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ABSTRACT Recent single-molecule pulling experiments have shown how it is possible to manipulate RNA molecules using
laser tweezers. In this article we investigate a minimal model for the experimental setup which includes an RNA molecule
connected to two polymers (handles) and a bead trapped in the optical potential and attached to one of the handles. We start by
considering the case of small single-domain RNA molecules, which unfold in a cooperative way. The model qualitatively
reproduces the experimental results and allows us to investigate the influence of the bead and handles on the unfolding
reaction. A main ingredient of the model is to consider the appropriate statistical ensemble and the corresponding thermo-
dynamic potential describing thermal fluctuations in the system. We then investigate several questions relevant to extract
thermodynamic information from experimental data. The kinetics of unfolding is also studied by introducing a dynamical model.
Finally, we apply the model to the more general problem of a multidomain RNA molecule with Mg21 tertiary contacts that
unfolds in a sequential way.

INTRODUCTION

The RNA molecule plays a central role in molecular biology,

showing an enzymatic function during the translation and

splicing processes (Doudna and Cech, 2002; Moore and

Steitz, 2002). Experiments based on the manipulation of

single biomolecules, such as laser tweezers with force micro-

scopy, allow scientists to investigate their mechanical

properties. These give information about the structure, sta-

bility, and the interactions involved in the formation of such

structures (Bustamante et al., 2000; Smith et al., 1992, 1996;

Cluzel et al., 1996; Essevaz-Roulet et al., 1997; Russell et al.,

2002a; Zhuang et al., 2002). In these experiments mechan-

ical force is applied to the ends of an RNA molecule. The

molecule is then pulled (Liphardt et al., 2001; Onoa et al.,

2003) until a value of the force is reached such that the

molecule unfolds. If the pulling process is reversed then the

molecule refolds again. In these experiments the force

exerted upon the system is recorded as a function of the end-

to-end distance giving the so-called force-extension curve
(FEC). The nature of the unfolding-refolding reaction is

stochastic and therefore the values of the force at which the

molecule unfolds-refolds change from experiment to experi-

ment. Sometimes (e.g., in presence of Mg21 tertiary con-

tacts), it is not possible to pull the molecule in quasistatic

conditions because the relaxation time is too large for the

experimental possibilities, which are largely limited due to

the presence of strong drift effects in the machine. Therefore,

during the pulling process, the molecule is driven to a non-

equilibrium state, which is characterized by strong irrevers-

ibility effects. The study of this pulling process might be

useful to understand many biological processes where

biomolecules are unfolded under locally applied force; for

example, when the mRNA goes through the ribosome during

the translation process.

To manipulate an RNA molecule some synthesized

polymers, typically several hundred nanometers long (called

handles), have to be chemically linked to the extremes of the

RNA molecule. Two polystyrene beads are then chemically

attached to the end of these handles and one bead is used to

measure the force by reading its position inside the optical

trap. These additional elements (beads and handles) are an

inseparable part of any pulling experiment and they have an

influence on the unfolding process. To characterize the

thermal behavior of the pulled global system (bead, handles

plus RNA molecule) it is important to identify the proper

control parameter. This is an essential step toward the

modelization of the experiment and has several consequen-

ces. For instance, the force acting on the extremes of the

RNA molecule cannot be externally controlled but fluc-

tuates, and its mean value depends in a nonlinear way on the

value of the control parameter. The control parameter deter-

mines the relevant thermodynamic potential that defines the

equilibrium state of the global system as well as the mag-

nitude of the fluctuations around that state. A proper in-

clusion of these parts is necessary to accurately interpret

the experimental data. Another important aspect to consider

in a theoretical treatment is the model for the RNA molecule.

In this article we treat the RNA molecule as composed by

different domains, each one showing cooperative unfolding.

Each domain is then modeled as a two-state system: the

unfolded state (UF) and the folded one (F), which are sep-

arated by a kinetic barrier. A main effort throughout this

article is to present, in the clearest way, the appropriate theo-

retical framework to understand pulling experiments—

leaving aside further additional complications, nevertheless

important, such as the detailed response of the laser tweezers

machine or the microscopic structure of the RNA molecule.

The goal of this article is twofold:
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1. We show how to build a minimal model aiming to repro-

duce the experimental setup, including all the aforemen-

tioned elements (bead, handles, and the RNA molecule),

and quantitatively reproducing various experimental

results.

2. We show how to analyze experimental data extracted

from both quasistatic and out-of-equilibrium pulling ex-

periments to obtain thermodynamic and kinetic informa-

tion about the unfolding reaction.

The article is divided into three main parts. In the first part,

we describe the model for the experimental setup and

introduce the ensemble that is relevant to model the pulling

experiment. Then we describe the two-states model con-

venient to reproduce the cooperative unfolding of the RNA

molecule and the models used for the bead and handles. In

the second part of the article, we analyze the unfolding-

refolding behavior of a cooperative two-states RNA

molecule in a pulling experiment for both equilibrium and

non-equilibrium regimes. For the equilibrium regime, we

compute the partition function in the ensemble that is

experimentally relevant, and derive an expression for the

quasistatic work exerted upon the system as the molecule

unfolds. This expression relates the work measured in

a quasistatic pulling process to the difference of free energy

between the F and UF states at zero force, DG0. We analyze

in detail the different thermodynamic contributions to the

total work, the influence of the parameters describing bead

and handles on the FEC, and obtain an expression for the

force at the midpoint of the transition.

For the non-equilibrium behavior we investigate in detail

the fraction of molecules that unfold (refold) more than once

during the unfolding (refolding) path, which is a quantity

amenable to experimental checks. We find that this fraction

is related to the mean dissipated work exerted upon the

system, which gives us a way to extract the reversible work

in non-equilibrium processes just by measuring the total

work. We also identify an interesting symmetry property

relating these fractions for the forward and reverse processes.

To endorse most of our theoretical results we also consider

a simulation of a pulling experiment that allow us to obtain

the characteristic FEC, either in a situation where the

transition occurs in equilibrium or in a situation where it does

not. In the third part of the article (Unfolding of Domains

Stabilized by Mg21 Tertiary Contacts), we address the

unfolding behavior of complex RNA molecules with more

than one folded-domain and in the presence of Mg21-

dependent barriers. In this case, back-refolding during the

unfolding path is not observed at the experimental con-

ditions, and the distribution of the breakage force is a first-

order Markov process (Evans and Richie, 1997, 1999). We

focus our attention in the specific case of RNA molecules

where domains unfold in a sequential fashion according to

a reproducible path. This unfolding mechanism is generally

a consequence of the topological connectivity of the different

parts of the molecule and of the blockade of the force

induced by the most external tertiary contacts on the interior

domains. Finally, we present the Conclusions. Three Appen-

dices are devoted to describing some analytical calculations.

MODEL FOR THE EXPERIMENTAL SETUP

We consider a minimal model to reproduce the experimental

setup of a pulling experiment carried out using laser tweezers

(Liphardt et al., 2001; Smith et al., 2003). The model (Fig. 1)

is composed by a small RNA molecule connected to two

polymers called handles, which are used to attach the small

RNA molecule to two beads at each end. One bead (B1) of

radius Rbead is confined in the optical trap potential Vb(x)
generated by the laser beams. The other one (B2) is held fixed

to the tip of a micropipette by air suction. A micromanip-

ulator controls the position of the micropipette relative to the

optical trap. The stiffness of such a glass micropipette is

much higher than the stiffness of either the optical trap or the

handles; hence we neglect the micropipette-bead fluctua-

FIGURE 1 Schematic picture of the model for the ex-

perimental setup in an RNA pulling experiment as

described in the text.We show the configurational variables

of the system xb, xr, xh1 , and xh2 , which are the projections of

the end-to-end distance of each element along the reaction

coordinate axis (i.e., the axis along which the force is

applied). The potential Vb(xb) is well described by an

harmonic potential for a one-dimensional spring with rest

position at xb ¼ 0.
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tions. The molecule is pulled by moving the micropipette

along the x direction. The configurational variables of this

simplified system are taken as the projections of the end-to-

end distances of each element along the force axis (Fig. 1):

xh1 ¼ B1A� Rbead, xh2 ¼ CB2 � Rbead for the end-to-end

distances of the handles, xr ¼ AC for the RNA end-to-end

distance, and xb for the position of the bead B1 in the trap. We

use the position xb of the bead B1 to read the force f acting on
the system, as

f ¼
����dVbðyÞ

dy

����
y¼xb

: (1)

(Note that this is not the way the force is usually measured in

dual beam optical tweezers where two photosensitive de-

tectors located at opposite sides of the chamber are used to

collect the total amount of deflected light, which is then con-

verted into force after calibration of the machine; see Smith

et al., 2003.) To a very good approximation, the optical trap

is harmonic. Therefore,

VbðyÞ ¼
1

2
kby

2
and f ¼ kby; (2)

where kb is the stiffness of the optical trap. We define the

subsystem S as that composed by the two handles and

the small RNA molecule. The end-to-end distance for the

subsystem S is then given by x ¼ xh1 1 xh2 1 xr (Fig. 1). The
total distance between the center of the trap and the tip of

the micropipette is given by XT 1 Rbead ¼ xb 1 x 1 Rbead.

Pulling experiments give FECs, f(x), corresponding to the

force (Eq. 1) as a function of the end-to-end distance of the

subsystem S.

Ensembles

It is experimentally possible to consider two different en-

sembles depending on which variable is used as the ex-

ternally imposed nonfluctuating parameter.

