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ABSTRACT We present a directed essential dynamics (DED) method for peptide and protein folding. DED is a molecular
dynamics method based on the essential dynamics sampling and the principal component analysis. The main idea of DED is to
use principal component analysis to determine the direction of the most active collective motion of peptides at short intervals of
time (20 fs) during the folding process and then add an additional force along it to adjust the folding direction. This method can
make the peptides avoid being trapped in the local minima for a long time and enhance the sampling efficiency in confor-
mational space during the simulation. An S-peptide with 15 amino acids is used to demonstrate the DED method. The results
show that DED can lead the S-peptide to fold quickly into the native state, whereas traditional molecular dynamics needs more
time to do this.

INTRODUCTION

Protein folding is one of the most important and unresolved

problems in life science. It has been studied for many years,

and many methods for investigating it have been developed,

from lattice to all-atom ones (Boczko and Brooks, 1995;

Gutin et al., 1995; Irback et al., 2000; Kaya and Chan, 2000;

Shakhnovich and Gutin, 1993; Takada et al., 1999). After

decades of extensive research, some comparably sophisti-

cated theories have been proposed. Among them, the folding

funnel theory is widely accepted (Bryngelson et al., 1995;

Leopold et al., 1992; Mirny and Shakhnovich, 2001). Ac-

cording to this theory, proteins go down along the energy

landscape during the folding process and quickly approach

their native states.

Many folding/unfolding simulations have been carried out

on proteins at the atomic level (Gsponer and Caflisch, 2002;

Jaenicke, 2000; Knapp-Mohammady et al., 1999; Luque

et al., 1996; Majeux et al., 2001; Galzitskaya et al., 2000;

Pande and Rokhsar, 1999; Zagrovic et al., 2001; Zhang et al.,

2001). These studies enable a thorough understanding of

protein folding/unfolding. One of the important results is that

both folding and unfolding processes of proteins go through

a few conformational clusters (so called local minima) before

they arrive at their native states. In the past, most of the

simulations of protein folding were done under traditional

molecular dynamics (MD). It was found that traditional MD

is not very efficient for exploring conformational space

because it spends too much time on staying in local minima

and is hard to find an outdoor to get out (Pande and Rokhsar,

1999). So to get a full folding path of a protein, simulations

must be carried out from different initial structures to

enhance the probability of getting out of local minima and

reaching the native state, or simply increase the simulation

time. For example, Duan and Kollman have made a success-

ful 1-ms simulation at 300 K for a 36-residue peptide, and the

final structure of the peptide was very close to the native state

(Duan and Kollman, 1998). This encourages using simula-

tion to study protein folding.

In the last 10 years, many methods have been proposed to

improve sampling efficiency on energy landscape. A lot of

them are based on the normal mode analysis (NMA; Brooks

and Karplus, 1983; Go et al., 1983; Levitt et al., 1983) or the

principal component analysis (PCA; Amadei et al., 1993;

Balsera et al., 1996; Kitao and Go, 1999; Teeter and Case,

1999; Zhang et al., 2003). In NMA, the potential energy is

approximated as harmonic terms and normal modes are

obtained by diagonalization of the Hessian matrix of a

structure, which stays in a local minimum. In other words,

NMA describes the atomic motions in terms of single

frequency modes within a harmonic energy minimum, and

so it can give important information on protein structure,

such as flexibility and stability. However, since NMA as-

sumes that the system is harmonic, when dealing with

anharmonic systems, like peptides and proteins at ordinary

temperatures, it is not really useful. Furthermore, the Hessian

matrix is calculated from the second derivation of the po-

tential energy described by an all-atom force field, and so

NMA costs too much CPU time.

