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ABSTRACT Domain formation is modeled on the surface of giant unilamellar vesicles using a Landau field theory model for
phase coexistence coupled to elastic deformation mechanics (e.g., membrane curvature). Smooth particle applied mechanics,
a form of smoothed particle continuum mechanics, is used to solve either the time-dependent Landau-Ginzburg or Cahn-Hilliard
free-energy models for the composition dynamics. At the same time, the underlying elastic membrane is modeled using smooth
particle applied mechanics, resulting in a unified computational scheme capable of treating the response of the composition
fields to arbitrary deformations of the vesicle and vice versa. The results indicate that curvature coupling, along with the field
theory model for composition free energy, gives domain formations that are correlated with surface defects on the vesicle. In the
case that external deformations are included, the domain structures are seen to respond to such deformations. The present
simulation capability provides a significant step forward toward the simulation of realistic cellular membrane processes.

INTRODUCTION

Recent experimental evidence has shown the existence of

fluid-fluid phase coexistence in the form of dramatic domain

structures in giant unilamellar vesicles (GUVs) (Baumgart

et al., 2004; Veatch and Keller, 2002, 2003; Veatch et al.,

2004). In the case where ternary mixtures are considered,

composed of cholesterol, sphingomyelin, and dioleoylphos-

phatidylcholine (DOPC) (Baumgart et al., 2004), cholesterol,

dilauroyl phosphatidylcholine (DLPC), and dipalmitoyl phos-

phatidylcholine (DPPC) (Korlach et al., 1999; Feigenson and

Buboltz, 2001), or cholesterol/DOPC/DPPC (Veatch and

Keller, 2002, 2003; Veatch et al., 2004), the resulting fluid-

fluid domains exhibit clear structure. The correlation with

global curvature seems to be weak, and it is believed that line

tension is more likely the key player in determining the

domain sizes and shapes (Baumgart et al., 2004). Further-

more, in some cases, the domains are accompanied by dis-

tinct deformations on the vesicle surface, often in the form of

circular bulges (Baumgart et al., 2004; Veatch and Keller,

2003). On the other hand, gel-liquid crystal domain coexis-

tence has been observed in DPPE/DPPC mixtures (Bagatolli

and Gratton, 2000), where, qualitatively, the shape of the

domain is not highly correlated to the shape, or curvature, of

the vesicle. Rather, the gel DPPE domains appear to be more

painted on the surface of the vesicle. DPPC/DLPC gel-liquid

crystal domains also seem to exhibit this behavior (Feigen-

son and Buboltz, 2001; Korlach et al., 1999), where the

inclusion of cholesterol eventually results in solubilization of

DPPC into the fluid phase, until the entire vesicle consists of

only one fluid phase.

Domain formation on vesicles has also been examined

theoretically (Seifert, 1993; Julicher and Lipowsky, 1993;

Taniguchi, 1996; Jiang et al., 2000). Depending on whether

the theoretical model is based explicitly on line tension

(Julicher and Lipowsky, 1993) or composition (Taniguchi,

1996; Jiang et al., 2000; McWhirter et al., 2004), different

results are predicted. Models based on line tension require

that the system be pre-phase-separated into well-defined

domains. From there, this particular free-energy framework

can predict whether or not bulging or budding will form. The

budding, or at least bulging, deformation is found from

minimizing the free-energy subject to bending energy, line

tension, and the constraint that the area of the domain is

constant. Conversely, in the case that the free-energy model

is based on composition, for example a Landau model for

phase coexistence (Jiang et al., 2000; Van, 2002), then the

model has the capability of predicting whether or not do-

mains will form subject to the geometrical constraints of the

problem. In this framework, domain formation can be further

extended to include composition-curvature coupling, where

the local curvature can perturb domain formation, along with

curvature-composition coupling, where the local composi-

tion can then alter the local membrane structure. In the case

where the latter type of coupling is restricted to variations in

the membrane’s material properties (i.e., in terms of a com-

position-dependent bulk and bending modulus), the result is

soft and stiff regions on the membrane surface, depending on

the location of the domains. This scenario has been examined

in mesoscopic regimes (McWhirter et al., 2004) where the

effects of thermal undulations were also considered. The

drawback of employing a Landau model for composition is

that, without additional coupling terms, it cannot directly

influence the structure of the underlying membrane. In other

words, it can predict whether or not domains will form, but

once the domains have annealed, it cannot predict whether or
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not budding, or bulging, will occur. This fact is a simple

consequence that the Landau model for composition, as

it stands, will not result in specific composition-dependent

stresses acting on the membrane.

Interestingly, real systems seem to exhibit behavior that is

spanned by both theoretical frameworks: sometimes the

formation of a domain is accompanied by an obvious shape

change of the vesicle (for example, a bulge), and sometimes

it is not. Thus, at themoment, two apparently different theoret-

ical frameworks are required to model domain formation

on vesicles. First, one model is required to predict whether

domains will form, and then a second model is required to

predict whether or not the resultant domains will alter the

vesicle shape.

Regardless of the specific theoretical framework, a key

limitation of these types of theoretical approaches is the

evaluation of the actual free-energy functional itself. In the

case of a Landau model for composition, only in relatively

simple geometries can analytic solutions for the free-energy

minima be found (Jiang et al., 2000), which is problematic if

the GUV undergoes deformations. As such, the predictive

power of these theoretical frameworks can be severely limited

by the imposed geometrical constraints. If some means of

efficiently evaluating these free-energy functionals in a com-

pletely unrestricted geometry could be found, then it may be

possible to examine how domains form and couple to the

shape of the underlying vesicle.

A tempting route of action is to model the formation of

domains on GUVs employing molecular dynamics (MD)

simulation, as this would, in principle, be able to distinguish,

and perhaps even validate, the form of the ideal free-energy

model framework by which to describe domain formation.