Mixed ensemble

The total distance between the center of the trap and the tip of

the micropipette is held fixed, hence XT is the externally

controlled parameter. In this ensemble there are fluctuations

in x and f given by Gerland et al. (2003, 2001) as

Ædx2æ ¼ kBT

kxðXTÞ1 kb
; Ædf 2æ ¼ kBTk

2

b

kxðXTÞ1 kb
;

with kxðXTÞ ¼
dÆf æ
dÆxæ

jXT
; (3)

where Æ. . .æ stands for thermal average, kB is the Boltzmann

constant, T is the temperature of the bath, kb is the stiffness of
the optical trap (Eq. 2), and kx(XT) is the effective rigidity

of subsystem S. The latter is determined by the serial

compliance,

kxðXTÞ ¼
1

kh1ðXTÞ
1

1

kh2ðXTÞ
1

1

krðXTÞ

� ��1

; (4)

where khi (i¼ 1, 2) and kr are the rigidities of the handles 1, 2,
and the RNA, respectively. These rigidities are XT-dependent

and so are the fluctuations (Eq. 3).

Force ensemble

In this case a piezo actuator controls the force (and therefore

the position of the bead B1). In this ensemble XT and x are

fluctuating variables, ÆdXT
2æ ¼ Ædx2æ ¼ kBT/kx(f), where kx(f)

is the stiffness of the subsystem S when the force is held

fixed, kxðf Þ ¼ ½ðdÆxæ=dfÞ��1
.

Most of the theoretical work for the force denaturation of

RNA in pulling experiments considers the force ensemble. It

might be possible to control the force using magnetic

tweezers, which allows us to stretch and twist molecules by

exerting forces in the range [1fN–10pN]. However, using

optical tweezers it is experimentally very difficult to work in

the force ensemble where either the force or the variable xb
must be controlled and XT is a fluctuating variable. To

compensate the fluctuations in the force, the distance XT

should be corrected by a feedback mechanism that is difficult

to implement. Therefore the most natural ensemble is that

where XT is constant. Indeed, this is the most relevant

ensemble for the experiments and therefore we will work in

the mixed ensemble throughout this article.

MODELING THE DIFFERENT PARTS
OF THE SETUP

Two-states model for a single RNA domain under
mechanical load

The unfolding of some biomolecules under the effect of

a mechanical force is a highly cooperative process that can

be qualitatively described by a two-states model. The two-

states model has a long tradition in physics, and has been

applied previously by several authors to explain the un-

folding behavior of single domains of proteins and RNA

hairpins (Liphardt et al., 2001; Ritort et al., 2002; Fernandez

et al., 2001; Muñoz et al., 1997; Bokinsky et al., 2003;

Zhuang et al., 2000a). Recently, it has been shown how

such a simple phenomenological description, with Kramer

transition-rates, does not fully reproduce the kinetics ob-

served in pulling experiments of the protein Titin, and more

realistic descriptions have been proposed (Hummer and

Szabo, 2003).

Let us consider an individual RNA molecule in thermal

equilibrium with water solvent (at physiological conditions)

at constant temperature, pressure, and zero force. In the

simplest description, both states (hereafter denoted by UF,
unfolded; and F, folded) are characterized by their Gibbs free
energy G0

UF and G0
F, respectively, and the RNA molecule
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occupies each state with a probability given by the Boltz-

mann distribution. In a more realistic description the mole-

cule can also occupy intermediate configurations, depending

on the number n of the first-opened, or denaturated, basepairs
(Cocco et al., 2003, Marinari et al., 2002).

When an externally controlled force f is applied to the ends
of the RNA molecule, the adequate thermodynamic potential

to consider is the Legendre transform of the Gibbs free

energy G9(n) ¼ G0(n) – fxr(n) (Tinoco and Bustamante,

2002), where G0(n) and xr(n) stand for the free energy and

the projection of the end-to-end distance in the axis force of

a hairpin with the first n basepairs opened, respectively. The

free-energy landscape G9 is then tilted along the reaction

coordinate xr, which explicitly depends on the number of

opened basepairs n. Since we work in the ensemble where

neither f nor xr are control parameters, the nonfluctuating

parameter XT determines the adequate thermodynamic

potential GXT
. The free-energy GXT

of the system shown in

Fig. 1 is a potential of mean force that characterizes the

equilibrium state of the whole system, including the handles,

the bead, and the RNA molecule at a fixed value of XT. The

potential free-energy landscape associated to GXT
is shown

in Fig. 2, where we represent it as a function of the end-to-

end distance of the subsystem S, GXT
ðxÞ. The shape of the

potential shows two pronounced minima corresponding to

the F and UF states. The discrete variable s stands for the

state of the domain: the value s ¼ 0 denotes the F state and

s ¼ 1 the UF state. The relative thermodynamic stability of

these states depends on the difference of free energy between

them, DG(XT). Moreover, we will consider the existence

of a transition state along the reaction path from the F to the

UF state and vice versa. This transition state is the RNA

configuration with highest free energy connecting the F and

theUF states along the reaction path. It may correspond to an

RNA configuration where the first n ¼ n* basepairs are

opened. (We stress that the shape of the free-energy land-

scape depends on XT as well as the location of the barrier

corresponding to the transition state. However, for the sake

of simplicity, we will assume n* independent of XT.) In the

simplest scenario the transition state can be assumed to have

a very short lifetime. Therefore it can be represented by an

activation barrier whose main effect is to hinder transitions

between the F and UF states. This is the model we will adopt

throughout the article. The F and UF states are separated by

a barrier of height B(XT) measured relative to the F state. The

barrier is located at a distance x1(XT) from the F state and

x2(XT) from the UF state. The distance between the two

states is xm(XT) ¼ x1(XT) 1 x2(XT). Since the rigidity of the

RNA molecule in the F state is very large, we can assume

this state to be characterized by a single configuration

corresponding to the value xr ¼ 0 of the reaction coordinate.

The RNA in the UF state has a finite rigidity, hence it is

represented by a set of configurations within a continuous

range of values of xr (Fig. 2).

Modeling the bead, handles, and the ssRNA

In this section we specify the models for the different ele-

ments of the system: the bead trapped in the optical-tweezers

potential, the two handles, and the single-stranded RNA

(ssRNA) molecule.

Model for the optical tweezers: a bead matched to a spring

We model the optical potential as an harmonic potential of

stiffness kb (Eq. 2); hence the bead in the optical trap can be

considered as a bead matched to a spring. We consider that

the bead follows a Langevin dynamics of an overdamped

particle (i.e., without inertial term),

g
dxb
dt

¼ FRðxbÞ1 jðtÞ; (5)

where g (with g ¼ 6phRbead, h, and Rbead being the viscosity

of the water and the radius of the bead, respectively) is the

FIGURE 2 Schematic representation of the free-energy

landscape, GXT
ðxÞ, for the whole system at temperature

below the melting temperature, for XT ,Xc
T (where Xc

T is

the value of XT, in which both states F and UF are

equiprobable) and normal ionic conditions. For this set of

conditions, the stable state is the folded one. In this figure

we represent all the parameters characterizing the two-

states model. We also show the relevant configurations in

the F and UF states along the reaction coordinate xr: the F

state is characterized by a single configuration xr ¼ 0,

whereas the UF state is represented by a continuous set

of values of xr. We use the label s ¼ 0 for the F state and

s ¼ 1 for the UF state.
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friction coefficient and FR is the resultant force applied to the

bead. (In Eq. 5, we are neglecting the drag force felt by

the bead, equal to �gv, as the chamber is moved and the

water dragged relative to the lab frame at a certain pulling

speed v ¼ ðdXT=dtÞ. For the range of pulling speeds used in

the experiments this contribution is negligible, of the order of

0.1 pN.) The stochastic term j(t) is a white noise with mean

value Æj(t)æ ¼ 0 and variance Æj(t)j(t9)æ ¼ 2 kBTgd(t – t9).
The force FR has two contributions, FR ¼ fx – f: the force

generated by the optical trap potential, f, given by Eq. 2, and

the tension exerted by the subsystem S, fx. Using the

equilibrium condition ÆFRæ ¼ 0 or Æfæ ¼ Æfxæ, and doing an

expansion around the equilibrium position of the bead, xeq,
we get

g
dxb
dt

¼ �kRðxb � xeqÞ1 jðtÞ; (6)

where kR is the effective spring constant applied to the bead,

kR ¼ kx 1 kb, with kx given by Eq. 4. The relaxation time

tb of the system (i.e., the typical time during which the

position of the bead de-correlates) is given by tb ¼ g/kR.

Polymer model for the handles and the ssRNA

To model the handles and the single-stranded RNA (ssRNA)

we use the worm-like-chain (WLC) model. The thermody-

namic properties of this model cannot be exactly computed,

yet there are useful extrapolation formulas. A simple ex-

pression has been proposed (Bustamante et al., 1994) for the

force as a function of mean end-to-end distance of the

polymer x,

f ¼ kBT

P

1

4ð1� x=LoÞ2
� 1=41 x=Lo

� �
; (7)

where Lo and P are the contour and persistence lengths of the

polymer, respectively. Equation 7 converges asymptotically

to the exact solution as x approaches either zero or Lo and is

accurate at least up to 90% in between. Bouchiat et al. (1999)

have given an expression with an accuracy of 99% by adding

a polynomial of seventh order to Eq. 7. The WLC model

works well only at low forces, in the so-called entropic
regime, where the molecule behaves as an entropic spring.

At high forces there is an enthalpic correction due to the fact

that the phosphodiester bonds along the backbone are

stretched and the contour length Lo increases. To incorporate
this effect it is common to replace x/Lo by x/Lo – f/Ey in Eq. 7,

where Ey is the Young modulus of the polymer.

THERMODYNAMIC ANALYSIS

In this section we use the tools of statistical mechanics to

analyze the thermodynamics of the system represented in

Fig. 1. Most of the analytical treatment is described in the

Appendix A. In what follows, we review the main results of

these calculations.

