgoing currents is equal to the sum of all incoming currents at any

filament site n and corresponds to Kirchhoff’s first rule for electric circuits.

Here, rb and rub are the local number densities of bound and unbound

motors, respectively. (In the next step, we will express the currents jb and jub
in terms of these densities.) The coordinate n along the filament is given by

the spatial coordinate x along the cylinder axis and the radial coordinate r for

uniaxial and radial arrangements of filaments, respectively. f(n) is

a geometrical factor and will be explained below. The binding and

unbinding rates have been rescaled in Eq. A2, ~ee5 2e=3 and ~ppad 5 2pad=3.

In addition, we express the bound and unbound motor currents as

functions of the motor densities. For the tube geometry, we use the

convention that the bound motors move to the right (the case that they move

to the left is then obtained via the reflection symmetry). The bound motor

current is then given by

jbðxÞ5 vbrbðxÞ½12rbðx11Þ�; (A3)

where vb is the velocity in the absence of other motors. In the presence of

many motors, forward steps are only possible if the filament site in front of

a motor is not occupied. The probability of a vacant site is given by [1 – rb],

which leads to the reduction of the current as a function of density expressed

in Eq. A3.

For radial arrangements of filaments, we have to distinguish inward and

outward movements of bound motors. The bound motor current is given by

jbðrÞ5 vbrbðrÞ½12rbðr11Þ� (A4)

and

jbðrÞ5 vbrbðr11Þ½12rbðrÞ� (A5)

for outward and inward movements, respectively.

In all cases, the diffusive current of unbound motors is given by

jubðnÞ5Dub½rubðn11Þ2rubðnÞ�; (A6)

with the diffusion coefficient Dub of unbound motors. Note that the latter

expression is a discrete version of the usual diffusive current Dub@rub/@n.

The geometrical factor f introduced in Eq. A1 describes the relative

weight of the bound and unbound currents and is given by the number of

filament channels per nonfilament channel. In general, f is a function of the

coordinate n. For Nf isopolar parallel filaments within a cylindrical tube, f is

given by f � pR2/Nf. In particular, for a single filament, f is given by the

tube cross-section. Notice that, within the two-state model, the number of

filaments appears only via this geometrical factor and leads to a rescaling

of the accessible volume for the diffusion of unbound motors. In the case of

centered filament systems, the volume available for the unbound diffusion

depends on the radial coordinate r, and the geometrical factor f increases

linearly with r. In this case, f is given by the ratio of the free surface (i.e., not

covered by filaments) to the area covered by filament channels, which leads

to

fðrÞ5 2prh2Nf‘
2

Nf‘
2 � 2prh

Nf‘
2 [f0r; (A7)

where Nf is the number of filaments, ‘2 is the cross-section of a single

channel, and h is the height of the slab, into which the aster is confined.

At the boundaries, x 5 0 and x 5 L, terms corresponding to currents

through the tube walls have to be omitted in Eq. A2. Together with the

normalization condition

+
L

n50

½rbðnÞ1fðnÞrubðnÞ�5
N

Nf

; (A8)

which fixes the total number N of motors in the tube, these equations form

a system of 2L nonlinear equations for the 2L unknown densities rb(n) and

rub(n) with 0 , n # L. We have solved this system of nonlinear equations
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numerically using Newton’s method with backtracking (Press et al., 1992).

The advantage of the two-state approach over the Monte Carlo simulations is

that it requires less computation time, so that larger systems are accessible.

In addition, simulations take particularly long computation times, if un-

bound diffusion is fast compared to bound movement, Dub=vb‘ � 1, which

is the case for cytoskeletal motors without large cargoes. In this case, the

basic timescale t of the simulations is much smaller than the step time

ts ’ t=ð12gÞ of the bound movements because g is close to 1. In contrast,

in the two-state approach, the necessary computation time is independent of

the parameter values. In addition, within the two-state approximation, the

computation time for several filaments (arranged in parallel or in an aster) is

the same as for a single filament.