PCA provides amore useful tool to study protein folding. It

does not use any harmonic assumption and simply provides

those collective degrees of freedom, in general not at all

associated to a single frequency, which decompose the whole

conformational fluctuation into the largest-smallest compo-

nents. It is known that protein structure is always represented

by three-dimensional Cartesian coordinates, and so the

degrees of freedom of a protein are very large (i.e., 3N � 6,

where N is the number of atoms). It is difficult to explore the

energy landscape in this multidimensional space by tradi-

tional MD. PCA tries to solve the problem by generating new

3N � 6 vectors from those Cartesians coordinates. Then we

can pick out the main collective degrees of freedom necessary
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to describe dynamics of protein folding. These special

collective degrees of freedom span an essential subspace,

and all the conformations in the MD trajectories can be

projected into it and form a visual image of the folding

process. A lot of researches have reported that this subspace

can reflect global motion of proteins with a high approxima-

tion. Using some special sampling techniques in this space, it

is possible to explore the energy landscape more extensively

and get a general view of protein folding. In the last 10 years,

there were some successful applications of PCA in protein

simulations (Amadei et al., 1993; De Groot et al., 2001;

Elmaci and Berry, 1999; Garcia, 1992; Hayward et al., 1995;

Ota and Agard, 2001; Van Aalten et al., 1995), which exhibit

that PCA is perspective and can help us to investigate the

protein folding problem in depth.

Essential dynamics sampling (EDS; Amadei et al., 1993,

1996) is one of the simulation methods based on PCA. In

EDS, a simulation is done at first (typically lasting for nano-

seconds), and the principal components or collective de-

grees are derived from it. Then these principal components

can be used to lead protein folding in subsequent normal

simulation. Recently Daidone et al. (2003) studied protein

folding in explicit water with EDS and obtained a full folding

path for a real protein (cytochrome c) successfully. EDS is

also robust in analyzing relative motion, for example, hinge-

bending between domains in protein (Cregut et al., 1998;

Van Aalten et al., 1998). But it must be noted that the

principal components may vary significantly during protein

folding, i.e., when the conformations undergo large trans-

formations. So, when applying EDS to protein folding, we

should pay more attention to conformation change.

Recently some improvements to EDS have been reported

for protein folding. For example, Zhang et al. have proposed

a useful technique named amplified collective motion (ACM;

Zhang et al., 2003) to supplement EDS. They analyzed the

recorded trajectory and obtained normal modes at short

intervals. Then they coupled the normal modes in different

subspaces with different thermal baths. The normal modes in

the essential subspace are coupled to a higher temperature

bath, and the rest are coupled to a normal temperature bath.

This method is effective in practice and enables short pep-

tides to fold into the native state successfully, but there is one

thing to be considered: in this method all the normal modes

are obtained from the anisotropic network model (Atilgan

et al., 2001). The anisotropic network model is an elastic

network model and can be seen as a reduced model of NMA.

It treats protein structures as many beads connected by

harmonic springs. The potential energy of this system is very

different from that of an all-atom force field and is related with

cumulated harmonic energies of residue pairs. So the normal

modes derived from this model may not be consistent with

all-atom models, especially with protein structures far away

from the native state.

In this study, we present a new method for peptides and

protein folding, i.e., a directed essential dynamics (DED)

analysis, which is motivated by EDS and ACM. The main

idea of DED is as follows: we hope to make the peptide

move away from the local minima quickly and try to use the

most active collective degrees of freedom to do this. EDS

tells us that the dynamics of the molecule can be described

by some essential collective degrees of freedom, whereas

PCA provides a method to obtain these essential degrees. In

practice, we use PCA to capture the essential motions from

the most recent structures in the trajectories at short intervals

(20 fs) during protein folding. Then, instead of coupling with

different temperatures as in ACM, we add a weak force on

the peptide along the resultant direction of these essential

motions to direct the folding of the peptide. The main

difference between EDS and DED is the simulation time

used to obtain collective motions. In EDS, nanosecond

simulations are typically used, whereas in DED only 20 fs

are utilized. This is because EDS and DED have different

aims. EDS wants to get the collective degrees of freedom of

peptide in its native state accurately to use them as ac-

ceptance conditions in the subsequent folding or unfolding

simulation to guide the molecule moving toward or away

from the native state and thus enhance the sampling

efficiency. The aim of DED is to use the most active col-

lective degrees of freedom of peptide in the unfolded state

to guide the molecule to jump out of local minima or across

barriers. So it does not need the information of the collective

motions in the native state but the most flexible collective

degrees of current conformation at intervals. The intervals

should not be too large because the structures in the intervals

would vary too much and the calculated collective degrees

would not be suitable for current conformation. We have

applied DED to the folding simulation of S-peptide and

analyzed typical physical characteristics, such as folding

path, hydrogen bond formation, and so on. The results show

that DED is efficient in exploring conformation space and

provides a novel tool to study protein folding.