Definitions

In equilibrium the observables xa and their conjugated forces
fa with a ¼ h1, h2, r, b (referring to the different elements:

handle 1 and handle 2, RNA and bead, respectively) are

fluctuating quantities. However, the thermodynamic free

energy is only a function of the mean values of these

observables that we denote by Æxaæ, Æfaæ. A representation of

Æfaæ versus Æxaæ gives what we call the thermodynamic force

extension curve (TFEC) for the element a in the mixed

ensemble. If a refers to the whole subsystem S, then the

TFEC corresponds to the usual force-extension curve (FEC)

recorded in RNA pulling experiments, assuming that the

pulling process is carried out reversibly. Throughout the

thermodynamic analysis, and to simplify the notation, we

will use indistinctly Æfæ(Æxæ) or f(x) to denote the TFEC. We

can also define the restricted average ÆOæs (XT) as the mean

value of the observable O when the RNA molecule is in the

state s (i.e., folded or unfolded) for a fixed total end-to-end

distance XT. From now on, all the dependencies of the

observables on the variable XT will not be explicitly written,

hence ÆOæs(XT) [ ÆOæs. In Appendix A, we derive an

expression for the partition function Z(XT) corresponding to

the system schematically represented in Fig. 1. Applying the

saddle point technique, and separating the contributions from

the F (s ¼ 0) and the UF (s ¼ 1) state we get

ZðXTÞ ¼ Z0ðXTÞ1 Z1ðXTÞ; (8)

where

Z0ðXTÞ � exp½�bðWh1ðÆxh1æ0Þ1Wh2ðÆxh2 æ0Þ1VbðÆxbæ0ÞÞ�;
(9)

Z1ðXTÞ � exp½�bðWh1ðÆxh1æ1Þ1Wh2ðÆxh2 æ1Þ1VbðÆxbæ1Þ
1DG

0
1WrðÆxræ1ÞÞ�; (10)

with b ¼ ð1=kBTÞ. Here Vb represents the optical trap

potential and DG0 is the free-energy difference between the

F and the UF states at zero force. The function Wa(Æxæs)
corresponding to the reversible work performed by adiabat-

ically stretching the element a from Æxaæs ¼ 0 to Æxaæs ¼
Æxæs, when the molecule is in the state s, reads

WaðÆxæsÞ ¼
Z Æxæs

0

dyfaðyÞ; with a ¼ h1; h2; r; (11)

where fa(y) is the TFEC for the element a. The thermody-

namic value of any observable O can be expressed as

ÆOæ ¼ p0ÆOæ0 1 p1ÆOæ1; (12)

where p0 and p1 are the probabilities for the RNA molecule

to be in the F and UF states, respectively,
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psðXTÞ ¼
ZsðXTÞ
ZðXTÞ

; with s ¼ 0; 1: (13)

At the transition midpoint both states are equally probable,

p0ðXc

TÞ ¼ p1ðXc

TÞ or Z0ðXc

TÞ ¼ Z1ðXc

TÞ; (14)

where these functions have been defined in Eqs. 9, 10, and

13. Hence, the transition midpoint in the mixed-ensemble is

defined by the value of the control parameter XT
c that verifies

Eq. 14.

Computation of the transition force Fc, the
TFEC, and the different contributions to the
reversible work

The force at the transition, Fc, is computed as the mean value

of the force at XT
c given by Eq. 14. To reproduce the

experimental results obtained for the P5ab RNA molecule in

10 mM Mg21 (Liphardt et al., 2001) we use the parameters

given by Tables 1 and 2 getting Fc ¼ 15.2 pN. This value

is close to the one reported from the experiments

Fc
exp ¼ 14:56 1pN (Liphardt et al., 2001). We also verify

that the value of the computed force at the transition, Fc, is

quite stable with respect to changes in the parameters of the

problem used to model the handles and the bead, such as the

persistence and contour lengths of the handles, the spring

constant, and the bead radius. However, because the value of

Fc is highly influenced by the characteristics of the RNA

molecule, we conclude that the dependence of the value of

Fc with the system is basically through the quantities DG0,

Lr, and Pr.

Another interesting magnitude to measure is the reversible

work WT
rev done upon the system when pulling from an

initial value XT ¼ XT
0 to a final value of XT. This work is

given by

W rev

T ðXTÞ ¼ GXT
� GX

0
T
¼ DGXT

; with

GXT
¼ �kBT lnðZðXTÞÞ ¼ �kBT lnðZ0ðXTÞ1 Z1ðXTÞÞ; (15)

where we used Eq. 8. The total reversible work in Eq. 15

defines the change in the free energy of the system. In Fig. 3

Awe show the total workWrev
T and its different contributions,

Wrev
h ; Wrev

b ; and Wrev
r , as a function of XT as derived from

the numerical computation of Z(XT), where the reversible

work exerted on each element (handles 1 and 2, bead, and

RNA molecule) is defined as

W
rev

T ðXTÞ ¼ W
rev

b ðXTÞ1W
rev

h ðXTÞ1W
rev

r ðXTÞ; (16)

where

W
rev

b ðXTÞ ¼ ÆDVbæ ¼ p0ÆDVbæ0 1 p1ÆDVbæ1; (17)

W
rev

h ðXTÞ ¼ ÆWhæ ¼ +
2

i¼1

p0ÆWhi æ0 1 p1ÆWhi æ1
� �

; (18)

TABLE 2 Summary table of the parameter values used to

model the RNA molecule

Pr[nm] Lr[nm] Er
y½pN� DG0[kBT] N (# pair bases)

1 28.9 800 59 22

We use the value for the Young modulus corresponding to a ssDNA. The

value for the other parameters have been taken from Liphardt et al. (2001).

TABLE 1 Summary table of the parameter values used to

model the handles and the bead in the optical trap

kBT[pN/nm] kb[pN/nm] Ph1 ¼ Ph2 ½nm� Lh1 ¼ Lh2½nm� Eh1
y ¼ Eh2

y ½pN�

4.14 0.1 10 160 1000

We use the value for the Young modulus corresponding to a dsDNA mole-

cule. The value for the other parameters have been taken from Liphardt et al.

(2001).

FIGURE 3 (A) Different contributions to the reversible work obtained

from the partition function analysis:Wrev
T ; Wrev

h ; Wrev
b ; andWrev

r as a function

of XT. Note that the smallest contribution to the total work comes from the

RNA molecule. (B) The continuous line corresponds to the results obtained

from the numerical computation of the TFEC. It is also shown that the TFEC

is obtained by averaging over 1000 different trajectories, as explained in

Simulation of a Pulling Experiment. The pulling is carried out at an

approximate loading rate of 0.5 pN/s, slow enough to generate a quasistatic

process. One can observe that both curves agree.
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W
rev

r ðXTÞ ¼ ÆWræ ¼ p1ðÆWræ1 1DG
0Þ: (19)

The functions DVb, Wh, and Wr correspond to the change

in the potential energy of the bead in the optical trap and the

work exerted upon the handles and the RNA molecule by

moving the total end-to-end distance from the initial to the

final value of XT, respectively. Finally in Fig. 3 B we

represent the TFEC for the subsystem S, Æfæ versus Æxæ. This is
obtained by numerical computation of the partition function

using the relation

Æf æ ¼ �@GXT

@XT

¼ kBT
@lnZðXTÞ

@XT

: (20)

To calculate Æfæ we use the expression (Eq. A1) for the

partition function of the system Z(XT). Integrating this ex-

pression over the bead position xb gives

ZðXTÞ}
Z L1

0

dxh1

Z L2

0

dxh2

Z Lr

0

dxrZ
h1ðxh1ÞZ

h2ðxh2Þ

3 Z
bðXT � xh1 � xh2 � xrÞZrðxrÞ; (21)

where Za(xa) is the partition function of the element a, with

a ¼ h1, h2, r, and b. The partition function for the bead

(Eq. A2) satisfies

@Z
bðXT�ðxh1 1xh2 1xrÞÞ

@XT

¼�kbðXT�ðxh1 1xh2 1xrÞÞ
kBT

3Z
bðXT�ðxh1 1xh2 1xrÞÞ; (22)

where we used Eq. 2. Therefore the absolute value of the

mean force, Eq. 20, can be computed as

Æf æ ¼
���� kBT

ZðXTÞ
@ZðXTÞ
@XT

���� ¼ kbðXT � ÆxæÞ; (23)

where x ¼ xh1 1 xh2 1 xr. The generalized force, Eq. 20, is

the average force measured in the optical trap.

Reversible work across the transition

The quasistatic work Wc
rip exerted upon the subsystem S

across the transition is the area under the TFEC (Fig. 4),

Æfæ(Æxæ), from the folded branch Æxæ ¼ Æxcæ0 (s ¼ 0) to the

unfolded branch Æxæ¼ Æxcæ1 (s¼ 1) (see Appendix A), where

the super-index c indicates that the system is at the transition

midpoint, XT ¼ Xc
T (Eq. 14),

Wc

rip ¼
Z Æxcæ1

Æxcæ0

dyÆf æðyÞ ¼ VbðXc

T � Æxcæ1Þ � VbðXc

T � Æxcæ0Þ:

(24)

At the transition midpoint, both states are equally pop-

ulated and Eq. 14 holds. Therefore identifying Eqs. 9 and 10,

we can write Eq. 24 as

W
c

rip ¼ DG
0
1W

c

r 1DW
c

h; (25)

where the functions with a super-index c are evaluated at the

mean value of their variables at the critical extension Xc
T. The

value Wr, given by Eq. 11, is the loss of entropy of the RNA

molecule along the transition due to the stretching. The value

DWh is the free-energy change of the handles between the

folded and unfolded branches, and is given by

DWh ¼Wh1ðÆxh1æ1Þ1Wh2ðÆxh2 æ1Þ�Wh1ðÆxh1 æ0Þ�Wh2ðÆxh2 æ0Þ:
(26)

Equation 25 tells us that the quasistatic work Wc
rip

coincides with the change of free energy of the different

elements that form the subsystem S across the transition. The
value Wc

rip is experimentally measurable as the area under

the rip observed in the TFEC corresponding to the F–UF
transition (Fig. 4). Therefore Eq. 25 provides a way to

estimate the unfolding free energy of the molecule DG0 from

the TFEC, which is a quantity biologically relevant as it

determines the direction of biochemical reactions. This free

energy DG0 is equal to the Gibbs free energy measured by

thermal denaturation in bulk experiments extrapolated to the

working temperature.