However, examining domain formation on GUVs from MD

is presently impossible as the lengthscales of GUVs are

typically in the range of 20 mm, with a rough estimate of

;109 lipids constituting the vesicle. As such, even with

coarse-grained MD methods (Marrink et al., 2004; Shelley

et al., 2001; Rudd and Broughton, 1998; Kumar and Rao,

1998; Kumar et al., 2001; Laradji and Kumar, 2004), sys-

tems such as these are far beyond attainable simulation

system sizes. Furthermore, the timescales, on the order of up

to seconds, simply cannot be reached with present computa-

tional power and algorithms.

Another option is to employ continuum-level mechanics,

where at least the underlying membrane dynamics, in the

absence of composition field dynamics, can be examined

using continuum-level modeling methods such as the mate-

rial point method (Ayton et al., 2002b; York et al., 1999).

However, once again, geometrical constraints are still a pro-

blem, which arise because of the grid-based framework

employed in many continuum-level algorithms. In the mate-

rial point method, the grid is used as a computational scratch-

pad to evaluate continuum-level strains and strain-rates, and

can be visualized as a three-dimensional lattice of points

spanning the accessible space of interest. When thin struc-

tures like membranes are embedded within the grid, the

transformation of in-plane quantities like the plane stress and

strain to the grid can break down. As such, this type of

scheme primarily works when the grid is actually bound in

the plane of the membrane (Ayton et al., 2002b). Still, even

though some computational problems exist with modeling

membranes at the continuum level, the governing constitu-

tive relation for membranes has been well studied (Hallet

et al., 1993; Needham and Nunn, 1990; Rawicz et al., 2000;

Olbrich et al., 2000), and, in the case of small deformations,

it employs an elastic bulk modulus and a viscous shear

viscosity (Evans and Needham, 1987; Ayton et al., 2002a).

This combination of an elastic (solidlike) material property

and a viscous (fluidlike) component is crucial for the mem-

brane to perform all of its key functions (e.g., ion transport,

lipid diffusion, lysis, fusion). In the case of very simple

deformations (for example, the swelling of a vesicle due to

osmosis or small surface deformations), an elastic constitu-

tive model can be used (Ayton et al., 2002b). However, with

a simple continuum-level membrane model, incorporating

domains is still very difficult. At best, different prespecified

regions on the surface of the GUV can be given different

material properties corresponding to different domains. These

can include, for example, a composition-dependent bulk

modulus, thickness, and density. However these domains are

fixed on the surface of the vesicle and, as such, they cannot

move, coalesce, or change shape.

Another significant problem is that, without additional

effort, continuum-level models make no contact with the

underlying molecular-level interactions that ultimately de-

termine the details of both the shape and the properties as-

sociated with domain formation on GUVs. A multiscale

framework is required where the atomistic spatial temporal

regime is connected in some way to the continuum-level. At

its most minimal level, the bridge can be accomplished

when, for example, the material properties such as the bulk

modulus vary depending on the local composition, where

the exact dependence is determined from atomistic-level

non-equilibrium molecular dynamics (NEMD) simulations

(Evans and Morriss, 1990; Ayton et al., 2002a; Ayton and

Voth, 2004). In the context of our previous multiscale work

(Ayton et al., 2002a,b; Ayton and Voth, 2002, 2004) this

approach offers a computational means of bridging micro-

scopic representations of the system with other representa-

tions that operate in higher length- and timescales. In the case

of vesicles under osmotic stress, the lack of high amplitude

thermal undulations (Marrink and Mark, 2001) allows for

a direct atomistic, to continuum, bridge (Ayton et al., 2002b).

A Landau model for composition (Taniguchi, 1996; Jiang

et al., 2000; McWhirter et al., 2004) can be incorporated into

a multiscale simulation scheme by coupling the composition

dynamics to the underlying membrane dynamics. The basic

idea is that the composition fields are coupled with local

surface deformations, and then the resulting domains affect

the underlying membrane structure. The degree of this
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coupling can be varied, but the result is that domains of

varying composition are not fixed on the surface of the ves-

icle, but can instead move, reform, and change shape. In fact,

the formation of buds (LipowskyandSackmann, 1995; Seifert,

1993; Julicher and Lipowsky, 1993) is a classic example of

howdomains can couple to the underlyingmembrane structure.

Formally, at the continuum-level, the domains are defined

by regions of a specific composition denoted by a variable f,

whose dynamics, i.e., df/dt, can be governed by either the

time-dependent Landau-Ginzburg (LG) (Metiu et al., 1976;

Van, 2002) or the Cahn-Hilliard (CH) equation (Metiu et al.,

1976; Langer, 1971; Cahn and Hilliard, 1958). To bridge

the underlying continuum-level membrane dynamics with

the composition dynamics, a careful examination of the cou-

plings between the two must be carried out. In fact, this

approach has already been developed in the case of a small

patch of membrane in the x,y plane (McWhirter et al., 2004),

where the lengthscales were such that a mesoscopic mem-

branemodel (Ayton and Voth, 2002) could be employed. The

multiscale bridgewas accomplished by employing key results

as found in previous work (Ayton et al., 2002b), to param-

eterize the mesoscopic model (Ayton and Voth, 2002). The

planar geometry of the system (with the addition of small

thermal undulations) allowed for the composition dynamics

to be resolved via a Fourier transform method, such that the

domain dynamics could be essentially be projected onto the

undulating membrane surface. However, beyond this non-

overlap geometry (the so-called Monge representation; Lin

and Brown, 2004; Ayton and Voth, 2002), this scheme be-

comes exceedingly difficult.

To summarize the preceding discussion, if domains are to

be successfully modeled on GUVs and other complex mem-

brane surfaces, a computationally tractable continuum-level

scheme is required for both the underlying membrane dy-

namics and the composition dynamics, with full coupling

between the two. Fortunately, there exist alternative grid-free

continuum-level methodologies known as the smooth particle

methods, in particular smoothed particle hydrodynamics

(SPH) (Lucy, 1977; Monaghan, 1992; Ellero et al., 2002) and

smooth particle applied mechanics (SPAM) (Kum et al.,

1995; Hoover and Hoover, 2003; Hoover and Posch, 1996).