As we do not distinguish between the different nonfilament channels in

the two-state model, we neglect depletion layers close to the filaments as we

discuss in Appendix C in some detail for the tube geometry. In addition,

a mean field approximation is implicit in the relations for the bound motor

current as given by Eqs. A3–A5. However, a comparison of the stationary

profiles from the two-state approach with simulation results obtained for the

case of truly equivalent unbound channels, for which the two-state

approximation is exact, shows very good agreement. We therefore conclude

that, in contrast to the open tube systems discussed by Klumpp and

Lipowsky (2003), the mean field approximation is quite accurate for the

closed systems discussed here.

APPENDIX B: LOW DENSITY LIMIT OF THE
TWO-STATE MODEL

Some analytical results can be obtained for the nonjammed low density

regions both in uniaxial and centered filament systems. For this purpose, we

consider the continuum version of the two-state equations.

Uniaxial systems

The continuum two-state equations for uniaxial filament systems are

obtained by expanding Eqs. 6 and 7 up to second order in the lattice

constant. (Note that we expand Eq. 6 taken at positions x and x � 1 and

average the results to get an non-ambiguous result. This agrees with the

result obtained by expanding the time-dependent equations. The expansion

leads toDb¼ vb‘/2, but within the continuum equations, we can also treatDb

as an independent parameter.) This leads to

vbrbð1� rbÞ � Db

@rb

@x
¼ Dubf

@rub

@x
(B1)

vb
@

@x
rbð1� rbÞ � Db

@
2
rb

@x
2 ¼ ~ppadrubð1� rbÞ � ~eerbð1� rubÞ;

(B2)

with the boundary conditions jb ¼ vbrb(1 – rb) – Db@rb/@x ¼ 0 at x ¼ 0 and

x ¼ L, which express the fact that no motors enter or leave the tube. These

boundary conditions also imply, via Eq. B1, that the unbound motor currents

vanish at the boundaries. In the low-density limit, hard core repulsion or

exclusion can be neglected. This is appropriate in the noncrowded region,

where rb � 1. For simplicity, we also neglect the bound diffusion terms,

i.e., we consider the case Db ¼ 0. On the one hand, this can be understood as

taking into account only the first nonvanishing terms in the derivation of the

continuum equations. On the other hand, a comparison of numerical

solutions of the continuum equations with and without these terms shows

that the precise value of Db is largely irrelevant for the solution, as long as

the detachment rate is small (which, however, is the case for processive

motors). In the low-density limit the equations become linear,

vbrb ¼ Dubf
@rub

@x
(B3)

vb
@rb

@x
¼ ~ppadrub � ~eerb; (B4)

and, in general, the solution is given by a sum of two exponential terms. One

term, however, decreases exponentially with x and therefore contributes only

close to the left boundary, where it ensures the boundary condition of

vanishing current and leads to a larger initial slope of the density profile. For

sufficiently large x, the solution is therefore increasing exponentially along

the tube,

rbðxÞ � N e
x=j
; (B5)

where N is a constant and

j ¼ 2vb=~ee

11
4~ppad

Dubf

v
2

b

~ee
2

� �1=2

�1

� ~eeDubf

~ppadvb
: (B6)

The last approximation is valid for small vb and is also obtained from our

first approximation, Eq. 4 above, where we assumed that unbinding and

rebinding are equilibrated. The unbound density is given by

rubðxÞ ¼
~ee

~ppad

rbðxÞ1
vb
~ppad

@rbðxÞ
@x

¼ N ~ee

~ppad

1
vb
~ppadj

� �
ex=j;

(B7)

i.e., bound and unbound density are proportional in the low-density limit.