In Fig. 5 we show two TFECs obtained from the partition

function analysis corresponding to two systems with

different kb but with the same handles and RNA molecule

with parameters given in Tables 1 and 2, respectively. We

use Eq. 25 to extract the value of DG0 by computing Wc
rip as

the area under the rip in the TFEC (Fig. 4). As expected for

an harmonic trap (Eq. 2), the TFEC in Fig. 5 shows an slope

at the transition (rip) proportional to �kb. To obtain the

different contributions to Eq. 25 we first use the WLC model

(Bouchiat et al., 1999) to estimateWc
r and DW

c
h given by Eqs.

11 and 26. Finally, we compute the area under the TFEC

across the transition (rip) to obtain Wc
rip and use Eq. 25 to

extract DG0. The results are given in Table 3. Note that the

contribution DWc
h is negative because when the RNA

molecule opens the force relaxes and the handles contract,

hence the free energy of the handles across the transition

decreases. Neglecting the contribution that comes from the

FIGURE 4 The shadow area under the TFEC along the transition cor-

responds to the quasistatic work Wc
rip (schematic representation).
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handles across the transition is a typical approximation often

applied to experimental results. However, this is not always

accurate as this contribution can be large. In the previous

example, even in the case of small kb, we would lose 8 kBT in

the balance equation (Eq. 25). In Fig. 6 we show, for a small

value of kb (kb¼ 0.1 pN/nm), how the different contributions

to Eq. 25 change when considering systems with different

values for the ratio Lh/Ph. The stretching contribution to the

UF state of the RNA, Wc
r ; does not change when modifying

the magnitude Lh/Ph, because the forces at which the

transition occurs are quite stable under changes of Lh/Ph.

However, the magnitude of the contribution DWc
h tends to

notably increase as Lh/Ph becomes larger.

SIMULATION OF A PULLING EXPERIMENT

To simulate a pulling experiment it is important to dis-

tinguish the different timescales involved in the problem.

Typically the bead has a much bigger size than the other

components of the system (handles and ssRNA), therefore

the bead is the element with largest dissipation and slowest

relaxation compared to the elastic and bending modes of the

handles and the ssRNA: tb � thandles, tssRNA. The char-

acteristic time tb at which the bead relaxes to its equilibrium

position can be computed as the ratio between the friction

coefficient of the bead g and the effective spring constant

applied to the bead kR¼ kx1 kb (see Eq. 6), with kx given by

Eq. 4, i.e., tb ¼ g/kR. For the typical experimental values

for the trap stiffness and the radius of the beads, kb � 0.05–

0.15 pN/nm and Rbead� 1–3 mm, the time tb lies in the range

[10�3 s–10�6 s]; its value depends upon the value of the

control parameter XT. The characteristic time tF–UF at which

the RNA hairpin folds and unfolds depends on the sequence

of bases and also on the presence of tertiary contacts that

slow down the kinetics of the unfolding reaction. Typical

values are of the order of seconds-to-milliseconds. Hence the

dynamics of the system shows the following separation of

timescales: tF–UF � tb � thandles, tssRNA. Therefore we can

consider an instantaneous relaxation for the handles and

the bead to solve the dynamical equations that describe the

folding-unfolding kinetics of the RNA molecule. This hypo-

thesis is valid, as long as the data is collected at frequencies

smaller than the relaxational frequency of the bead, which is

the element with the largest relaxation time. The dynamics

for the RNA molecule is governed by a master equation for

the probability ps (Eq. 13),

dp0

dt
¼ �k/p0 1 k)p1;

dp1

dt
¼ �k)p1 1 k/p0: (27)

The functions k/ and k) are the unfolding and folding

rates corresponding to the activated process schematically

represented in Fig. 2,

k/ðXTÞ ¼ k0 exp½�bBðXTÞ�;
k)ðXTÞ ¼ k0 exp½bð�BðXTÞ1DGðXTÞÞ�; (28)

where k0 is an attempt frequency. These rates satisfy the

detailed balance condition,

k/ðXTÞ
k)ðXTÞ

¼ exp½�bDGðXTÞ�: (29)

The expressions of DG(XT) and B(XT) are derived in

Appendix B using the partition function analysis.

FIGURE 5 TFEC corresponding to two systems with handles and RNA

characterized by the parameters given in Tables 1 and 2 and with an optical

trap stiffness kb ¼ 0.1 pN/nm and kb ¼ 1 pN/nm, respectively. Note that the

slope of the TFEC at the transition (rip) is proportional to �kb.

TABLE 3 Different contributions to the free-energy change

across the transition

kb[pN/nm] Wc
r kBT½ � DWc

h kBT½ � Wc
rip kBT½ � DG0 kBT½ �

0.1 20 �8.5 70.5 59

1 17 �41 35 59

As expected, the value of DG0 is independent of the other parameters of the

system.

FIGURE 6 The different contributions to the free-energy change across

the transition presented as a function of the ratio Lh/Ph. Note that the value of

DG0 is independent of that ratio (see also Table 3).
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To simulate a pulling experiment we use an adiabatic

approximation by taking advantage of the great separation of

timescales between the folding-unfolding kinetics and the

relaxational dynamics of the different elements of the

system. At each value of the extension XT and for a given

state of the RNA molecule (s ¼ 0, 1) we determine the

values of the mean extension and force for the bead, handles,

and ssRNA using the equilibrium equations. At the same

time we numerically solve the dynamics for the RNA

molecule (Eq. 27). In what follows, we describe the steps of

the algorithm:

Step 1. We increase XT by vDt, where v is the pulling

speed, i.e., the velocity at which the micropipette is pulled,

v ¼ _XXT, and Dt is the iteration time, hence ð1=DtÞ is the

frequency at which data is collected. Note that the relation

between the pulling speed v and the loading rate r, i.e., the
velocity at which the force increases, can be found using the

relation between the force and displacement increments,

Df ¼ keff(f)DXT, as

r ¼ vkeff ; (30)

where keff is the effective stiffness of the system, computed

as

keff ¼
dÆf ðXTÞæ
dXT

¼ 1

kb
1

1

kx

� ��1

; (31)

and where kx has been defined in Eq. 4 and kb is the stiffness
of the optical trap. The F–UF transition for a small single

RNA domain typically occurs at forces in the range 8–20 pN.

At these forces the system verifies that kb is much smaller

than the stiffness of the handles and the RNA molecule,

kh1 ; kh2 ; and kr; and therefore we can safely take v ¼ r/kb.
Step 2. We compute the new Æfæ and Æxæ iteratively, using

the saddle point equations for the partition function. To these

mean values we add Gaussian fluctuations of zero mean and

variance given by Eq. 3. We then obtain the FEC, f(x), which
should qualitatively reproduce the experimental one.

Step 3. The RNA molecule is then unfolded or folded,

with a probability k/(XT)Dt or k)(XT)Dt, respectively,

where Dt is the iteration time. For the rates, we use Eq. 28

with the functions DG(XT) and B(XT) given by Eqs. B2 and

B3, respectively.

Force-extension curve results (FEC)

In Fig. 7, A and B, we show the resulting FEC of our

simulations for the values used in the experiment of Liphardt

et al. (2001) shown in Tables 1, 2, and 4, corresponding to

a P5ab RNA molecule and for a loading rate of r ¼ 1 pN/s

and of r ¼ 50 pN/s, respectively. In these simulations we

implement the dynamical algorithm previously described for

the forward and reverse processes where XT increases and

decreases in time, respectively. As shown in Fig. 7 A, at a
loading rate of 1 pN/s, different transition jumps are observed

along both the forward and reverse processes, because the

pulling speed (v) is low enough. Comparing these simulation

results with the experimental FEC (Liphardt et al., 2001)

shown in Fig. 8,wefind a qualitative agreement, and the shape

of the curve around the transition region is qualitatively

reproduced. However, we find some discrepancies:

1. The simulated curve is shifted in the x direction in

comparison with the experimental one. This is because,

experimentally, the quantity measured is the relative

change in x rather than its absolute value. Indeed, there

may be some uncertainty (typically of the order of 100

nm) in the diameter of the bead used in the experiments.

FIGURE 7 Results for the FEC obtained from the simulation of a pulling

experiment with iteration time Dt ¼ 10�2 s. (A) Pulling rate r ¼ 1 pN/s. (B)

Pulling rate r ¼ 50 pN/s. At this pulling rate the molecule is driven out of

equilibrium, and hysteresis is observed around the transition.

TABLE 4 Parameters used to characterize the kinetics of

folding-unfolding of RNA

k0 exp(– bB0) n*

e�30 � 10�13 12

They are chosen to reproduce the experimental kinetics results obtained

with the hairpin P5ab (Liphardt et al., 2001). The n* is the number of

basepairs opened in the transition state.
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The value of the diameter is required to determine the

distance x from the experimentally measured value of the

distance between the centers of the two beads (equal to

x 1 2Rbead). Therefore, in Fig. 8, the extension repre-

sented in the x axis corresponds to changes in the value

of x with respect to an initial extension of ;100 nm.