These schemes avoid many difficulties associated with tra-

ditional continuum-level simulation methods. SPH was orig-

inally developed to examine large-scale continuum-dynamics

problems (in fact, astrophysical scenarios) (Lucy, 1977) and

efforts have beenmadewith SPH to improve the accuracy and

stability of the method (see, e.g., Bonet and Kulasegaram,

2002; Bonet et al., 2004). On the other hand, the development

of SPAM has tended more toward smaller-scale hydrody-

namics, and in fact makes an elegant link with molecular

dynamics (Hoover and Hoover, 2003). The correction

schemes that appear in the SPH method (Bonet and

Kulasegaram, 2002; Bonet et al., 2004) (typically associated

with improving the numerical accuracy) have generally not

been incorporated.

With SPAM, a continuum object can be thought of as

being partitioned into a number of separate subsystems, such

that each subsystem can be described by a state of local

thermodynamic equilibrium (Evans and Morriss, 1990). In

the case of a GUV with a diameter of;20 mm, for example,

the surface of the vesicle may be partitioned into a large

number of smaller areas, where each area is still, in itself,

a large system relative to atomistic scales. The concept un-

derlying SPAM is to then formulate the required continuum-

level conservation equations for this partitioned system so

the result is essentially a set of interacting free-energy par-

ticles that possess not only mass, position, and velocity, but

possibly various other properties, for example composition,

gradients of composition, and chemical potential. In a

Lagrangian scheme, the SPAM particles not only translate

according to local momentum conservation, but they can

exchange various properties between one another. In the case

of composition dynamics (either LG or CH), the SPAM

particles would exchange composition, according to the

underlying free-energy functional that governs the system.

As such, SPAM can be thought of as both a computationally

efficient means to solve continuum-level equations and as a

conceptually attractive framework in which to recast

continuum-level problems. In fact, if carefully formulated,

the entire problem of coupled domain and vesicle defor-

mation dynamics can be recast in a SPAM representation,

and this is the topic of the present article. In doing so, almost

all of the issues associated with the evaluation of complex

free-energy functionals and grid-based schemes are avoided.

Of course, the SPAM particles do not represent molecules, or

anything remotely close. In the case of a membrane, they are

best thought of as thin discs of mass that can exchange

properties based on an underlying free-energy functional. It

should be noted that solvent is included implicitly in the

present model (i.e., bilayer properties), but explicit solvents

(e.g., hydrodynamic effects such as fluid flows) can be

readily included since SPAM has its origins in SPH. The

coupling of a SPAM vesicle to a viscous SPAM fluid is

clearly possible.

This article will therefore define amethodology to examine

domain formation on GUVs coupled to its elastic deforma-

tions. The computational methodologywill employ either LG

or CH dynamics to model the composition dynamics. A fairly

generic Landau model for composition (Taniguchi, 1996;

Jiang et al., 2000) will be utilized as the underlying choice for

the free-energy functional, in order to examine the form of the

domain structures that emerge when the free-energy model is

allowed to explore and couple with the underlying membrane

deformations. In this approach, the composition fields are

allowed freely flow over the surface of the deforming

membrane so that they can find a free-energy minimum

commensurate with the evolving and coupled geometry of the

system. The entire problem, both composition and membrane

dynamics, is recast with SPAM, resulting in a unified

continuum-level description of the GUV system that can
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also be linked, in a multiscale sense, to atomistic-level pro-

perties.

COMPOSITION IN BINARY AND
TERNARY MIXTURES

For a system of two components labeled a and b, the

composition variable f is defined as

f ¼ ra � rb

ra 1 rb

; (1)

where ra is the mass density of component a, i.e., ra ¼ ma/

dV, and ma is the mass of component a that is found in the

small volume dV. The case where dV is constant will be

considered here. Likewise, the mass density for component

b is rb, and the obvious condition that r ¼ ra 1 rb.

In the case where @r/@t ¼ 0, one can write

@f

@t
¼ �= � ðfuÞ

¼ �f= � u� u � =f

¼ df

dt
� u � =f; (2)

where df/dt is the Lagrangian time-derivative of the

composition and u is the flow.

In the case where the system is a ternary mixture of

components a, b, and c, which phase-separates into an

effective binary mixture, a similar definition of composition

can be derived. Considering a situation similar to what was

observed in Veatch et al. (2004), two phases, a and b, are

defined where the mass density of the a phase is given by

ra ¼ ra
a 1 rb

a 1 rc
a, and ra

a is the mass density of the

a-component that exists in the a-phase and likewise for the

components b and c. Furthermore, the total mass density of

component a in the two effective phases is given by ra ¼
ra
a 1 ra

b, and likewise for components b and c. In a similar

manner, the mass density in the b-phase is defined as rb ¼
ra
b 1 rb

b 1 rc
b. The composition variable f for this effective

binary system is given by

f ¼
ra � rb

ra 1 rb

: (3)

Again, the total mass density is r ¼ ra 1 rb, and in the

case where @r/@t ¼ 0, one again arrives at Eq. 2.

A LANDAU MODEL FOR PHASE SEPARATION

A generic Landau model will be employed in the present

work to describe phase separation in a binary mixture (Van,

2002; Taniguchi, 1996; Jiang et al., 2000; McWhirter et al.,

2004),

FT½f;H� ¼ FM 1Ff 1Ff;H; (4)

where FM corresponds to a Helfrich bending energy and

local area dilation free-energy contribution (den Otter and

Briels, 2003; Lin and Brown, 2004; Brown, 2003; Brannigan

and Brown, 2004; McWhirter et al., 2004), given by

FM ¼
Z

dr 2kcH
2
1

hl

2
ð2eÞ2

� �
; (5)

where kc is the bending modulus, H is the mean curvature, h
is the membrane thickness, l is a local bulk modulus, and e

refers to the local plane strain. It should be noted that this

functional is appropriate for liquid and possibly gel bilayer

phases, but not for the solid phase. In Eq. 4, Ff is the

standard Landau model for phase separation (Taniguchi,

1996; Jiang et al., 2000; Van, 2002; McWhirter et al., 2004)

Ff ¼
Z

dr
z
2

2
½=fj2 1VðfÞ�

� �
; (6)

where z2 gives the strength of the nonlocal gradient term.