MATERIALS AND METHODS

Now let’s have a brief review on PCA. It works as follows: When we have

done a folding simulation of a peptide, we can get a covariance matrix C
from the trajectory X(t). The element cij of the matrix C is determined by

cij ¼ Æ xi � Æxiæð Þ xj � Æxjæ
� �

æ; (1)

where Æ æ donates the average over all the structures sampled in the trajectory

and xi ¼ xiðtÞ is the ith Cartesian coordinate of the conformation at time t. So

the covariance matrix C represents the correlation between atomic motions

in Cartesian coordinate space. Then the collective degrees of freedom can be

derived from the eigenvectors of the diagonalized matrix C.

Since C is symmetric, it can be diagonalized by using an orthogonal

transformation matrix T:

L ¼ T
T
CT; (2)

where L is a diagonal matrix and every diagonal element li in it is an

eigenvalue of the covariance matrix C, and its corresponding eigenvector is

the ith column in the matrix T. Each eigenvalue and eigenvector pair
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represents one collective motion. The eigenvectors corresponding to larger

eigenvalues represent more flexible directions in the trajectory. So the ei-

genvectors with the largest eigenvalues will hold most of the characters of

the motions or, in other words, all the complex motions of protein can be

reduced to only approximately a few collective motions.

Based on this idea, DED determines the collective motions at short

intervals during the simulation. We analyze the trajectory every 20 fs and

construct a covariance matrix for all the nonhydrogen atoms immediately.

This means that we only consider the collective motions of nonhydrogen

atoms. This is because these ‘‘heavy atoms’’ can describe the conformation

of the molecule adequately and furthermore can reduce the calculation

time. We choose 20 fs because unfolded states are not stable and the

conformations of S-peptide change quickly. So we select this short interval

to make a reliable evaluation on the collective motions of the current con-

formation.

Then we pick out the six eigenvectors v1�6ðx1...x3nÞ (as collective

coordinates) corresponding to the six largest eigenvalues a1�6 in the co-

variance matrix and build a new vector v~d by the linear combination of these

eigenvectors with their eigenvalues as the coefficients

v~¼ 1

c
ða1v~1 1 a2v~2 1 a3v~3 1 a4v~4 1 a5v~5 1 a6v~6Þ; (3)

where c is

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
2

1 1 a
2

2 1 a
2

3 1 a
2

4 1 a
2

5 1 a
2

6

q
: (4)

v~d is considered as the principal component of the motions in the local

state, and the peptide is directed to move along this direction by adding a

weak force:

f~d ¼ cdv~d; (5)

where cd is a coefficient. Here we select only the first six eigenvectors

because we found that the sum of the first six eigenvalues is always more

than 90% of the sum of the total eigenvalues. So we assume that the first six

eigenvectors are enough to describe the peptide motion. Furthermore, after

many tests, we find that, when cd equals 5.0 kcal/mol Å, the force is strong

enough to pull the molecule and, at the same time, is weak enough to avoid

distorting the molecule. Since the force f~d breaks contacts quickly, it can

increase the probability of the molecule to jump out of the local minima.

Thus the simulation based on DED may overcome the difficulty met by

traditional MD.

It must be pointed out that, to increase the sampling efficiency, the

particular choice of the number of eigenvectors used and the linear com-

bination in Eq. 3 are not unique. Our simulation results show that any

choice of the number of eigenvectors and the linear combination can give

a similar effect, i.e., any steering that breaks and forms contacts quickly can

lead the peptide fold correctly and rapidly. However, we suggest using the

eigenvectors corresponding to the first largest eigenvalues to investigate the

folding pathway of the molecule. This is because the first modes are the most

flexible motions and adding forces to them can avoid disturbing the origi-

nal folding pathway of the molecule too much. If we apply forces to the

less flexible direction, we disturb the original motion of the molecule

significantly although we still can enhance the sampling efficiency.

The model system we used in this study is an S-peptide, which forms

a helix in proteins (Søgaard et al., 1999; Tirado-Rives and Jorgensen, 1991).

It is selected from 15 N-terminal amino acids of ribonuclease A and capped

with the acetyl and N-methyl groups: KETAAAKFERQHMDS.