2. As the force increases, the experimental curve separates

from the theoretical WLC prediction and therefore from

the simulated results. The agreement can be improved by

considering larger values for the Young modulus of the

handles and of the ssRNA. Furthermore, by extending the

RNA molecule model to include intermediate configu-

rations, which depend on the number of opened basepairs

n, we realize that the cooperative transition might not be

between the F (n¼ 0) and UF (n¼ N) states, but between
partially folded and partially unfolded states. For instance,

for the P5ab RNA molecule, the cooperative folding-

unfolding transition is between the state n¼ 3 and the state

n ¼ N (Cocco et al., 2003). This means that typically the

first three basepairs open before the transition occurs,

increasing the extension of the handles.

Fig. 7 B shows the FEC corresponding to a pulling process

carried out at a loading rate of r ¼ 50 pN/s. At this pulling

speed, the process is not in equilibrium, and hysteresis ef-

fects are observed around the transition region.

Fraction of trajectories that have at least
one refolding

We consider a system with a control parameter (generally

denoted by y) that is pulled by changing y at certain speed

vðyÞ ¼ ðdy=dtÞ. The forward (reverse) pulling process starts

at a initial value of the control parameter yi (yf) where the

RNA is in the F (UF) state and finishes at a final value of the
control parameter yf (yi) where the RNA is in the UF (F)

state. We then define NF and NR as the fractions of forward

and reverse trajectories that have at least one refolding,

respectively (Fig. 9). These fractions are given by

NF ¼
Z yf

yi

@r
F

0ðyi; yÞ
@y

dy

Z yf

y

@r
F

1ððy; y9Þ
@y9

dy9; (32)

NR ¼
Z yi

yf

@r
R

1 ðyf ; yÞ
@y

dy

Z yi

y

@r
R

0 ðy; y9Þ
@y9

dy9; (33)

where the first integral in the right-hand side of both eq-

uations accounts for the probability of unfolding (folding)

before a certain value of the control parameter y is reached

and the second integral accounts for the probability of

refolding once the RNA molecule has been unfolded

(folded). The function rs
F(R)(z, z9) is the probability that the

RNA molecule remains at the state s until y¼ z9 starting at y
¼ z in the forward (reverse) process. The term rs is the

solution of the master equation:

@r
FðRÞ
0 ðy; y9Þ
@t

¼ �k/ðy9ÞrFðRÞ
0 ðy; y9Þ; (34)

@r
FðRÞ
1 ðy; y9Þ
@t

¼ �k)ðy9ÞrFðRÞ
1 ðy; y9Þ; (35)

with initial condition rFðRÞs ðy; yÞ ¼ 1; "s. In Appendix C we

prove that the fraction NF is equal to NR if the perturbation

protocol for the control parameter is symmetric, i.e., if the

velocities along the forward and reverse process verify vF(y)
¼ – vR(y). In our analysis the control parameter y corresponds
to the total distance XT and the folding-unfolding rates are

given by Eq. 28. The detailed analytical expressions for the

rates have been given in Eqs. B5 and B6. Analytical

computations with such rates appear quite cumbersome and

it is preferable to simplify them. For analytical purposes, we

will consider effective rates where the functions B1 and DG1

given by Eq. B7 and x1 and x2 (the distances from the F and

UF states to the transition state along the x axis, see Fig. 2) are

FIGURE 8 Experimental FEC for P5ab obtained in experiments carried

out by Liphardt et al. (2001) The continuous line corresponds to the WLC

curve for the handles. Figure is taken from Liphardt et al. (2001).

FIGURE 9 Different trajectories that have at least one refolding. The ratio

between the sum of these trajectories and the total number of trajectories

gives the fraction NF for the forward process and NR for the reverse process.

Modeling RNA Pulling Experiments 3233

Biophysical Journal 88(5) 3224–3242



effective parameters independent of XT. We call these
~BB; ~DDG; xx̃x1; and xx̃x2, obtaining

k/ðf0Þ ¼ k0 exp b �~BB1 f0xx̃x1 �
1

2
kbxx̃x

2

1

� �� �
;

k)ðf1Þ ¼ k0 exp b �~BB� f1xx̃x2 1 ~DDG� 1

2
kbxx̃x

2

2

� �� �
; (36)

where the force fs (s ¼ 0, 1) is the force acting upon the

system at a given value of XT when the RNA is in the state s.

(The approximation expression in Eq. 36, where force does

not fluctuate near the transition, is well justified. In fact,

when the RNA is in a given state, i.e., folded or unfolded, the

magnitude-of-force fluctuations is negligible, with the RMS

in the range 0.03–0.1 pN, so one can consider the instan-

taneous force equal to the mean force. Hence the fluctuations

in force near the transition arise solely from the force jump

between the F and UF states.) The forces f0 and f1 in Eq. 36

correspond to the two branches (Eq. A16): f1 ¼ kb(XT – Æxæ1)
and f0 ¼ kb(XT – Æxæ0), where we used Eq. 23. Therefore, the

relation between f0 and f1 reads as

f1 ¼ f0 � kbxx̃xm; (37)

where xx̃xm is the distance between the F and UF states along

the x axis, xx̃xm ¼ xx̃x1 1xx̃x2. Using Eq. 37, it is straightforward

to see that the effective rates (Eq. 36) satisfy the detailed

balance condition (Eq. 29). We can now compute the

fractions (Eqs. 32 and 33) as a function of the loading rate r.
In Fig. 10, we show the results obtained for the fractions NF

and NR from the numerical computation of Eqs. 32 and 33,

using the effective rates (Eq. 36) with the definitions in Eqs.

B5–B7. We also show the results obtained from the

simulations for the fractions NF and NR as a function of the

loading rate r, and they agree fairly well.

From these simulations we can also compute the mean

work exerted upon the system as a function of r,

ÆWðrÞæ ¼
�
+
n

i¼1

fiDXT

	
; (38)

where fi is the force acting on the system (Eq. 2), DXT is the

uniform increase in the total end-to-end distance at each

iteration, and n is the total number of iterations. The average

is over different realizations of the simulation of the pulling

process. The total mean work is the sum of the reversible

work (i.e., the work measured in a quasistatic process, r/ 0),

and the mean dissipated work, ÆWðrÞæ ¼ WT
rev 1 ÆWdisðrÞæ:

We then consider the fraction NF(r) for three different

RNA molecules characterized by different parameters, i.e.,

DG0, Lr, N (total number of basepairs), n*, and B0 ln k0; the
results are shown in Fig. 11 A. Plotting these fractions NF as

a function of the mean dissipated work ÆWdisæ exerted upon

FIGURE 10 The fractions NF and NR as a function of r. Simulation results

correspond to 5000 realizations of a pulling experiment. We also show the

numerical integration of Eq. 32 (equal to Eq. 33; see Appendix C) using the

rates (Eq. 36) with the following parameters: ~BB ln k0 ¼ 35:2 kBT; ~DDG ¼
70:4 kBT; xx̃x1 ¼ 9:75 nm; and xx̃x2 ¼ 9:35 nm:

FIGURE 11 (A) The fraction NF as a function of r for three different RNA

molecules characterized by Molecule 1, DG0 ¼ 59 kBT; Lr ¼ 28.9 nm; N ¼
24; n*¼ 12; and B0 ln k0¼ 29 kBT. Molecule 2, DG0¼ 89 kBT; Lr¼ 40 nm;

N ¼ 34; n* ¼ 15; and B0 ln k0 ¼ 45 kBT. Molecule 3, DG0 ¼ 39 kBT; Lr ¼
16.5 nm; N ¼ 14; n* ¼ 9; and B0 ln k0 ¼ 19 kBT. (B) The fraction NF as

a function of ÆWdisæ in logarithmic scale for the three RNA molecules

considered in a (upper panel). Data collapse in a single curve.
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the system, we find that the three curves corresponding to the

three RNA molecules show the same kind of dependence

(Fig. 11 B). This dependence is not surprising as the average
dissipated work has been already shown (Ritort et al., 2002)

to be a useful quantity to characterize the non-equilibrium

regime. In particular, in the linear response regime, the

average dissipated work depends linearly on the loading rate

r, the proportionality constant being a function of the

relaxation time of the molecule, the unfolding free energy,

and the transition force (Ritort et al., 2002). The collapse of

all curves in Fig. 11 is, however, not restricted to the linear

response regime. Indeed, we have verified that in the regime

2 kBT , ÆWdisæ , 5 kBT, where deviations from the linear

response regime are observable (Fig. 12), there is still a good

collapse in Fig. 11 B of the curves corresponding to the three

molecules. Note that by measuring the fraction NF we can

obtain information about the value ÆWdisæ, and from the

knowledge of the total work we can extract the reversible

work exerted upon the system. This provides an alternative

way to derive equilibrium information from non-equilibrium

experiments (Liphardt et al., 2002; Ritort, 2003).

UNFOLDING OF DOMAINS STABILIZED BY
Mg21 TERTIARY CONTACTS

In this section we will focus on the unfolding kinetics of

molecules that form tertiary contacts induced by magnesium

ions (Mg21). Experiments on the unfolding kinetics of

domains stabilized by Mg21 tertiary contacts show how

intermediate states are characterized by high barriers that are

located close to the folded state along the x axis (Liphardt

et al., 2001; Onoa et al., 2003), x1 � xm (Fig. 2). (Studies by

Imparato and Peliti, 2004, suggest that the domains

stabilized by Mg21 tertiary contacts are better characterized

by kinetic models with more than one barrier. Here we just

consider the simpler case of a single barrier per domain.)