Since we will specifically be dealing with membranes, dr ¼
dA where dA is a local area element on the membrane

evaluated in the correct in-plane reference frame. In cases

where the membrane surface has complex undulations, or is

an enclosed surface, the evaluation of these integrals can be

quite complex (Jiang et al., 2000; McWhirter et al., 2004). In

fact, one of the limiting factors in applying such free-energy

models for membranes is evaluating these integrals on com-

plicated, and perhaps even time-dependent, surfaces (Jiang

et al., 2000).

Returning to the free-energy model, here V(f) is a simple

double-well potential given by

VðfÞ ¼ af
n
=n� bf

m
=m; (7)

where n . m (both are positive), and a and b are constants.

This strictly local term drives the composition within some

area element dA to one of the minima in the potential. Other,

more complex, free-energy models can be employed

(McWhirter et al., 2004).

The functional Ff in Eq. 6 is in fact a free energy even

though it is sometimes referred to as an effective Hamil-

tonian (McWhirter et al., 2004). To appreciate this dis-

tinction, one can consider a partition function Z for a

microscopic system given by

Z ¼ C

Z
dG exp½�bHðGÞ�; (8)

where G¼ {r1,r2,r3, . . .rN,p1,p2,p3, . . .pN}, ri is the position
of atom or molecule i, pi ¼ mvi is the corresponding

momentum, and C equals (m/2p�h2b)3N/2. The atomistic-

level Hamiltonian is given by HðGÞ and b ¼ 1/(kBT) where
kB is Boltzmann’s constant and T is the thermodynamic

temperature. We now imagine coarse-graining the spatial

extent of the system into M cells centered at locations {R1,

R2, R3, . . .RM}. Note that R1, the location of the cell 1, is

different from r1, the location of particle 1.

The composition of one of the cells, for example cell i, as
determined from the real microscopic system, is denoted by
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fðG;RiÞ, where only the molecules within cell i contribute
the local coarse-grained value of the composition. One can

integrate over all compositions in cell i such thatZ
dfid fi � fðG;RiÞð Þ ¼ 1; (9)

where the notation fi¼ f(Ri) is employed here, and f(Ri) is

an integration variable. The partition function Z can be

rewritten as

Z ¼ C

Z
dG exp½�bHðGÞ�

Y
i

Z
dfid fi � fðG;RiÞð Þ

¼
Z

df1df2df3 . . . dfM C

Z
dG exp½�bHðGÞ�

"

3
Y
i

d fi � fðG;RiÞð Þ
#
¼

Z
Df exp½�bFf�; (10)

where Df 4 df1df2df3. . .dfM. However, except for

simple lattice and spin models, Ff cannot be easily evaluated

(Mazenko, 2003). In practice, one employs a model Ff

whose parameters are chosen to reproduce experimentally

determined phase structures at a specified resolution of

measurement, for example, the width of a interface between

two phases. The perceived or measured width at the

mesoscopic scale will be different from the true microscopic

width due to thermally induced variations of the location of

the true interface. The formal procedure above, although not

easily performed for real systems, does illustrate that Ff is

a scale-dependent free-energy functional. That is, the values

of the parameters that enter into the model Ff will depend on

the size of the cells centered about the positions Ri (i.e., the

degree of coarse-graining). Importantly, the integral in the

last line of Eq. 10 is performed over all composition fields;

however, below a critical temperature, those composition

fields that correspond to a phase-separated configuration will

receive the largest Boltzmann weight, and so are dominant in

the contribution to Z.
The nonlocal behavior of Ff occurs through the gradient-

dependent composition term (Van, 2002), and, roughly

speaking, drives the system to a uniform state of composi-

tion. As such, this term will be denoted by Fmix. Likewise,

the term that contains V(f), since it favors phase separation,
will be denoted as Fdemix. Thus, in this Landau model the

free-energy minimum is found from the balance between

nonlocal mixing and local demixing contributions to the free

energy.

The final term in Eq. 4, Ff, H, couples the composition f

to the curvature H via

Ff;H ¼
Z

drLfH2
; (11)

where, in contrast to previous theoretical studies (Taniguchi,

1996; Jiang et al., 2000), a quadratic curvature coupling is

employed here which can be justified by including a lin-

ear composition dependence to the bending modulus, i.e.,

k(f)¼ kc1 kff, where kc is the usual one-component bend-

ing modulus that enters into FM (Sackmann, 1994; Marrink

and Mark, 2001; Lindahl and Edholm, 2000; Ayton and

Voth, 2002) and kf ¼ L. No other assumptions were em-

ployed in determining the functional form of the curvature

coupling. It should be noted that under spherical geometries

the result is that the membrane has no incentive to bend in

either direction (i.e., bulge in, or bulge out). This quadratic

form is in contrast to the more tradition linear coupling

(Taniguchi, 1996; Jiang et al., 2000), which can result in

dents and bulges depending on the local value of the com-

position. With the linear coupling model, a region with a

negative composition will favor dents (i.e., H . 0), whereas

regions with positive composition will favor bulges (i.e.,

H , 0). Although this form of the coupling does indeed

result in interesting phase behavior, the justification of the

linear form must be traced back to atomistic-level phenom-

ena (i.e., explaining in terms of lipid structure, asymmetry of

the bilayer, etc., why the domain with negative composition

prefers dents in the GUV surface rather than bulges). The

same situation applies for the domain with positive com-

position. In the present model, curvature coupling simply

arises from the fact that the domain with the smaller bending

modulus will have a correspondingly smaller free-energy

cost to supporting a certain square of the curvature. Thus, the

domain with the larger bending modulus will favor regions

of smaller curvature, regardless of the sign. This form of

curvature coupling, when tied to the underlying elastic

membrane dynamics, results in a positive feedback scenario

where domains with a smaller bending modulus collate in

regions of locally higher curvature. The material properties

of the domain are now modulated, and in this case, the

curvature can actually be enhanced due to the local softening

of the membrane.