In this study, we use a GA/SA model (Qiu et al., 1997; Still et al., 1990)

as an implicit solvent model to simulate the aqueous environment. GB/SA is

a reduced model from the continuum model, which treats the water as a

continuous medium, and there are usually three terms included in the free

energy of solvation:

DGsol ¼ DGcav 1DGvdw 1DGpol; (6)

where DGcav is a solvent-solvent cavity term corresponding to the free

energy of creating a cavity of solute in the solvent continuum; DGvdw is the

free energy term representing the interactions between the solute and sol-

vent; and DGpol denotes electrostatic interactions between the solute and

solvent.

The advantage of this model is that it need not treat solvent molecules

explicitly and costs much less time, although some accuracy may be lost.

The MD software we used is Tinker (see http://dasher.wustl.edu/tinker/)

with Charmm27 force field (MacKerell et al., 1998). All the simulations

were done under 298 K and 1 atm.

To test DED, we carried out ‘‘native simulations’’ and ‘‘folding

simulations’’ by traditional MD and DED, respectively. The native sim-

ulations and folding simulations refer to the simulations with the native and

unfolded structures as their initial structures, respectively. The time for all

the simulations is 20 ns. We carried out four DED and four traditional

MD native simulations and eight DED and four traditional MD folding

simulations. We found that the corresponding results of each kind of sim-

ulation are similar. So we only present the most typical trajectory in the

following analysis.

The initial structure of the S-peptide in native simulation is obtained from

its crystal structure directly (Fig. 1 a). And for folding simulations, we set its

initial structure as a b-strand (Fig. 1 b) to eliminate the correlations between

the initial and native structures. Some parameters, such as radius of gyration

and hydrogen bonds, are calculated from all the backbone atoms (including

two caps). RMSD is calculated from backbone atoms too, but only between

residues 3 and 13 to avoid the end effect. This is because the native structure

(Fig. 1 a) is cut from the whole protein structure, and so its two ends are

connected with other parts of the protein. But in our simulation, the two ends

of the S-peptide are free and interact with water molecules directly.

To investigate whether the DED will introduce distortions or drift in

a large system simulation, we did a 0.23 ns simulation for chymotrypsin

inhibitor 2 (CI2) starting from the native conformation of CI2. The sim-

ulation was also done under NPT ensemble (298 K and 1 atm).

RESULTS AND DISCUSSION

Figs. 2 and 3 show the results of native simulations under

traditional MD and DED methods, respectively. From Fig. 2

we can see that when the S-peptide is in its native state, it

shows high stability under the traditional MD simulation.

The root mean-square difference (RMSD) of its conforma-

tions from its native state is ;1.0 Å all the time (Fig. 2 b),
and its radius of gyration and hydrogen bonds (Fig. 2, c and
d) also conform to this. But in the DED simulation, we find

FIGURE 1 Initial structures for the S-peptide in (a) native simulations and

(b) folding simulations.
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that the S-peptide is more active. Fig. 3 b shows that the

RMSD has some large fluctuations and even exceeds 4.0 Å

once in a while, although it maintains ;1.0 Å on the whole.

This is because DED finds the collective motions in every

short period (20 fs), and immediately directs the S-peptide to

move along its directions in the next period. So during the

DED simulation, the S-peptide is always trying tomove in the

most flexible direction. However, it does not go away from

the native state for a long time and comes back to it quickly.

It is just one of the advantages of DED to prevent peptides

from staying in the local energy minima for a long time.

We show in the following that if the S-peptide is in a local

minimum but not the global one (the native state), DED will

let the S-peptide leave it quickly and go to a lower energy

state instead of coming back to it, whereas the traditional

MD simulation will spend most of its time in the local mini-

mum. This is why DED has high efficiency in sampling the

conformation space. This feature of DED makes it easier to

find the native state of the peptide than traditional MD during

the folding simulation.

Fig. 4 describes the folding of the S-peptide beginning

from a b-strand under traditional MD simulation. The

FIGURE 2 Four parameters via time for na-

tive simulations by traditional MD: (a) poten-

tial energy, (b) RMSD, (c) radius of gyration,
and (d) H-bond.