The first term of the factor relating bound and unbound density is the one

obtained in the case of equilibrated transitions between the bound and

unbound states (e.g., from linearizing Eq. 3), the second one is a correction

which shows that binding and unbinding are also driven out of equilibrium if

vb 6¼ 0. (Note, however, that this term is of order v2b, since j; 1/vb, so that up

to linear order in vb, radial equilibrium still holds.) This correction term is

positive, thus the current of motors binding to the filament at a given site,

~ppadrubðxÞ, is larger than the current of unbinding motors at the same site,

~eerbðxÞ, which is easy to understand, since the motors bound to the filament

are driven away by the drift vb. For small driving velocity vb, we can replace
the local balance of binding and unbinding currents at a site x by the

condition

~eerbðx1 vb=~eeÞ � ~ppadrubðxÞ; (B8)

which states that motors binding to the filament at site x, move for a distance

vb=~ee before they unbind at site x1 vb=~ee. Inserting the solution given above,
we can check that this is fulfilled for small vb=~ee:

~eerbðx1 vb=~eeÞ ¼ ~ee e
vb=ð~eejÞrbðxÞ � ð~ee1 vb=jÞrbðxÞ

¼ ~ppadrubðxÞ: (B9)

The fact that more motors attach to the filament than detach from it, indicates

that this solution cannot be correct for all x. In a system without mutual
exclusion, unbinding will be larger than binding to the filament only at the

end of the filament. In that case, we can account for unbinding at the filament

end by assuming that all motors that would have detached in the interval

[L, L 1 vb/e] are forced by the boundary to wait at the last binding site of

the filament until they detach. Therefore the density at the filament end,

rb(x ¼ L), is given by

rbðx ¼ LÞ ’ 1

‘

Z L1
vb
e

L

dxN e
x=j

¼ j

‘
N e

L=jðevb=ðejÞ � 1Þ � vb
e‘

N e
L=j
; (B10)

where ‘ is again the size of the binding site and the last relation is valid for

small velocity vb, for which the ansatz given in Eq. B8 is justified. A
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comparison with simulations for the case without mutual exclusion shows

good agreement of the density at the last lattice site with the values obtained

by this procedure. In reality, however, there is hard core exclusion and the

present solution holds only as long as the bound density is sufficiently small

and breaks down at a certain x because of the exponential increase of the

bound density.

Centered systems

For centered filament systems, the continuum limit of the two-state

equations for low motor densities leads to

vbrb 5f0rDub

@rub

@r
1Db

@rb

@r
(B11)

vb
@rb

@r
2Db

@
2
rb

@r
2 5 ~ppadrub2~eerb (B12)

for both inward and outward movements. In the caseDb5 0, these equations

are equivalent to those used by Nédélec et al. (2001) to describe their

experimental results. These equations lead to

vbrb 5Dubf0 r
~ee

~ppad

@rb

@r
1

vb
~ppad

@
2
rb

@r
2 2

Db

~ppad

@
3
rb

@r
3

� �
1Db

@rb

@r
:

(B13)

To recover the asymptotic solution of Nédélec et al. (2001) we assume

rb ; rh and neglect terms of order rh21. We obtain

h5 ~ppadvb=ð~eef0DubÞ; (B14)

which can be larger or smaller than zero, depending on the sign of the

velocity vb. Note that the bound diffusion coefficient does not contribute to

this asymptotic result. Interestingly, neglecting terms of order rh21 is

equivalent to the assumption that binding to and unbinding from the filament

are balanced locally. Hence asymptotically, bound and unbound densities

are related by rub5ð~ee=~ppadÞrb, in contrast to the case of uniaxial systems,

and rub decays with the same power law as rb.

APPENDIX C: DEPLETION LAYER

In this Appendix, we derive an analytical expression for the radial profile of

the unbound motor density for the case of a single filament located along the

symmetry axis of a cylindrical tube. We consider the linearized diffusion

equations that are appropriate for the low density limit or the noncrowded

region to the left of the traffic jam.