COMPOSITION DYNAMICS

In this section the time evolution of the composition dy-

namics will be discussed. Both the time-dependent Landau-

Ginzburg (LG) equation, and Cahn-Hilliard dynamics (CH)

will be employed.

Landau-Ginzburg dynamics

The LG dynamics (Van, 2002; Metiu et al., 1976; McWhirter

et al., 2004) for the composition field, f, is given by

@f

@t
¼ �G

dF½f;H�
df

� m
�

� �
; (12)

where F[f, H] ¼ Ff 1 Ff, H is the free-energy functional

and the phenomenological coefficient, G, is positive. Under

LG dynamics, a system should eventually reach the free-

energy minimum; however, the actual dynamics are best

thought of as relaxational, and as such, rigorously de-

termining G for a particular system can be difficult. This
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equation of motion will drive the chemical potential of the

composition field, m ¼ dF/df, to a target m*, which is the

chemical potential of the environment. Once m ¼ m* a state

of equilibrium is achieved, and the dynamics stops; however,

the mean composition, Æfæ, is not conserved under this

dynamics.

To evaluate the functional derivative, dF[f, H]/df, care
must be taken when considering the gradient term in Fmix,

since strictly speaking this gradient is constrained to be in the

plane of the membrane. Thus, if the gradient were evaluated

in an unconstrained fashion, the normal component could

appear. When evaluated in the plane of the membrane, and

with b ¼ a, the free-energy functional derivative, dF[fH]/
df, is given by

dF½f;H�
df

¼ �z
2

2
=

2
f1 aðfn�1 � f

m�1Þ1LH
2
; (13)

where the gradient, =, is the required in-plane gradient

regardless of the local orientation of the membrane. Of

course, if this functional derivative were to be evaluated in

a lab-reference frame, then much more work would be

required.

In the case that L is non-zero, the dynamics must be

constrained to conserve composition. Thus, in a Lagrangian

form the constrained LG equation of motion can be written as

df

dt
¼ G

z
2

2
=

2
f� aðfn�1 � f

m�1Þ � LH
2

� �
1 u � =f� a;

(14)

where a constrains the total composition of the system to

be constant. This composition-stat, a, is related to m* via

Æa(t)æ ¼ – Gm*. The means by which such a constraint can

be implemented will be discussed later.

The next step in the dynamical evaluation is to simplify

the number of free parameters (i.e., G, z2, a, and L). One

option is to define a new set of scaled parameters as

G
� ¼ G

z
2

2

a
� ¼ a

2

z
2

L
� ¼ L

2

z
2

V� ¼ V
2

z
2; (15)

where now all the strengths of the different components are

expressed relative to the mixing term strength. This new

parameter set is not unique, but it manages to factor at least

one set of parameters (i.e., z2) into the LG prefactor, G. In the

case that a dynamical simulation methodology is employed

(as will be described later), the prefactor G* is essentially

combined with the fundamental timestep of the simulation. A

value of G* ¼ 2 mm2/ms, combined with the timestep dt (as
given in Table 1), resulted in stable dynamics in the present

application. Much larger values of G*, for the given value of

dt, resulted in the total composition not being conserved

(even in the presence of the composition-stat). We note that

the fundamental timestep dt was selected based on the un-

derlying membrane dynamics.

Cahn-Hilliard dynamics

Cahn-Hilliard dynamics (Metiu et al., 1976; Langer, 1971;

Cahn and Hilliard, 1958; McWhirter et al., 2004) conserve

composition, but allow the chemical potential to fluctuate

(McWhirter et al., 2004). In this case, Eq. 2 is expressed as

df

dt
¼ M=

2 dF½f;H�
df

1 u � =f; (16)

where the functional derivative was previously defined in

Eq. 13. The final expression for the composition dynamics

can be expressed in terms of a similar set of relative strength

parameters as

df

dt
¼ M

�½�=
4
f1 a

�
=

2ðfn�1 � f
m�1Þ1L

�
=

2
H

2�1 u � =f;

(17)

where M* ¼ Mz2/2 and b* ¼ a*. In this case, no constraint

on the composition is required. In an analogous fashion to

the value of G* in the case of LG dynamics, the value of M*

that is chosen depends on the timestep. In this case, a value

of M* ¼ 20 mm4/ms, when combined with dt as in Table 1,

resulted in conserved composition dynamics. Smaller values

of M* could, of course, be employed. To relate M* to the

real-time phase dynamics of the system, more atomistic-level

information, either from atomistic-level MD simulation, or

from experimental measurements, is required. This will be

the topic of a future publication.

It should be noted that in McWhirter et al. (2004) a

significant effort was made to parameterize the model to a

known system (Ayton et al., 2002b). In the present study,

such a detailed parameterization will not be made, as here

we are interested in more generic phase behavior. However,

in the spirit of a multiscale methodology, effort will be

TABLE 1 Key parameters for the SPAM vesicle simulation

Parameter Symbol Value

SPAM cutoff s (10�6m) 1

Timestep dt (ms) 0.0001

LG parameter G* (mm2/ms) 2

CH parameter M* (mm4/ms) 20

Unit of mass m (10�16 kg) rAh/N

Modulus l0 (10
�3 kg/(ms2) 5.4

Bulk modulus parameter e 10 to 100

Membrane thickness h (mm) 0.0034

Relative demixing strength a* (mm�2) 0.4 (rough); 0.2 (smooth)

Relative curvature coupling L* 5 (rough); 8 (smooth)

The terms rough and smooth refer to the texture of the two SPAM GUVs

examined.
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made to assign reasonable values to specific parameters (i.e.,

bulk moduli, curvature coupling strengths). Also, since the

lengthscales for this system are on the order of micrometers,

the coupling between thermal undulations and composition

do not come into play, as any thermal undulation modes are

subvisible, and thereby effectively renormalize the material

properties.