FIGURE 3 Four parameters via time for

native simulations by DED: (a) potential en-

ergy, (b) RMSD, (c) radius of gyration, and (d)

H-bond.
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RMSD curve in Fig. 4 b shows that the S-peptide cannot fold
to its native state in 20 ns and the RMSD is up to 2.0 Å all

along and without large fluctuations, so it may have been

trapped into a local stable state. To check our guess, we

selected five structures every 2 ns from 2 ns to 10 ns and

found that these five structures overlapped with each other

on the whole (Fig. 5 a). We found that in most of these

structures LYS2-ALA6, GLU3-ALA7, and PHE9-GLN12

form stable backbone hydrogen bonds, and the side chains

of THR4, PHE9, and MET14 are almost always packed

together tightly (Fig. 5 b). Fig. 6 gives a detailed description

for this. It shows that, although the distances between the

three pairs (THR4-PHE9, THR4-MET14, and PHE9-

MET14) vary with time, they maintain at 5 Å for most of

the simulation time and only move away from each other

once in a while. So they form a core for most of the time.

Obviously, this is a stable conformation cluster different

from the native state. When the S-peptide goes into this

cluster, it can hardly jump out. This is the notable problem

encountered by traditional MD. Of course, if the simulation

time is long enough, it may overcome all the local minima

eventually, just as the work of Duan and Kollman on a 36-

residue peptide found (Duan and Kollman, 1998).

FIGURE 4 Four parameters via time for

folding simulations by traditional MD: (a) po-

tential energy, (b) RMSD, (c) radius of gyra-

tion, and (d ) H-bond.

FIGURE 5 (a) Overlapped five structures selected every 2 ns from 2 ns to

10 ns during traditional MD folding simulation. (b) Highlight presentation of

THR4, PHE9, and MET14, which packed together tightly. The structure is

picked up at 6 ns.

FIGURE 6 Distances between the centers of the side chains of three

residues via time: (a) THR4-PHE9, (b) THR4-MET14, and (c) PHE9-

MET14.
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On the other hand, Fig. 7 shows the folding simulation

with DED starting from a b-strand. Just like the native

simulation, all the parameters undergo large fluctuations. For

example, although the RMSD decreases to 2.0 Å at the

beginning of the folding (at ;1 ns), it goes back to 5.0 Å

immediately. We can see that all the parameters vary in

a large range. This means that the S-peptide under DED can

go through many different conformations and will not be

trapped in a local minimum for a long time. This is very

important for folding simulation because the degrees of

freedom of a protein molecule are very large and there are

many local minima in the folding path. If it does not have

a high mobility, it would be trapped by these minima and

cannot get to its native state. In this folding simulation, the

S-peptide is active all the time until it reaches the native state

at ;17 ns (the RMSD decreases to 1.0 Å and the number

of hydrogen bonds increases to eight), then it keeps stable

and all the parameters vary in a small range. This simulation

gives the main feature of DED: higher mobility in the folding

process but stable enough in the native state. This virtue of

DED enables us to get the full folding trajectory for the

S-peptide eventually. In the following, we shall use it to

analyze the folding process.

First we sample the conformations in the folding trajectory

to give a visual view of the smoothed energy landscape along

the parameters RMSD and radius of gyration in Fig. 8. The

S-peptide goes from the starting point (an unfolded state)

and, through a very complex terrain, reaches the end point

(the native state). From Fig. 8, we note that to fold suc-

cessfully, the S-peptide must overcome many obstacles, such

as high energy barriers, low deep valleys, long narrow

fosses, and so on. All of these will block the peptide from

folding into the native state directly. Traditional MD needs

a lot of time to overcome these obstacles. However, DED

solves this problem successfully. When DED is being

implemented in simulation, the local environment of the

peptide is analyzed at intervals. If the S-peptide is held back

by some obstacles, it will try to find the most convenient way

to get across or turn around them. So it would not be trapped

in a local site for a long time. From this aspect, DED in-

creases the sampling efficiency greatly on the energy land-

scape.

Fig. 9 is a view of the variety of the average potential

energy along one reaction coordinate—RMSD. We averaged

the potential energies of all conformations according to their

FIGURE 7 Four parameters via time for

folding simulations by DED: (a) potential en-

ergy, (b) RMSD, (c) radius of gyration, and (d )

H-bond.