According to Eq. B3, when the force acting upon the folded

molecule, Æfæ0, increases, the barrier B(XT) decreases propor-

tionally to the distance x1. Consequently, for small x1, the
height of the barrier B is quite insensitive to the force (or XT),

meaning that when the force exerted upon the system

increases, B decreases much slower than the difference of

free energy between both states, DG. Therefore big barriers

and small values of x1 imply slow unfolding processes. In

complex RNA molecules the domains stabilized by the

presence of Mg21 tertiary contacts are rate-limiting for the

unfolding of the whole molecule (Zarrinkar and Williamson,

1994; Fang et al., 2002; Russell et al., 2002b; Zhuang et al.,

2000b). In these conditions, even at very low loading rates,

the probability of refolding, once the domain is unfolded, is

almost zero. The unfolding of RNA molecules with Mg21-

dependent barriers at experimental loading rates (r � 3–5

pN/s) becomes a ‘‘stick-slip’’ process (Onoa et al., 2003).

Therefore, we can use the transition rates

k/ðXTÞ ¼ koe
�BðXTÞ=kBT; k)ðXTÞ ¼ 0; (39)

with B(XT) given by Eq. B3. These rates have been con-

sidered by Evans and Richie (1997, 1999) in the study of

bond failure. (Note that these rates do not verify the detailed

balance condition.)

FIGURE 12 Mean dissipated work as a function of the loading rate r for

Molecule 1 in A, for Molecule 2 in B, and for Molecule 3 in C. The

characteristics for the three molecules are given in Fig. 11. Note that the

regimes studied are far from the linear response regime, as the curves deviate

from straight lines. Deviations from the linear response regime arise in the

range of r-values where the fraction N approaches zero (Fig. 11 A).
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In the previous analysis we have considered the study

of single-domain RNA molecules. Now we want to analyze

molecules that have more than one domain. To this end, we

extend the model developed in preceding sections to describe

more complex RNA molecules.

Domains with Mg21-dependent barriers that
unfold sequentially under a loading rate

In this section we want to investigate the applicability of the

model developed in previous sections to more complex RNA

molecules, such as a multidomain RNA molecule with

sequential unfolding of its domains under the effect of an

external force. There are two situations that favor a sequential

unfolding of the domains. First, the topological connectivity

of the molecule does not allow certain domains to unfold,

before certain others have not yet opened (Fig. 13 A). The
second one is the blockade of the force induced by the most

external tertiary contacts on the interior domains (Fig. 13 B).
For the sake of clarity, we will consider a sequential

unfolding of a multidomain RNA molecule. In general, the

unfolding of domains is a hierarchical process that is not

necessarily sequential. For instance, in Fig. 13 A, once D1

has opened, either D2 or D3 can be unfolded. However, in

our modelization we assume that D2 and D3 unfold in a given

sequential order (e.g., first D2 and later D3). The motivation

to consider this simplified model is twofold. On the one

hand, there are experimental results on the molecule L-21,

a derivative of the Tetrahymena thermophila ribozyme,

where the order of the opening of the different domains of

the molecule studied was never observed to change (Onoa

et al., 2003). On the other hand, there might be RNA

complexes in which the different domains typically unfold at

forces that differ significantly (few pN), in such a way that

unfolding of the complex is almost always sequential. A

main goal throughout this article is to illustrate how the

model for the experimental setup previously introduced can

be generalized to include complex RNA molecules (and not

only hairpins), rather than emphasizing details of the

modeling of the RNA structure. With this proviso, we model

the RNA molecule as an unidimensional chain of single

domains connected in series, each one represented as a two-

states model. For an n-domain system we have the F state,

the UF state, and the n–1 intermediate, Ii, where i stands for
the index of the intermediate (Fig. 14).

We simulate a pulling process without refolding using the

effective unfolding rate given in Eq. 36 for a molecule with

three domains in series. This system could represent the

domain P4–P6 of the molecule L-21, recently investigated

(Onoa et al., 2003), in which a sequential unfolding of the

domains was observed. Although sometimes two domains

open simultaneously, the most frequently observed pathway

contains three transitions corresponding to the consecutive

opening of the domains P4P6, P5, and P5abc. In Fig. 15 we

show the FEC of a three-domain RNA system, and in Fig. 16

the histograms for the starting position of the rips detected.

The results shown in Figs. 15 A and 16 A have been obtained

by doing a numerical simulation of a pulling experiment

using the parameters for the handles and the bead given

in Table 1. The kinetic parameters of each RNA domain

are given in the caption of Fig. 15. In Figs. 15 B and 16 B,
we show the experimental results (Onoa et al., 2003). For

the third domain, which corresponds to the well-known do-

main P5abc, we use the values of the parameters xx̃x
ð3Þ
1

FIGURE 13 Different mechanisms for the blockade of the force. (A)

Blockade of the force for certain domains (such as a three-way junction

molecule) due to the connectivity of the molecule. The force cannot act upon

the domains D2 and D3 while D1 is closed. (B) Blockade of the force for

certain domains (such as an RNA kissing complex) due to the presence of

Mg21 tertiary contacts. The domain D3 does not feel the force until the

Mg21 tertiary contact breaks.

FIGURE 14 Representation of the different states for a two-domain

model corresponding to a molecule with two domains that sequentially

unfold. The kinetic parameters of each domain are xx̃x
ðiÞ
1 ; xx̃x

ðiÞ
m ; and ~BBðiÞ, where

the super-index i ¼ 1, 2 refers to the index of the domain.
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and ~BBð3Þ lnðkð3Þo Þ obtained by Liphardt et al. (2001). We

choose the parameters for the other domains to qualitatively

reproduce the experimental results for the unfolding

trajectories (Onoa et al., 2003) shown in the lower panel of

Fig. 15. There are some differences between the histograms

obtained from the numerical results and the experimental

ones (Fig. 16). The main differences are observed in the

height at the peak corresponding to the third domain and the

amplitude of the fluctuations of the position where each

domain opens. Both are smaller in simulations as compared

to experimental results. (Note that in the experimental results

the distances are given in units of nucleotides. Our results are

obtained in nanometers and then transformed to nucleotides

by using an approximative conversion unit of 0.45 nm per

nucleotide, which corresponds to the conversion between

ssRNA length in nanometers and nucleotides when the force

exerted upon the molecule is 15 pN.) Several reasons can

explain this disagreement. First, there are strong drift effects

in the machine that introduce instrumental noise. Second, no

two pulled molecules give identical FECs; this could be

explained by the disparity of the attachments, with existence

of more than one molecule on the bead that can influence

force measurements. Third, the RNA molecule is not just

composed by a series of domains, but there are other regions

(some bases) that do not belong to any domain. These

regions can contribute differently to increase the length of

the rips, a source of randomness for the position of the start

of the rips. Last but not least, we cannot exclude the

possibility that the kinetic model we are considering is too

simple to explain the unfolding of these domains. Actually, it

is known that complex RNA structures show characteristic

FECs that cannot usually be interpreted in terms of the suc-

FIGURE 15 Comparison of FECs between model and experiments. (A)

Numerical simulations of the pulling process at r ¼ 4 pN/s for a three-

domain RNA molecule. Simulations have been done with the effective

model Eq. 36 without refolding. Domains are characterized by the following

parameters: Domain 1, xx̃x
ð1Þ
1 ¼ 2:5 nm; ~BBð1Þ lnðkð1Þo Þ ¼ 8:5 kBT; Domain 2,

xx̃x
ð2Þ
1 ¼ 2:5 nm; ~BBð2Þ lnðkð2Þo Þ ¼ 8 kBT; and Domain 3, xx̃x

ð2Þ
1 ¼ 1:7 nm;

~BBð3Þlnðkð3Þo Þ ¼ 8:5 kBT, where the super-index refers to the index of the

domain. The solid lines correspond to the WLC force-extension curves. (B)

Experimental FEC for the P4–P6 domain obtained by Onoa et al. (2003).

The solid lines correspond to WLC curves for the handles linked to the RNA

molecule. (Note that the lower curve corresponds to a refolding process we

do not consider here.) Figure taken from Onoa et al. (2003).

FIGURE 16 Comparison between model and experiments of the rip

position distribution. The position of the rip (abscissa) is represented in units

of nucleotides. (A) Histograms for the positions at the start of the detected

rips obtained from the simulation. They correspond to the three transitions

observed in Fig. 15 A. The parameters used in the simulation are given in

Fig. 15 A. (B) Experimental histograms of rips detected in 732 unfolding

curves of P4–P6 (Fig. 15 B). Figure taken from Onoa et al. (2003).
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cessive opening of native domains, because of the existence

of long-lived intermediates including non-native helices

(Harlepp et al., 2003).

CONCLUSIONS

The recent fast development of nanotechnologies allow

scientists to investigate the physical behavior of complex

biomolecules. Of particular importance are those physical

processes in the nanoscale where the typical values of the

energies involved are several times kBT. In such regimes,

fluctuations and large deviations from the average behavior

are important and deserve a careful investigation as they can

contribute a lot to the understanding of thermal processes in

small systems. RNA pulling experiments offer an excellent

framework to address such questions as RNA molecules can

be small enough for stochastic fluctuations be observable and

measurable.

A very useful technique for manipulating individual

molecules is that of the optical tweezers, a technique

covering a range of forces 1–100 pN, which is relevant for

many biological processes. A full understanding of how to

extract accurate physical information from such experiments

is therefore of great importance. The present work represents

an attempt in that direction. At present it is not yet possible to

unfold individual RNA molecules without attaching some

polymer handles at their extremes, therefore all RNA pulling

experiments are carried out with a system larger than the

individual naked RNA molecule. This system includes the

RNA molecule, the polymer handles, and the bead in the

optical trap. To extract accurate physical information regard-

ing the RNA molecule, a global treatment of the whole

system is necessary.

In this article we analyzed the minimal system required to

interpret the data extracted from RNA pulling experiments.

We did not include any details regarding the response of the

machine or a realistic and accurate modelization of the

structure of the RNAmolecule. A key part of our treatment is

a proper consideration of the ensemble relevant to pulling

experiments. Although the end-to-end distance (between the

bead and the micropipette) and the force are variables that

fluctuate, the total end-to-end distance XT (Fig. 1) does not.