The two previous dynamical schemes (LG and CH) are

designed to take the system to the free-energy minima.

However, it is possible to include noise fluctuations into the

framework such that a dissipative dynamics results (Chaikin

and Lubensky, 1995). Incorporating this thermal effect

would allow the system to explore the free-energy minimum

landscape via an additional stochastic noise source, z(r, t)
added to Eq. 14 (LG) or Eq. 17 (CH), where the strength

(magnitude) of the noise is such that fluctuation-dissipation

is satisfied. For example, in the case of LG dynamics,

Æzðr; tÞzðr9; t9Þæ ¼ 2 kBT Gdðr� r9Þdðt � t9Þ; (18)

whereas, in the case of CH dynamics,

Æzðr; tÞzðr9; t9Þæ ¼ �2 kBT M=
2
dðr� r9Þdðt � t9Þ: (19)

In the case of CH dynamics, the =2 implies that a spatial

correlation in the random noise is required for Æz(r, t)z(r9,
t9)æ to be non-zero. In either case, to ensure that fluctuation-

dissipation is satisfied, Æz(r, t)z(r9, t9)æ must be proportional

to kBT. In the present work, where the fundamental units of

mass, distance, and time are as given in Table 1, at 308 K,

kBT ; 4.3 3 10�5 (10�16 kg(mm/ms)2), thus the noise term,

if included, would have to be very small. However, incor-

porating this thermal effect into the dynamics will be

explored in the future.

SMOOTH PARTICLE APPLIED
MECHANICS (SPAM)

The previously described free-energy model (A Landau

Model for Phase Separation), along with the two composi-

tion dynamics approach (LG and CH dynamics), still require

a scheme in which to evaluate both the integrals that appear

in the free-energy functional (Eq. 4), as well as the resulting

equations of motion, Eqs. 14 and 16. Furthermore, the

underlying membrane surface must be allowed to deform,

and it cannot be restricted in terms of its topology. As dis-

cussed in the Introduction, smooth particle applied mechan-

ics (SPAM) will be employed to resolve all dynamics.

SPAM, which is very similar to smoothed particle hydro-

dynamics (SPH) (Monaghan, 1992; Ellero et al., 2002), is a

Lagrangian formulation of fluid mechanics that employs

smooth particles to represent continuum field variables

(Lucy, 1977; Monaghan, 1992; Kum et al., 1995; Hoover

and Hoover, 2003; Hoover and Posch, 1996). A interpolation

scheme employing a short-ranged weight function W, with

range given by s, is used to define the continuum mass

distribution. Here, the mass density at some position r, is
given by

rðrÞ ¼ +
N

j

mWðjr� rjjÞ; (20)

where the sum over j corresponds to the sum over all N
SPAM particles. Following the notation in Hoover and

Hoover (2003), the smooth particle mass evaluated at posi-

tion ri is expressed as

ri ¼ rðriÞ ¼ +
N

j

mWðjri � rjjÞ: (21)

The Lucy Function (Kum et al., 1995) will be employed

for W, given by

WðrÞ ¼ D 1� r

s

h i3
11

3r

s

� �
r#s

¼ 0 otherwise; (22)

where s is the lengthscale of the interaction, r¼ jri – rjj, and
D is a constant that normalizes W(r). In the case of a bilayer

at macroscopic lengthscales, we consider a very thin mem-

brane embedded in a three-dimensional volume. In this case,

the normalization condition is expressed as Ær(r)æ ¼ r0,

where r(r) is the (non-zero) mass density of the membrane at

some position r and r0 is the mass density of the membrane

of interest. With this scenario, the continuum-level equations

of motion are recast as motion equations for smooth par-

ticles, where the interpolated SPAM solutions converge to

the exact continuum solutions by taking the correct limits

(i.e., when N, the number of SPAM particles, becomes large

and s, the interpolation lengthscale, becomes very small).

Details concerning the implementation of SPAM for viscous

fluids can be found elsewhere (Kum et al., 1995; Hoover and

Hoover, 2003; Hoover and Posch, 1996). Here, the focus

will be on the application of SPAM to model elastic mem-

branes coupled to composition dynamics.

Elastic membrane SPAM

Here a scenario considered where the underlying membrane,

which in a sense forms the computational grid for the com-

position dynamics, is allowed to deform in time. Further-

more, the focus is on closed surfaces, i.e., vesicles (although

this is not a requirement). Thus, the first task is to apply

SPAM to the problem of membrane dynamics, where the

possibility of introducing external perturbations is allowed;

for example, poking the membrane with an external probe,

much as is done in micromanipulation experiments (Rawicz

et al., 2000; Olbrich et al., 2000).More complex deformations

are, of course, possible, but they will not be explored here.

The solution to the momentum conservation equation is

required, which is written as

�= � P1 nF ¼ ra; (23)
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where P is the stress tensor, n is the number density, F is an

external force, r is the mass density, and a is the acceleration.
To solve this equation, a constitutive relation is required,

where an elastic constitutive relation for the plane stress is

employed here (Ayton et al., 2002a,b), given by

P ¼ �lðDA=A0Þ; (24)

where DA ¼ A � A0 and A0 is the initial area. In this

expression, a local coordinate frame is defined where the

membrane normal is along the local z axis, and thus the x and y
axes are orthogonal and in the plane of the membrane. In the

case of a perfectly spherical vesicle for example, the local z
axis would lie along the radial vector of the vesicle. Likewise

P corresponds to the negative of the plane stress. The bulk

modulus is given by l, and it can be calculated from atomistic

non-equilibrium molecular dynamics (NEMD) simulations

for specific systems (Ayton et al., 2002a,b).

