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ABSTRACT Molecular simulations and an energy landscape analysis are used to examine the stretching of a model protein. A
mapping of the energy landscape shows that stretching the protein causes energy minima and energy barriers to flatten out and
disappear, and new energy minima to be created. The implications of these landscape distortions depend on the timescale
regime under which the protein is stretched. When the timescale for thermally activated processes is longer than the timescale
of stretching, the disappearances of energy barriers provide the mechanism for protein unfolding. When the timescale for
thermally activated processes is shorter than the timescale of stretching, the landscape distortions influence the stretching
process by changing the number and types of energy minima in which the system can exist.

INTRODUCTION

Many biological functions, including muscle contraction

and cell adhesion, are controlled by the mechanical response

of proteins. For this reason, the mechanical properties of

proteins have recently been widely studied. For exam-

ple, experiments have examined the stretching of single

molecules of the muscle protein titin using atomic force

microscopy (Rief et al., 1997) and optical tweezer techniques

(Kellermayer et al., 1997; Tskhovrebova et al., 1997). The

mechanical response of titin is interesting and highly

nonlinear, in that the force required to stretch the molecule

undergoes cycles of gradual increases followed by sudden

decreases. This sawtooth behavior has been attributed to the

sequential mechanical unfolding of modular units of the

protein.

Theoretical investigations have also addressed the me-

chanical response of proteins. Molecular dynamics simu-

lations based on detailed atomic descriptions have addressed

the mechanical unfolding of protein segments (Lu et al.,

1998; Lu and Schulten, 2000; Krammer et al., 1999; Paci and

Karplus, 1999, 2000; Bryant et al., 2000; Gao et al., 2002;

Fowler et al., 2002; Li and Makarov, 2003; Rathore et al.,

2004). More coarse-grained approaches have also been

carried out, based on lattice (Socci et al., 1999; Klimov and

Thirumalai, 1999, 2001) and off-lattice models (Klimov and

Thirumalai, 2000; Li et al., 2001).

The present investigation differs from these previous

theoretical investigations, in that an inherent structure

analysis, rather than solely molecular dynamics simulation,

is used to elucidate the nonlinear mechanical response of

proteins. The inherent structure formalism developed by

Stillinger and Weber considers the dynamics in complex

systems to be composed of vibrations within individual

energy minima (inherent structures), and structural transi-

tions between energy minima (Stillinger and Weber, 1984;

Debenedetti and Stillinger, 2001). Most interesting proper-

ties of complex systems are related specifically to the

structural transitions between energy minima, but the nature

of these structural transitions is often obscured by vibrational

motion. The inherent structure formalism is used to strip

away the effects of vibrational motion, to provide a clearer

picture of the structural transitions in the system.

COMPUTATIONAL METHODS

Protein model

Simulations are carried out on the coarse-grained b-barrel protein model

introduced by Thirumalai and co-workers (Honeycutt and Thirumalai, 1992;

Guo et al., 1992). The model protein is a strand of Nr ¼ 46 residues, where

each residue is one of three types: hydrophobic (B), hydrophilic (L), or
neutral (N). The protein sequence is B9N3(LB)4N3B9N3(LB)5L.

The residues interact with a potential of the form

E ¼ +
Nr�1

i¼1

VbðriÞ1 +
Nr�2

i¼1

VaðuiÞ1 +
Nr�3

i¼1

VtðfiÞ1 +
Nr

i¼1

+
Nr

j¼i13

VnbðrijÞ;