The balance of bound and unbound currents is given by

vbrbðxÞ ¼ Db

@rbðxÞ
@x

1Dub 2p

Z R

‘

du u
@

@x
rubðx; uÞ; (C1)

and the unbound motor density fulfills the stationary diffusion equation with

cylindrical symmetry

Dub

@
2

@x
2 1

@
2

@u
2 1

1

u

@

@u

� �
rub ¼ 0; (C2)

which holds for values of the radial coordinate u with ‘ # u # R with the

filament radius RF ’ ‘ and the tube radius R. The solution has to fulfill the

boundary condition @rub/@u ¼ 0 at u ¼ R. The longitudinal boundary

conditions are the same as in the two-state model. Binding to and unbinding

from the filament are described by

vb
@rb

@x
� Db

@
2
rb

@x
2 ¼ �~eerb 1 ~ppad

p‘
2

4
rubðx; u ¼ ‘Þ; (C3)

which represents the boundary condition for rub at u ¼ ‘. The separation

ansatz

rubðx; uÞ ¼ e
x=j
f ðuÞ and rbðxÞ ¼ N e

x=j
; (C4)

where N is a constant, leads to

f ðuÞ ¼ 4f0

p‘
2

J0ðu=jÞY1ðR=jÞ � J1ðR=jÞY0ðu=jÞ
J0ð‘=jÞY1ðR=jÞ � J1ðR=jÞY0ð‘=jÞ

; (C5)

where J0 and Y0 are Bessel functions of order zero of the first and second

kind, respectively, and J1 and Y1 are the corresponding Bessel functions of

the first order (Abramowitz and Stegun, 1984). For small u the radial profile
behaves as f(u) ; ln(u/j).

The balance of bound and unbound currents, Eq. C1, yields the condition

vb ¼
Db

j
1Dub

4j
2

p‘
2 Ið‘=j;R=jÞ

~ee

~ppadj
1

vb

~ppadj
2 �

Db

~ppadj
3

� �

(C6)

with

Ið‘=j;R=jÞ[ 2p

j
2

Z R

‘

du u
f ðuÞ

4=ðp‘2Þ
¼ 2p

Z R=j

‘=j

3dz z
J0ðzÞY1ðR=jÞ � J1ðR=jÞY0ðzÞ

J0ð‘=jÞY1ðR=jÞ � J1ðR=jÞY0ð‘=jÞ
; (C7)

from which the localization length j is determined numerically.

APPENDIX D: LIST OF SYMBOLS

Db (One-dimensional) diffusion coefficient of bound motors.

Dub Diffusion coefficient of unbound motors.

f(r) Radial part of the concentration profile in a tube.

h Height of the slab to which a filament aster is confined.

jb Local current of bound motors.

jub Local current of unbound motors.
�JJb Spatially averaged current of bound motors in a closed tube.

l Lattice constant, given by the filament repeat distance.

L Linear extension of the compartment, i.e., length of the tube or

radius of the disk.

L* Length of crowded region (traffic jam).

n Coordinate along the filament in the general case, n ¼ x and n ¼ r
for uniaxial and radial filament arrangements, respectively.

N Number of motors.

Nf Number of filaments.

N Normalization constant.

r Radial coordinate in the aster geometry.

R Radius of closed tube.

t Time variable.

u Radial coordinate in the tube geometry.

vb Velocity of bound motor.

x Spatial coordinate parallel to the filament.

y, z Spatial coordinates perpendicular to the filament.

a Probability for a forward step of a bound motor per unit time t.

b Probability for a backward step of a bound motor per unit time t.

g Dwell probability of a bound motor per unit time t.

e Detachment parameter, for which e/6 is the detachment

probability per nonfilament neighbor site per unit time t.

~ee Rescaled detachment probability, ~ee ¼ 2e=3.

h Exponent of the asymptotic density profiles in asters.

j Localization length or decay length of the density profiles.
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