In some cases, the bulk modulus can have a significant

composition dependence (Ayton et al., 2002b). The compo-

sition was thus coupled to the underlying elastic membrane

via

l ¼ l0 1 lff; (25)

where lf¼ l0/e, l0 is as given in Table 1, and e is a constant
that determines the strength of the composition-dependent

perturbation. The linear composition dependence on the bulk

modulus mirrors the composition dependence of the bending

modulus, which is responsible for the composition-curvature

coupling term in the free-energy functional, Eq. 11. Higher

order terms in Eq. 25, e.g., terms involving j=fj2, could also
be included. Values of e range from 10 to 100, depending on

the strength desired, and the actual value of l0 was selected

from that previously found from NEMD simulations of

DMPC/cholesterol mixtures (Ayton et al., 2002b) and taken

to correspond to a 1:1 mixture of DMPC/cholesterol. Of

course, in this study the possibility is left open that the two

phases might actually correspond to a ternary mixture that

has phase-separated into an effective binary mixture. How-

ever, this intermediate value of l0 is a reasonable estimate.

To get a more exact value of l0, a series of NEMD simu-

lations as in Ayton et al. (2002a,b), corresponding to the

explicit system under study, would need to be performed.

Given that the bulk modulus is proportional to the bending

modulus (Lipowsky and Sackmann, 1995; Brannigan and

Brown, 2004), it is reasonable to assume that this relation-

ship carries over to the bulk modulus. The result of this com-

position-dependent bulk modulus is that regions of f ; �1

become softer, whereas regions with f ; 1 become stiffer

and resist stretching.

With SPAM, momentum conservation, Eq. 23, is ex-

pressed as Kum et al. (1995), Hoover and Hoover (2003),

and Hoover and Posch (1996),

ai ¼ �+
j

m ðP=r2Þi 1 ðP=r2Þj
h i

� =iWðjri � rjjÞ; (26)

where ri¼ r(ri) andW(jri – rjj) is an appropriately normalized

smooth weight function (Kum et al., 1995; Hoover and

Hoover, 2003). If Eq. 24 is substituted into Eq. 26, one obtains

ai ¼ +
j

m
lj

r
2

j

A

A0

� 1

� �
j

1
li

r
2

i

A

A0

� 1

� �
i

" #
=iWðjri � rjjÞ;

(27)

where lj and li incorporate the composition dependence

of the bulk modulus for different SPAM particles. The ratio

(A/A0)i can also be calculated with SPAM via changes in the

density as

A

A0

� �
i

¼ ri0

ri

; (28)

where ri0, for example, corresponds to the initial mass

density of SPAM particle i, and in general ri0 6¼ rj0 for

i 6¼ j.
Thus, in the case that the initial starting structure is a well-

defined membrane, the equation of motion in Eq. 27 will

automatically evaluate the required in-plane stress response.

In this way, SPAM has yielded an easily evaluated elastic

membrane model. It is important to note that generally the

separation of in-plane and out-of-plane stress components is

not trivial in cases when the surface of the membrane has

complex undulations. Finally, an additional dampening term

can be included in Eq. 23 as was done in Ayton et al.

(2002b). A test of the accuracy of SPAM for the membrane

dynamics is given in the Supplementary Material.

Composition dynamics with SPAM

The SPAM-membrane scheme described in the previous

section only solves the underlying membrane dynamics. To

include, and couple, the composition dynamics (given by

Eqs. 14 and 16) a similar SPAM decomposition for df/dt
must also be performed.

Before proceeding, a brief review of the relevant SPAM (or

SPH)methodology is in order. Amore detailed discussion can

be found in, for example, Kum et al. (1995), Hoover and

Hoover (2003), andHoover and Posch (1996). The discussion

here will be restricted to the problem of representing com-

position, f, and any associated gradients, with the SPAM

methodology.

With SPAM, the continuum value of the composition,

f(r), can be expressed through

fðrÞrðrÞ ¼ +
N

j

mfjWðjr� rjjÞ; (29)

wherefj is the composition of SPAMparticle j. Thus a SPAM
particle can carry with it the intrinsic particle property of

composition. If the previous expression is evaluated at loca-

tion ri, that is, the instantaneous location of SPAM particle i,
one obtains
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fðriÞ ¼ +
N

j

mfjWðjri � rjjÞ=+
N

j

mWðjri � rjjÞ: (30)

Note that the continuum value of the composition at ri,
f(ri), is not necessarily the same as the particle property fi

(but, computationally, they are found to be very close). More

importantly, gradients of composition at ri can be evaluated

via

ð=frÞ
i
¼ +

N

j

mfj=iWðjri � rjjÞ; (31)

where (=fr)i is evaluated at ri, and the notation =i ¼ d/dri
has been employed. Since W is only a function of rij ¼ jri �
rjj, one can write

=iWðjri � rjjÞ ¼ ðdW=drijÞ=irij ¼ ðdW=drijÞr̂ij: (32)

In subsequent equations, the compact notations =iW(jri �
rjj) ¼ =iWij and =jW(jri � rjj) ¼ �=iWij will be employed.

Considering that

=ðrfÞ ¼ r=f1f=r; (33)

one can evaluate (=f)i as

ð=fÞi ¼ +
N

j

m

rij

½fj � fi�=iWij; (34)

where rij ¼ (1/2)(ri 1 rj). Employing the symmetric version

of the density ensures that, at a pairwise level (i.e.,

considering two isolated SPAM particles labeled i and j),
(=f)i ¼ (=f)j. This feature of SPAM, that being an enforced

pairwise symmetry, carries over to more complex scenarios;

for example when curvatures of various quantities are con-

sidered.