(1)

where ri is the distance between residues i and i11; ui is the angle defined by

residues i, i11, and i12; fi is the torsion angle defined by residues i, i11,

i12, and i13; and rij is the distance between residues i and j. The bond-

stretching term is

VbðriÞ ¼
1

2
kbðri � r0Þ2; (2)

where kb ¼ 400 e/s2 and ro ¼ s. The angle-bending term is

VaðuiÞ ¼
1

2
kaðui � u0Þ2; (3)

where ka ¼ 20 e/rad2 and uo ¼ 105 (p/180) rad. The torsion term is

VtðfiÞ ¼ Aieð11 cos fiÞ1Bieð11 cos 3fiÞ; (4)

where (Ai, Bi) ¼ (1.2, 1.2) if fewer than two of the four residues involved in

the torsion are N-residues, and (Ai, Bi) ¼ (0, 0.2) if two or more of the four

residues involved in the torsion are N-residues. The nonbonded term is
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VnbðrijÞ ¼ 4eCij

s

rij

� �12

�Dij

s

rij

� �6
" #

; (5)

where (Cij, Dij)¼ (1, 1) if both i and j are B-residues, (Cij, Dij)¼ (2/3,�1) if

i and j are either both L-residues or one L- and one B-residue, and (Cij,Dij)¼
(1, 0) if either i or j is an N-residue. The masses of the residues, mi, are

equivalent, and equal to m.

Simulation methods

The simulations begin by finding the structure corresponding to the global

energy minimum for the system. This global minimum is found by annealing

the system using a series of molecular dynamics simulations. We confirm

that the structure is, in fact, the global minimum by comparing with literature

results of more extensive global minimization studies on this model.

Two types of simulations are carried out to address the stretching of the

protein. First, simulations are carried out to map out the distortions of the

energy landscape as the protein is stretched. Second, steered molecular

dynamics simulations are carried out to determine the relevance of the

distortions of the energy landscape at finite temperature and stretching

velocity.

Mapping the energy landscape

To map out the changes in the energy landscape as the protein is stretched,

we first stretch the protein in the case where the system always resides at an

energy minimum; this manner of stretching corresponds physically to

stretching the protein in the limits of zero temperature and zero stretching

velocity. Simulations in these limits are carried out by elongating the protein

in very small increments, with an energy minimization after each elongation

increment. The protein is elongated by moving the last residue a distance Dr

further away from the first residue, along the vector that connects the first

and last residues. The energy is then minimized with respect to the positions

of residues 2 through (N–1), whereas the positions of residues 1 and N are

fixed; a variable-metric minimization algorithm is used to carry out the

energy minimization (Press et al., 1992). The forces on the first and last

residues, which are equal in magnitude and opposite in direction, are

obtained from the derivatives of the energy with respect to the atom

positions.

The curvature of the energy landscape is characterized by a normal mode

analysis. To obtain the normal modes, the 3Nr 3 3Nr matrix of mass-

weighted second derivatives with respect to particle positions is calculated,

where the matrix elements are of the form

1

ðmimjÞ1=2
@
2
E

@xik@xjl
; (6)

where i and j index the atoms, and k and l index the dimensions. This matrix

is then diagonalized to give the normal mode eigenvalues. Since the energy

minima we investigate are obtained with the positions of the first and last

residues fixed (see previous paragraph), the relevant normal modes

correspond to these positions being fixed. Normal modes for the case of

the first and last residues being fixed are obtained by setting the masses of the

first and last residues to infinity during the normal mode calculation.

Barriers between selected energy minima of the energy landscape are

found with a saddlepoint search procedure. To find a saddle point, the square

of the gradient of the energy is minimized with respect to residue positions

(the derivatives with respect to the positions of the first and last residues are

excluded from this gradient term, because we are interested in structures

where the positions of the first and last residues are fixed). This minimization

is carried out with a variable-metric algorithm (Press et al., 1992), keeping the

positions of the first and last residues fixed. These saddlepoint searches start

from an initial guess that is midway between the two energy minima of

interest.We verify that a saddle point is foundwhen the square of the gradient

is effectively zero, and there is a single negative normal mode eigenvalue.