The thermodynamic potential in such an ensemble is the key

quantity that allows us to extract accurate knowledge of the

influence of these external parts (beads and handles) on the

thermodynamic and kinetic behavior of the RNA molecule.

We focused on small RNA hairpins that show cooperative

unfolding, and we verified that the simple model studied

qualitatively reproduces the results reported from experi-

ments (Figs. 7 and 8). By analyzing the thermodynamics of

the whole system, first, we get an explicit expression (Eq. 14)

for the transition force Fc as well as the TFEC (see Eq. 23);

and second, we get a relation between the unfolding free-

energy of the molecule DG0 and the area under the force rip

Wc
rip (see Eq. 25), which is an experimentally measurable

quantity. Taken together, these results establish a framework

to infer thermodynamic properties of the RNA molecule

from the experimental data. Moreover, they also allow us to

understand the conditions (parameters for the bead and

handles) under which it is most reliable to get estimates for

these properties. From the study of the dynamics of the

pulling process we find a generic relation between the

fraction of molecules that unfold (refold) at least twice

during the unfolding (refolding) process and the mean

dissipated work. This relation could allow us to extract the

reversible work for the unfolding process by using data

extracted from non-equilibrium pulling experiments. This

procedure is reminiscent of other techniques, recently

applied to RNA pulling experiments (Liphardt et al.,

2002), based on the Jarzynski equality or similar relations

(for a recent review, see Ritort, 2003). Moreover, we have

shown a symmetry property that relates these fractions for

the forward and reverse processes. How general this result is

in transition state theory (Bolhuis et al., 2002), i.e., beyond

the case of a cooperative two-states system, remains an

interesting open question. To stress the adaptability and

feasibility of our model to describe more complex type of

molecules, we have also considered the unfolding of a large

RNA molecule made out of different domains that unfold

sequentially. The unfolding of these domains is controlled

by Mg21 tertiary interactions which induce large energy

barriers, thereby a refolding event (while the molecule is

pulled) is not observed at experimental conditions. Although

our study is not complete for such molecule types (the

assumption of a sequential unfolding may not consider other

possible unfolding pathways), it is instructive to see that by

modifying only the model for the RNA molecule we are still

capable of qualitatively reproducing several experimental

results, as shown in Figs. 15 and 16.

How to choose the characteristics of the components of the

experimental setup, such as the stiffness of the trap, the bead

radius, the contour length, and the persistence length of the

handles, to extract reliable information about the hairpin?

This may not be an easy question to answer. The main

difficulty lies in the high level of complexity and nonlinearity

of the system studied. To illustrate such difficulty let us

consider what would be if we were to use much stiffer traps

(such as the atomic force microscope). In this case, fluc-

tuations in the force measured f are larger, but fluctuations in
the distance between the two beads x are smaller (see Eq. 3).

Therefore, to obtain a force-extension curve with the mini-

mum noise it would be desirable to work in an intermediate

regime where neither the fluctuations in f nor x are too large.
On the other hand, by considering stiffer handles (shorter

contour length or larger persistence length, e.g., carbon

nanotubes) the amplitude in the fluctuations either in f or x
decreases. Hence, the optimal conditions would suggest us to

use handles that are as stiff as possible. However, the force

measured f is not the same as the instantaneous force exerted

upon the RNA molecule fRNA (they are equal in mean value
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but, because they fluctuate, their instantaneous values differ).

The fluctuations in fRNA are of the order of kh
ffiffiffiffiffiffiffiffiffiffi
Ædx2æ

p
(where

Ædx2æ is given in Eq. 3). If the goal of the experiment is to

control the value of the force fRNA exerted upon the molecule

(as it is the case in force-feedback hopping experiments), one

may prefer to work with handles as flexible as possible.

Many aspects of RNA pulling experiments are still open.

Among these: it would be interesting to extend these

considerations to include more complex effects induced by

the response of the machine; experimentally test some of the

results predicted in this work for the fraction of unfolded

events; and to conduct a detailed investigation of the kinetics

of the folding process (rather than the unfolding) in the

presence of force, a process for which we still lack an un-

derstanding. Several of these aspects will be addressed in the

near future.

APPENDIX A: PARTITION FUNCTION IN
MIXED ENSEMBLE

The partition function, Z(XT), for the system described in Fig. 1, gives the

free energy GXT
as well as other relevant thermodynamic properties. The

state of the system is defined by the externally controlled variables XT, T, and

P. The last two, T and P, are always kept at a constant value so we can ignore

them throughout the article. The partition function for this one-dimensional

system can be written as the convolution of the contributions coming out

from the different elements,

ZðXTÞ ¼ C

Z L1

0

dxh1

Z L2

0

dxh2

Z N

0

dxb

Z Lr

0

dxr

3 Zh1ðxh1ÞZ
h2ðxh2ÞZ

bðxbÞZrðxrÞ
�

3dðXT � ðxh1 1 xh2 1 xb 1 xrÞÞ
�
; (A1)

where ZaðxaÞ is the partition function distribution of the element a, with

a ¼ h1, h2, r, and b. The lengths L1, L2, and Lr are the contour lengths of

the handles 1, 2, and the single-stranded RNA (ssRNA), respectively. The

constant C is a normalization factor.

We now compute the distribution ZaðxaÞ for each element of the system

at fixed value of xa.
For the bead trapped in a potential well,

Z
bðxbÞ ¼ e

�bVbðxbÞ; (A2)

where Vb(x) is the potential of mean-force for the bead in the trap along the

reaction coordinate and b ¼ ð1=kBTÞ.
For the handles, the difference of free energy between the state with

x ¼ 0 and the one with x ¼ xhi is equal to the reversible work performed by

stretching the handle from x ¼ 0 to x ¼ xhi ,

DGhi
ðxhiÞ ¼

Z xhi

0

dxfhiðxÞ ¼ Whi
ðxhiÞ; for i ¼ 1; 2;

(A3)

where fhi ðxÞ is the thermodynamic force-extension curve (TFEC) of the

handle i. (Note that Eq. A3 has been defined for the isometric ensemble. The

isometric TFEC is the thermodynamic curve in the ensemble where the end-

to-end distance x is held fixed, Æfæ(x), while the isotensional TFEC is the

TFEC in the force ensemble, Æxæ(f). In general, both TFEC differ; see Keller

et al., 2003. However, in this analysis we consider that the handles and the

RNA molecule are sufficiently long and flexible to have an identical

isometric and isotensional TFEC that we call fa(xa) with a ¼ h1, h2, and r.

To simplify the notation, we will use the indistinct terms Æfæ(Æxæ) or

f(x) to denote the TFEC.) Using Eq. A3 we get

Z
hiðxhiÞ ¼ e

�bWhi
ðxhi Þ: (A4)

For RNA, the partition function Zr can be divided in two parts, one

corresponding to the F state (s ¼ 0) and the other to the UF state (s ¼ 1). In

the present analysis we are considering that the F state is represented by

a single configuration xr ¼ 0, whereas the UF state is represented by

a continuous set of configurations corresponding to the different extensions

of the ssRNA (Fig. 2). Taking the F state as the reference state with zero free

energy, the free energy of the UF state has two contributions; namely, the

free energy at zero force, DG0, and the corresponding loss of entropy due to

the stretching,

Z
rðxrÞ ¼ Zðxr;s ¼ 0Þ1 Zðxr;s ¼ 1Þ ¼ dðxrÞ

1Cre
�bðDG0

1WrðxrÞÞ; (A5)

where Wr(xr) is computed as in Eq. A3,

FIGURE 17 We consider a system with the parameters given in Tables 1

and 2. From the partition function analysis, we compute the following. (A)

The two branches Æfæs, corresponding to the thermodynamic forces acting

upon the system for a given s RNA state as a function of XT. (B) The free
energy GXT

and the free energy of each branch s, Gs, as a function of XT.

Note that, upon increasing XT; GXT
leaves the branch G0 and enters the

branchG1 at XT ¼ Xc
T. At the transition XT ¼ Xc

T, there is a jump in the slope

of GXT
corresponding to a jump in the force Æfæ (Eq. 20).
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WrðxrÞ ¼
Z xr

0

dxfrðxÞ; (A6)

with fr(x) the TFEC of the ssRNA polymer. To compute Cr we note that

at zero force the RNA molecule satisfies

DG
0 ¼ �kBT ln

Pðs ¼ 1Þ
Pðs ¼ 0Þ

� �
; (A7)

where the function P(s) is the probability for the RNA molecule to be in

the state s, PðsÞ}
R Lr

0
dxrZðxr;sÞ. Integrating Eq. A5 and using Eq. A7,

we obtain

Cr ¼
1R Lr

0
dxe�bWrðxÞ: (A8)

Finally, by adding the different contributions we get

ZðXTÞ ¼ C

Z L1

0

dxh1

Z L2

0

dxh2

Z N

0

dxb

3

Z Lr

0

dxr½e�bðWh1
ðxh1 Þ1Wh2

ðxh2 Þ1VbðxbÞÞ 3 ½dðxrÞ

1Cre
�bðDG0

1WrðxrÞÞ�dðXT � ðxh1 1 xh2 1 xb 1 xrÞÞ�:
(A9)

By separating in Eq. A9 the contributions coming from the F and UF states

and using the integral representation of the delta function,

dðxÞ ¼ 1

2p

Z N

�N

expðilxÞdl; (A10)

we get

ZðXTÞ ¼ Z0ðXTÞ1 Z1ðXTÞ; (A11)

with

Z0ðXTÞ ¼
C

2p

Z N

�N

dle
ðilXT 1 g0ðlÞÞ and Z1ðXTÞ

¼ C

2p

Z N

�N

dle
ðilXT 1 g1ðlÞÞ; (A12)

where the functions g0 and g1 are given by

g0 ¼ log

Z L1

0

dxh1

Z L2

0

dxh2

Z N

0

dxb

�

3½e�bðWh1
ðxh1 Þ1Wh2

ðxh2 Þ1VbðxbÞÞe
�ilðxh1 1 xh2

1 xbÞ�
�
; (A13)

g1 ¼ log

Z L1

0

dxh1

Z L2

0

dxh2

Z N

0

dxb

Z Lr

0

dxr

�

3½Cre
�bðWh1

ðxh1 Þ1Wh2
ðxh2 Þ1VbðxbÞ1DG

0
1WrðxrÞÞ

3e
�ilðxh1 1 xh2

1 xb 1 xrÞ�
�
: (A14)

The expressions in Eq. A12 for Z0 and Z1 are integrals respective to l, of an

exponential with an argument that is extensive with the size of the system.