FIGURE 8 Smoothed energy landscape for the S-peptide constructed

from the RMSD and radius of gyration. The ‘‘start point’’ donates the initial

position in the simulation. Similarly, the ‘‘end point’’ donates the final

position in the simulation. From this picture, we can clearly see that the en-

ergy landscape for the S-peptide is full of frustrations, but at the end point,

the energy is much lower than other places.
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RMSD relative to the native state. From the figure, we can

see that when the S-peptide’s structure is far from the native

state (large RMSD), the average potential energy is high and

fluctuates with large amplitude. But when it comes closer to

the native state, at ;3.0 Å, the fluctuations reduce suddenly

and the average potential energy goes down to a stable point

rapidly. This stable point is at 2.1 Å, and the energy curve at

this point likes a local minimum: the energy is higher on both

sides. When the RMSD gets close to 1.0 Å, the S-peptide

reaches a global minimum. This is a basin-like shape. The

energies of the conformations here are much lower than other

areas. So whenever the S-peptide folds into this ‘‘basin’’, it

would hardly jump out. This provides some fundamental

knowledge on the native state. Another interesting feature in

this figure is that some unfolded states (large RMSD) have

very low potential energy too, which is close to that of

the native state. Because the generalized Born/surface area

model has considered the contribution of water, the potential

energy can be approximately viewed as the free energy. The

fact that the unfolded state and the native state have similar

free energy coincides with the phenomenon of the enthalpy-

entropy compensation, which has been observed in many

experimental and theoretical studies (Creamer and Rose,

1992; Lee et al., 1994; Makhatadze et al., 1995; Pickett and

Sternberg, 1993). In detail, the phenomenon shows that in

many folding or unfolding processes the change in enthalpy

is partially or almost compensated by a corresponding

change in entropy. So the variance of free energy is small and

sometimes can be neglected.

Fig. 10 shows the formation of the helix in S-peptide. All

the residues are represented by gray color. When the

structure of residue is more similar to the helix (i.e., f is

�58, c is�47), its corresponding color will be deeper. From

this picture we find that helical structure is often formed in

one-half of the S-peptide (residue 2–7 or residue 8–13)

during the folding process. Until 16 ns, the helical structure

in one-half extends to the other successfully, and then the

total structure becomes stable after that time.

Now we analyze the whole trajectory with PCA. PCA

provides a robust tool to view the protein folding process.

As usual, we calculate the covariance matrix of all the

conformations in the trajectory and get the principal com-

ponents. We only select the three principal components

with the largest eigenvalues. Then all the conformations are

projected onto them and connected with lines (see Fig. 11).

The S-peptide folds from one terminus of the line (black) to
the other (white). In this figure we find that during the folding
of the S-peptide, most of its conformations congregate

together and form only a few clusters. The time used to move

from one cluster to another is very short. Fig. 12 gives the

curves of these three principal components along time re-

spectively. It shows that only the first principal component

(i.e., the most flexible direction during the S-peptide folding)

varies broadly. It has not only some features of the three

dimension PCA curve (Fig. 11), but also those of the RMSD

curve (Fig. 7 b). In Fig. 12 a, the first principal component

FIGURE 9 Average potential energies for different RMSDs in the DED

folding simulation. It shows that the potential energies for the structures far

away from the native state fluctuate very much, and some of them are even

close to that of the native state.

FIGURE 10 The residue’s conformations via time. The darker the color

is, the closer it is to the standard helical conformation.

FIGURE 11 PCA on the DED folding simulation. From this we can see

that all the conformations in the trajectory aggregate to a few clusters. The

time used to transfer between the clusters is very short.
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has three flat areas, which correspond to the three con-

formation clusters in Fig. 11. It decreases quickly at 10 ns

and 13.5 ns, which correspond to point A and point B in

Fig. 11, respectively. When time goes up to 16.6 ns, the first

principal component reaches a stable state, which can be

validated in the RMSD curve too (Fig. 7 b). We find that all

this information can not be derived from the other two

principal components. Both of them fluctuate around zero.

This implies that the first principal component plays a much

more important role in the simulation.

As mentioned in the introduction, Daidone et al. (2003)

recently obtained a full folding path for cytochrome c

successfully with EDS. In their work, they first did a 2.66 ns

simulation of the native state at 300 K to obtain collective

motions of the system. Then they sorted the eigenvectors

according to the eigenvalues and divided them into three

subsets. The first one-third represented the large concerted

motions of the system and the last one-third the collective

quasi-constraint (or near constraint) vibrations. They found

that the main mechanical information of the folding process

was associated with the last one-third of the eigenvectors.