Steered molecular dynamics simulations

Steered molecular dynamics (MD) simulations are used to simulate protein

stretching at finite temperature T and stretching velocity vs. To steer the

protein to stretch at constant stretching velocity vs, the velocities of the first

and last residues are set to �vs/2 and 1vs/2 along the vector that connects

these residues, and the masses of the first and last residues are set to infinity

(so that the acceleration of these residues will always be zero, causing their

velocities to be constant). The MD simulations are then carried out in an

otherwise normal manner. Inherent structures (energy minima) that the

system visits during the steered MD trajectory are found by carrying out

energy minimizations with the end residues fixed, which begin from

instantaneous configurations during the trajectory; note that these energy

minimizations do not affect the MD trajectory.

RESULTS

The protein structure corresponding to the global energy

minimum, obtained by annealing with MD simulations, is

shown in Fig. 1. The energy of this structure is �49.2365 e,
which concurs with the results of previous global minimi-

zation studies for this protein model (Lee and Berne, 2000;

Kim et al., 2003).

Mapping the energy landscape

The protein is stretched from the global minimum structure

in the case that the system always resides at an energy

minimum. The elongation of the protein is described by

z ¼ (r1N – r1N,0), where r1N is the distance from the first to

last residue and r1N,0 is the value of this distance in the na-

tive (unstretched) structure. The protein is stretched to an

elongation z ¼ 60 s, by carrying out energy minimizations

after each increment of elongation of Dz ¼ 0.002 s; thus

a total of 30,000 energy minimizations were carried out to

obtain these results. Snapshots of the protein at various

stages of elongation are shown in Fig. 1.

The force as a function of elongation is shown in Fig. 2.

This force-elongation curve displays interesting features that

are not evident in finite temperature/finite shear rate results

(e.g., see the results of molecular dynamics simulations for

this type of model in Klimov and Thirumalai, 2000, and Li

et al., 2001). For very small elongations (z, 0.03 s), there is

a quasi-elastic regime in which the force increases nearly

linearly with elongation. Beyond this quasi-elastic regime,

the force-elongation curve is nonmonotonic, and the slope

changes sign many times as the protein is stretched. Most

significantly, Fig. 2 shows that the force-elongation curve

undergoes discontinuous changes at some elongations.

Some results for the force as the elongation of the protein is

reversed—i.e., as the first and last residues are moved closer

together—are shown in Fig. 3 a. The changes in the protein

upon stretching are usually reversible, but are irreversible

at the points where the force changes discontinuously with
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elongation (at z ¼ 4.782 s in Fig. 3 a). Stretching the pro-

tein to z . 4.782 s, and then reversing the stretching to

z, 4.782 s, leaves the protein in an energy minimum that is

distinct from the minimum it was in initially. In the analysis

below, the initial energy minimum at z , 4.782 s will be

referred to as minimum A, and the final energy minimum will

be referred to as minimum B.
The discontinuous and irreversible change in the force-

elongation curve is elucidated by mapping out the energy

landscape as the protein is stretched. The most relevant

features of the energy landscape in this regard are energy-

minimum A, and the saddle point between energy-minimum

A and energy-minimum B. The following changes to these

features of the energy landscape occur as z / 4.782 s:

1. The curvature of energy-minimum A (in one dimension)

decreases to zero, as indicated by the lowest non-zero

normal mode eigenvalue decreasing to zero (Fig. 3 b).
2. The height of the barrier that separates energy-minimum

A and energy-minimum B decreases to zero (Fig. 3 c),

where the barrier height is obtained as the difference

between the energy at the saddle point and the energy at

energy-minimum A.

3. The curvature at the saddle point in the direction along

the reaction coordinate goes to zero, as indicated by the

lone negative normal mode eigenvalue increasing to zero

(Fig. 3 d).
4. The distance between the saddle point and energy-

minimum A decreases to zero (Fig. 3 e).

This set of results demonstrates that stretching the protein

causes energy-minimum A to flatten out and disappear, as

shown schematically in Fig. 4.