(Note that by size we mean the length of the handles as well as the length or

molecular weight of the RNA molecule. In general, to apply the saddle point

approximation, we require that the energies of the different elements of the

system, i.e., beads, handles, and molecule, are several times kBT.) Therefore

if the system is big enough, the saddle point approximation is valid and

becomes exact in the thermodynamic limit. As a check we have verified that

the results from the saddle point approximation and the exact numerical

integration of the partition function are in fairly good agreement for the

system with parameters given in Tables 1 and 2. Applying the saddle point

technique, one is led to extremize the arguments of the exponentials with

respect to all the variables of integration. In this way we obtain

dgs

dxa
jxa¼x̃

s
a
¼ ~lls with s ¼ 0; 1 and a ¼ h1; h2; r; b;

(A15)

where xx̃xsa corresponds to the value of the variable xa when the RNA

molecule is in the state s that extremizes the argument of the exponential.

There are two solutions or branches corresponding to the cases where the

RNA is folded (s ¼ 0) or unfolded (s ¼ 1). We use the super-index s to

denote each branch. Equation A15 tells us that the integration variable l

plays the role of a thermodynamic force; ~lls corresponds to the mean force

acting upon the system for the branch s and for a fixed value of XT. We will

denote ~lls by Æfæs. Equation A15 can be written as

~ll0 ¼ f
0

b ðxx̃x
0

bÞ ¼ f
0

h1
ðxx̃x0h1Þ ¼ f

0

h2
ðxx̃x0h2Þ ¼ Æf æ0;

~ll1 ¼ f
1

b ðxx̃x
1

bÞ ¼ f
1

h1
ðxx̃x1h1Þ ¼ f

1

h2
ðxx̃x1h2Þ ¼ f

1

r ðxx̃x
1

r Þ ¼ Æf æ1; (A16)

where the force f sa ¼ ÆðdWs
aðxÞ=dxÞæ is the mean force acting upon the

element a at fixed xa ¼ xx̃xsa for the branch s. In Fig. 17 A we show the two

branches Æfæs as a function of XT for a systemwith parameters given in Tables

1 and 2. The transition from theF to theUF state corresponds to the jump from

one branch to the other. The values of the arguments for which the contribu-

tion to the partition function ismaximum,xx̃xsa , correspond to the equilibriumor

average values of xsa for the branch s and for a fixed value of XT,

ZðXTÞ ¼ Z0ðXTÞ1 Z1ðXTÞ; (A17)

Z0ðXTÞ � exp½�bðWh1ðÆxh1æ0Þ1Wh2ðÆxh2 æ0Þ1VbðÆxbæ0ÞÞ�;
(A18)

Z1ðXTÞ � exp½�bðWh1ðÆxh1æ1Þ1Wh2ðÆxh2 æ1Þ1VbðÆxbæ1Þ
1DG

0
1WrðÆxræ1ÞÞ�; (A19)

where we have neglected the subdominant contributions in the saddle point

integration (Eqs. A13 and A14). In Fig. 17 B we show the free energy of

the system with parameters given in Tables 1 and 2 as a function of XT,

GXT
¼ �kBT lnðZðXTÞÞ; (A20)

and the free energies of the system for each branch s as well,

Gs ¼ �kBT lnðZsðXTÞÞ: (A21)

The free energy of the system GXT
changes from one branch to the other at

Xc
T, when both states are equally probable, G0ðXc

TÞ ¼ G1ðXc
T).

APPENDIX B: COMPUTATION OF THE
FOLDING AND UNFOLDING RATES IN THE
MIXED ENSEMBLE

We model the kinetics of the folding-unfolding of RNA as a Kramers’

activated process characterized by the transitions rates

k/ðXTÞ ¼ k0 exp½�bBðXTÞ�;
k)ðXTÞ ¼ k0 exp½bð�BðXTÞ1DGðXTÞÞ�; (B1)

where k0 is an attempt frequency that depends on the shape of the free-

energy landscape, on the molecular damping, and on the natural frequency

3240 Manosas and Ritort

Biophysical Journal 88(5) 3224–3242



of the hydrogen bond oscillations (Evans and Richie, 1997). The functions

DG(XT) and B(XT) represent the difference of free energy between the F and

UF states and the height of the kinetic barrier located between them (Fig. 2).

(We stress that the physical meaning of DG(XT) is completely different from

DGXT
; see Eq. 15. The latter corresponds to the free-energy difference of the

global system between two different values of XT.) Using the results

obtained from the partition function analysis, we can write DG(XT) as

DGðXTÞ ¼ �kBT ln
Z1ðXTÞ
Z0ðXTÞ

� �

¼ DG
0
1WrðÆxræ1Þ � Æf æ0xm 1

1

2
kbx

2

m 1DWh; (B2)

where we used Eqs. 9–11. The parameter xm is defined as the distance

between the two states, xm ¼ Æxæ1 – Æxæ0; the functionsWr and DWh are given

by Eqs. 11 and 26.

The height of the barrier is given by the difference of free energy between

the F state and the transition state, which we will denote as s ¼ t (averages
taken when the molecule is in its transition state will be denoted by Æ. . .æt).
The transition state is located at the point where the free-energy landscape of

the system depicted in Fig. 1 is maximum (Fig. 2), and we define it as the

RNA state where the first n* basepairs are opened and the latter N � n* are

closed, N being the total number of basepairs that form the RNA molecule.

Therefore the function B(XT) is computed as the free-energy difference

between the folded state and the transition state, which are separated by

a distance x1 ¼ Æxæt – Æxæ0,

BðXTÞ ¼ B
0
1WrðÆxrætÞ � Æf æ0x1 1 1=2kbx

2

1 1DW
t

h: (B3)

The functionWr is given by Eq. 11, and DW
t
h is the change in free energy of

the handles when the RNA molecule jumps from the F state to the transition

state, computed as

DW
t

h ¼Wh1ðÆxh1ætÞ1Wh2ðÆxh2ætÞ�Wh1ðÆxh1 æ0Þ�Wh2ðÆxh2 æ0Þ:
(B4)

The rates k/, k) associated to the activated process can be written as

k/ðXTÞ ¼ k0 exp½bð�B
1
1 Æf æ0x1 �

1

2
kbx

2

1Þ�; (B5)

k)ðXTÞ ¼ k0 exp½bð�B
1
1DG

1 � Æf æ1x2 �
1

2
kbx

2

2Þ�; (B6)

with

B
1 ¼B

0
1WrðÆxrætÞ1DW

t

h;DG
1 ¼DG

0
1WrðÆxræ1Þ1DWh;

(B7)

where we used Eqs. B1–B3. The expressions for the rates in Eqs. B5 and B6

are equivalent to those obtained by Bell (1978), but in the mixed ensemble.

Note that the two rates k/ (XT), k) (XT) satisfy the detailed balance

condition in Eq. 29 with DG(XT) given by Eq. B2.

APPENDIX C: DEMONSTRATION OF THE
EQUIVALENCE BETWEEN THE NF AND NR

The expressions for the fractions NF and NR are given by Eqs. 32 and 33.

Integrating the dy9 term and using the initial conditions rs
F(R)(y, y) ¼ 1, "s,

we get

NF ¼ 1� r
F

0ðyi; yfÞ1
Z yf

yi

@r
F

0ðyi; yÞ
@y

r
F

1ðy; yfÞdy;

NR ¼ 1� r
R

1 ðyf ; yiÞ1
Z yi

yf

@r
R

1 ðyf ; yÞ
@y

r
R

0 ðy; yiÞdy; (C1)

where y denotes a generic control parameter. We consider a symmetric

perturbation protocol, vFðyÞ ¼ ðdy=dtÞjF ¼ �vRðyÞ ¼ ðdy=dtÞjR. Then, by
using the evolution equation for the probabilities rs given by Eqs. 34 and 35,

we obtain the relation

r
F

s
ðy9; yÞ ¼ exp �

Z y

y9

ks/s9ðy$Þ
vFðy$Þ

dy$

� �

¼ exp �
Z y9

y

ks/s9ðy$Þ
vRðy$Þ

dy$

� �
¼ r

R

s
ðy; y9Þ; (C2)

where k0/1 ¼ k/, and k1/0 ¼ k). Integrating by parts (Eq. C1) we get

NR ¼ 1� r
R

1 ðyf ; yiÞ � r
R

0 ðyf ; yiÞ1 r
R

1 ðyf ; yiÞ

�
Z yi

yf

dr
R

0 ðy; yiÞ
dy

r
R

1 ðyf ; yÞdy: (C3)

Finally, by using the relation between the probabilities rs for the forward

and reverse process equation, we obtain

NR ¼ 1�r
F

0ðyi;yfÞ1
Z yf

yi

dr
F

0ðyi;yÞ
dy

r
F

1ðy;yfÞdy¼NF;Q:E:D:

(C4)
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