This seems contradictory to our results, because we use the

first few eigenvectors to direct peptide folding. In fact, this is

due to the different aims to apply the eigenvectors. They use

the last one-third eigenvectors (near constraint) in the native

simulation to lead protein to fold into the native state and

therefore they use the most inactive collective degrees of

freedom, which characterizes the stable native structure,

whereas we use the first six eigenvectors in the unfolded state

to make protein jump out of local minima or across barriers

and so we use the most active ones.

Finally, it is noted that DED can be considered as a kind of

biased sampling method. Fig. 13 shows that the samplings in

energy space in both traditional MD and DED methods have

the similar Gaussian distributions. The exponential histo-

gram is calculated by using the formula

hi ¼
+
ni

i¼1

expð�Ei=kTÞ

+
nt

i¼1

expð�Ei=kTÞ
: (7)

Here hi is the exponential histogram between Ei and Ei1DEi,

ni is the number of conformations in this energy gap, and nt
is the total number of conformations. Ei is the total energy of

the system, including the free energy term due to the implicit

solvent. The curves are those of the fitted Gaussian

functions. The main difference is that the distribution for

DED is wider than that for traditional MD, i.e., the sampling

space of the former is larger than the later. As mentioned

above, the force (5.0 kcal/mol Å) is strong enough to pull the

molecule but, at the same time, is too weak to distort the

molecule. Furthermore, the steering direction changes

rapidly in a very short time. So DED is not as the stan-

dard steered molecular dynamics and will not introduce

FIGURE 12 Projections of all the conformations on the first three princi-

pal components via time on the first (a), second (b), and third (c) princi-
pal components. It is noted that only the first principal component varies

greatly and the other two principal components only fluctuate randomly

around zero.

FIGURE 13 The sampling distributions in en-

ergy space for traditional MD (a) and DED (b)

during the folding simulation, respectively. The

data are fitted by Gaussian functions (real line).
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significant distortions or drift in the steering direction. This

can be clearly seen from the DED unfolding simulation of

CI2 (Fig. 14). Themotions of the structure are similar to those

of high temperature unfolding simulation (Day et al., 2002).

In the work of Day et al., an unfolding simulation of CI2 is

performed. At the first stage of the simulation (0–0.26 ns),

where most of structures are near the native conformation, the

motion of CI2 is mainly present at its loop, whereas in the two

relatively rigid groups, one consists of three b-sheets and the

other consists of one helix, is almost maintained. It is noted

that the behavior of CI2 seems different from that of the

S-peptide, which fluctuates around the native state as shown

in Fig. 3 b. This is due to the short simulation time (only

0.23 ns), which strongly restricts the sampling in the confor-

mation space of CI2. The whole conformation space for CI2

is much larger than S-peptide. So even though the same sim-

ulation time as for S-peptide is used for CI2, the sampling is

still not sufficient. Here, the short time simulation of CI2 is

only used to show that the DED will not introduce significant

distortions or drift in the steering direction as the standard

steered molecular dynamics.

CONCLUSIONS

In this article, we present a variation of EDS and provide

a new method for molecular simulation, i.e., a DED analysis.

It analyzes the principal components during protein folding

at short intervals and builds the most flexible direction to

adjust peptide motion. By applying DED in the folding

simulation of an S-peptide, it is found that DED is more

efficient than traditional MD. From the energy landscape we

validated that the peptide folding goes though many local

minima and energy barriers and these increase the simulation

time of traditional MD. But DED can overcome these

quickly. DED can find the most convenient way to get across

or to turn around the obstacles and so can lead S-peptide to

fold into its native state rapidly.

The DED simulation results of the S-peptide are also in

agreement with the current viewpoint on protein folding.

First, the energies of most unfolded structures are very high,

but there are still a few structures having much lower energy

close to that of the native state. Second, short peptides do not

move smoothly during the folding process. The conforma-

tions in the trajectory aggregate to a few clusters or, in other

words, intermediates. These results in turn validate the

practicability of DED simulation. DED may provide an

alternative approach to simulate the folding of peptides and

proteins.
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