These disappearances of energy minima occur 25 times

as the protein is stretched to an elongation of z ¼ 60 s (see

Fig. 2). Each of these events corresponds to an irreversible

structural transition, and represents a discrete step in the

mechanical unfolding of the protein. The last of these

disappearances of energy minima, which occurs at z ¼ 36.01

s, represents the transition to the fully unfolded (all-trans)

FIGURE 1 Structures of the protein, as the

protein is elongated by the amount z.
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state of the protein. Several of these structural transition

events, including the structural transition event associated

with the energy landscape mapping results in Fig. 3, are

shown in Fig. 5.

These results also imply that new energy minima can be

created by changing the elongation. This effect can be

understood by considering, in reverse, the results in Fig. 3

and the schematic in Fig. 4: although one energy minimum

exists at z . 4.782 s, a second energy minimum appears as

the elongation is reduced below z ¼ 4.782 s. In this example

an energy minimum is created upon decreasing elongation,

but we show below that energy minima are also created upon

increasing elongation.

Steered molecular dynamics simulations

MD simulations and an inherent structure analysis are used

to assess the significance of these energy landscape

distortions at finite temperature and stretching velocity. In

regard to the relevant temperatures, we note that Nymeyer

et al. (1998) have shown for this protein model that a col-

lapsed state becomes favored for T , 0.72 e/k, and the

native state becomes favored at a temperature somewhere

below 0.4 e/k (which could not be determined precisely due

to glassylike dynamics at low temperature).

The inherent structure approach characterizes the state

of the system by the energy minima that the system visits

(Stillinger and Weber, 1984). The usefulness of this ap-

proach is demonstrated by the results in Fig. 6, for the protein

at fixed elongation. Although the results for the instanta-

neous potential energy do not show any interesting fea-

tures, the inherent structure analysis shows that the system

undergoes a number of transitions between energy minima

during the simulation.

Fig. 7 shows inherent structure results from steered MD

simulations at a low temperature (T ¼ 0.1 e/k) and three

stretching velocities. Note that the energy of an energy

minimum changes as the protein is stretched, in contrast to

the fixed elongation case shown in Fig. 6. The system moves

from energy-minimum A to energy-minimum B as the

protein is stretched (these energy minima are the same as

those addressed in Fig. 3). Decreasing vs causes the system to

exit energy-minimum A earlier, and at the lowest vs ex-

amined the system exits energy-minimum A nearly as soon

as energy-minimum B becomes lower in energy.

Inherent structure results from steered MD simulations at

higher temperatures are shown in Fig. 8. At T ¼ 0.2 e/k, the
system undergoes transitions between energy minima that

allow the system to anneal to lower energy minima at z .

;2.5 s. A landscape mapping analysis, also shown in Fig. 8,

indicates that these lower energy minima were created upon

elongation and did not exist at zero elongation. At T ¼ 0.4

e/k, the system hops between energy minima frequently;

the energy minima visited tend to increase in energy until

z ; 4 s, but this energy increase ceases after z ; 4 s due

to the disappearance of energy minima that were stable at

low elongation. These T ¼ 0.2 e/k and T ¼ 0.4 e/k results

show that energy landscape distortions play an important

role in mechanical unfolding even at higher temperatures, by

changing the number and types of energy minima in which

the system can exist.

DISCUSSION

The present results show that stretching a protein distorts the

energy landscape, causing energy minima to flatten out and

FIGURE 2 Force as a function of elongation. The three plots show

different ranges of elongation. The diagonal line in plot a is a guide to the

quasi-elastic behavior, and the horizontal lines in plots b and c indicate

structural transitions that the protein would undergo if the force, rather than

elongation, is constrained and incremented.
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disappear and new energy minima to be created. These

landscape distortions affect the dynamics of the protein as it is

being stretched, and thus the mechanical response of the

protein. However, the manner in which these landscape

distortions affect the dynamics depends on the relative

magnitudes of three timescales: The timescale tthermal for

thermally activated transitions between energy minima,

the timescale tstrain over which the protein is stretched,

and the timescale tintra for dynamics within an energy mini-

mum. The timescale tintra is on the order of the timescales for

vibrational motion, and so physically relevant timescale

regimes will involve tintra being much smaller than both

tthermal and tstrain.

The energy landscape distortions completely determine

protein stretching in the timescale regime tintra� tstrain �
tthermal. In this timescale regime, the system relaxes to a local

energy minimum much faster than the landscape is altered,

and thermally activated transitions do not occur significantly

on the timescale of the stretching. Thermodynamic equili-

bration is precluded, and although the system always resides

at a local energy minimum, these states in general differ from

the minimum free energy state of the system at the particular

elongation.

For the other physically relevant timescale regime tintra�
tthermal � tstrain, the distortions of the energy landscape do

not completely determine the mechanical response, but the

landscape distortions are important nonetheless. In this

timescale regime, which has been addressed phenomeno-

logically in previous studies of protein stretching (Evans and

FIGURE 3 Properties of the protein as a function of elongation, in the

elongation range near a discontinuous change in force. (a) Force, upon

increasing elongation (circles), decreasing elongation beginning from z ¼
4.75 s (crosses), and decreasing elongation beginning from z ¼ 4.85 s

(squares). The initial (upper) branch corresponds to the system residing in

energy-minimumA, and the lower branch corresponds to the system residing

in energy-minimum B. (b) Lowest nonzero normal mode eigenvalue

evaluated at energy-minimum A, upon increasing elongation. (c) Height of

the barrier betweenminimumA andminimumB, upon increasing elongation

(the barrier height is determined as the energy of the saddle point between

theseminimaminus the energy at minimumA). (d) Lone negative eigenvalue

evaluated at the saddle point between minimum A and minimum B, upon

increasing elongation. (e) Distance between the saddle point and minima A

and B, upon increasing elongation.

FIGURE 4 Schematic representation of the energy landscape distortions

upon elongation of the protein.
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Ritchie, 1999; Best et al., 2002), the system can equilibrate

thermodynamically as the protein is stretched. An energy

landscape description of the protein dynamics in this

timescale regime requires the complete set (or at least an

ensemble) of energy minima and barriers to be considered,

while including the distortions of these minima and barriers

upon stretching.

These timescale ideas are demonstrated by the results in

Fig. 7. In this set of simulations, tstrain varies over two orders

of magnitude whereas tthermal remains constant (because the

temperature is constant). Stretching the protein at vs ¼ 0.01

(e/m)1/2 corresponds to the timescale regime tintra� tstrain �
tthermal, and as shown in Fig. 7, the system remains in

energy-minimum A, almost to the point at which this

minimum disappears. In contrast, stretching the protein at

vs ¼ 0.0001(e/m)1/2 corresponds to the timescale regime

tintra� tthermal � tstrain, and as shown in Fig. 7 the system

exits energy-minimum A nearly as soon as energy-minimum

B becomes lower in energy. Simulations with vs . 0.01

(e/m)1/2 were not carried out because these stretching veloci-

ties would cause tstrain to become comparable with tintra.

The results presented here were obtained for the case of

the protein being stretched at an imposed velocity.

Alternatively, a force that drives the first and last residues

apart could be imposed in the simulations, and then

incremented in small steps. In the imposed force case, the

protein would undergo a structural transition when the force

reaches a local force maximum, such that the protein would

elongate until it reaches an elongation at which the force-

elongation curve has a positive slope with the same value of

the force. The structural transitions that would occur under

applied force are shown as horizontal lines in Fig. 2. Thus,

in the imposed-force case, discontinuous changes in elonga-

tion occur rather than the discontinuous changes in force

that occur in the imposed-velocity case. These structural

transitions also correspond to disappearances of local

minima on a landscape; however, in the imposed-force

case the relevant landscape is an enthalpy-like landscape,

defined as the energy of the protein plus the work due to

elongating the protein against the applied force.

The structural changes that follow the disappearance of

energy minima are irreversible (see Fig. 3 a). This

irreversibility is fully deterministic, and can be understood

in terms of the schematic in Fig. 4: although the initial energy

minimum disappears as the protein is elongated, the final

energy minimum does not generally disappear as the

elongation is reversed. This deterministic irreversibility

differs from the stochastic irreversibility associated with

the second law of thermodynamics. These irreversible

structural changes can, of course, be reversed by annealing.

FIGURE 5 Discontinuous structural transitions at particular elongations

due to disappearances of energy minima. (a) z ¼ 4.782 s (this structural

change is associated with the results in Fig. 3). (b) z ¼ 18.705 s (this

structural change occurs at the maximum force that the partially folded

protein can sustain, see Fig. 2). (c) z ¼ 25.069 s.

FIGURE 6 Results of a molecular dynamics simulation at T¼ 0.2 e/k and
a fixed elongation of z ¼ 5.93 s. (Top) Instantaneous potential energy as

a function of time. (Bottom) Energy of the energy minima that the in-

stantaneous configurations visit, as a function of time.
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Analogous distortions of energy landscapes occur in

liquids and glasses under applied strain or stress. For

example, we have shown that strain-induced disappearances

of energy minima lead to reduced viscosity and enhanced

diffusion in flowing liquids (Malandro and Lacks, 1998;

Lacks, 2001), amorphous-amorphous phase transitions in

glasses (Lacks, 1998, 2000), and fracture propagation in

glasses (Gagnon et al., 2001).

CONCLUSIONS

Molecular simulations and an energy landscape analysis

show that stretching a protein causes energy minima and

barriers to flatten out and disappear, and new energy minima

to be created. If the system resides in a particular local energy

minimum when that local minimum disappears, the system

is forced to undergo a structural transition to a different

local minimum. In the limits of low temperature and low

stretching velocity, the disappearance of energy barriers

(and thus energy minima) provide the only mechanism for

structural rearrangement, and the mechanical unfolding of

a protein occurs through a series of discrete steps associated

with the disappearances of energy minima.

At finite temperatures and stretching velocities, the

landscape distortions also influence the stretching process,

but in a way that depends on the timescale regime under

which the protein is stretched. This timescale regime is

determined by the ratio of the timescale for thermally

activated processes relative to the timescale of the protein

stretching. When this ratio is high, the role of thermally

activated processes is diminished and the disappearances of

energy barriers provide the mechanism for protein unfolding.

When this ratio is low, thermally activated processes occur

frequently, but the landscape distortions still influence the

stretching process by changing the number and types of

energy minima in which the system can exist.

The energy landscape has become widely used for

analyzing protein folding (e.g., Onuchic et al., 1997). The

present investigation describes how an energy landscape

analysis can be extended to address the behavior of proteins

as they are stretched. Although these results were obtained

for a model protein, the general ideas are expected to apply

to real proteins as well.

Funding for this project was provided by the National Science Foundation

(grant No. DMR-0402867).

FIGURE 7 Inherent structure results from steered MD simulations at

T ¼ 0.1 e/k, and (a) vs ¼ 0.01(e/m)1/2, (b) vs ¼ 0.001(e/m)1/2, and (c)
vs ¼ 0.0001(e/m)1/2. The circles represent the energy of the energy minima

that the instantaneous configurations visit. The lines represent the results

obtained in the limits of zero temperature and zero stretching velocity, using

the energy landscape mapping procedure.

FIGURE 8 Inherent structure results from steered MD simulations at

vs ¼ 0.0001(e/m)1/2 and (a) T ¼ 0.2 e/k and (b) T ¼ 0.4 e/k. The solid cir-

cles represent the energy of the energy minima that the instantaneous

configurations visit. The lines represent the changes in the energy minima

with elongation, using the energy landscape mapping procedure, and the

open diamonds represent the points at which energy minima disappear due

to changes in elongation.
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