Again, employing f as an example particle property, one

can also employ SPAM to evaluate =2f. Any scalar particle

property can be used, for example the chemical potential, m

(as would be required under CH dynamics). For a composi-

tion field whose free energy is given by Fmix, the LG dy-

namics requires =2f,

@f

@t
¼ �G

dFmix½f�
df

¼ G
z
2

2
=

2
f; (35)

where the second line results from the functional derivative

of Fmix with respect to composition. To evaluate =2f with

SPAM, =2f can be rewritten as

=
2
f ¼ = � x; (36)

where x is equal to =f. One then has

= � x

r

� �
¼ 1

r
= � x � x

r
2 � =r: (37)

If a SPAM decomposition along the lines of that employed

to solve Eq. 23 is employed, an equation for the gradient of x
can be written as

ð= � xÞi ¼ +
N

j

m

rij

½xj 1 xi� � =iWij; (38)

where the additional particle property xi has been in-

troduced. The form of Eq. 38 is similar to the SPAM

equation for momentum conservation, Eq. 26.

In the case of CH dynamics, =2m is required (i.e., Eq. 16),

where m ¼ dF[fH]/df. Again, =2m ¼ = � z where z ¼ =m.

With SPAM, these expressions become

ðzÞi ¼ +
N

j

m

rij

½mj � mi�=iWij; (39)

and

ð= � zÞi ¼ +
N

j

m

rij

½zj 1 z i� � =iWij: (40)

Thus, under CH dynamics, SPAM particles not only carry

composition as an intrinsic particle property, but also as the

chemical potential. More importantly, the SPAM particles

can exchange these properties between one another.

In the case of LG dynamics, the final SPAM-LG equation

of motion is given by

dfi

dt
¼ � G

dF½f;H�
df

� �
i

1 ui � =fi � ai; (41)

where ai is found from an integral feedback mechanism

similar in form to the more familiar Nosé-Hoover integral

feedback (Hoover, 1985; Evans and Holian, 1985). In this

expression, ui is the velocity of SPAM particle i.
In the case of CH dynamics, a similar expression is found,

given by

dfi

dt
¼ Mð=2

mÞi 1 ui � =fi; (42)

where, in this case, no constraint on the total composition is

required. Again, mi ¼ (dF[f, H]/df)i, where the notation

(. . .)i implies that the functional derivative is taken first, then

the resulting expression is formulated with SPAM and

evaluated at position ri.

COMPOSITION DYNAMICS OF GUVS:
STATIC MEMBRANE

A SPAMGUVwas constructed where an initial set of SPAM

particles, randomly placed on the surface of a sphere of radius

12.6 mm, were allowed to anneal via Eq. 26, subject to the

constraint that the particles had to remain close to the surface

of the sphere. The constraint was implemented by simply

projecting out any accelerations and velocities parallel to the

local GUV radial vector. For very small annealing timesteps,

the SPAMparticles were very closely bound to the ideal GUV

surface, whereas for timesteps similar to that employed in

Table 1, small deviations resulted. The annealing was per-

formed by employing a symmetrized density (i.e., r ¼ 0.5

(ri 1 rj)) and with
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P ¼ ar
2I; (43)

where a¼ 5 mm5/(10�16 kg ms2) and I is the identity matrix.

This initial form for P results in an MD-like repulsive pair

potential between SPAM points (Hoover and Hoover, 2003),

providing a convenient means of annealing particles into low

energy configurations. The bulk moduli, li, were all fixed at

li ¼ l0. The tolerance for the constrained dynamics was set

such that small dents and bulges in the vesicle surface could

form, resulting in small local variations in curvature. After

the annealing process, the locations of the SPAM particles

were frozen, thus creating a static membrane surface. Once

this initial annealing procedure was completed, the elastic

SPAM membrane interaction (Eq. 27) was then employed.

The SPAMmembrane is held together by the pairwise elastic

contributions as in Eq. 27. For example, in the case that

a local region of the membrane is dilated from its initial state,

the membrane will respond with a local acceleration that

results in contraction. Likewise, if a local region is com-

pressed, the membrane pushes back. Moreover, the direction

of the resultant acceleration will closely follow the desired

in-plane response.

Performing a SPAM simulation requires two key re-

solution parameters: the lengthscale of W, which is given by

s, and then the reduced density, written as

r
� ¼ N

Ah
ðs2

hÞ; (44)

where the density has been explicitly defined in terms of the

membrane of thickness h. At continuum lengthscales (i.e.,

units of mm), s . . h. The lengthscale of W was set at s ¼
1.0 mm and r*¼ 2. Other parameters are given in Table 1. It

is important to note that at this lengthscale (i.e., mm) any

thermal undulations are subvisible and are not resolved at

the SPAM level. To be very clear, it is the nanometer scale

thermally induced bending undulations (Evans and Rawicz,

1997; Rawicz et al., 2000) that are below the resolution of

the model, and large-scale shape changes are indeed possible

within this methodology. Here, the pre-prepared state of the

GUV corresponds to one where the vesicle is under an

osmotic stress. As such, the initial area, A0, that is used in the

constitutive relation for the membrane dynamics (Eq. 27)

corresponds to a local area evaluated in the prestressed state.

The membrane could be further dilated from this point us-

ing an effective osmotic stress using methods previously

developed (Ayton et al., 2002b). As such, deformations in

the underlying membrane surface must come from external

sources or from static local variations in curvature.

The local curvature can be measured by first calculating

=2r, the curvature of the membrane density, and then by

defining H, the curvature, via H ¼ V=2r, where V is a

constant with units of mm4/10�16 kg. The constant V can be

easily estimated in the case of spherical vesicles by noting

that

VÆ=2
ræ ¼ �2=r; (45)

where the average is taken over the surface of the vesicle, r is
the radius of the vesicle, and the factor of 2 comes from the

fact that the surface is spherical.

Two SPAMGUVs were created: one with a rough surface,

where the constraint tolerance was set to be low and the an-

nealing process was terminated early, and one with a smooth

surface, where the constraint tolerance was increased and

a long annealing process was employed. By constructing

two different underlying membrane surfaces, the correlations

between domain formation and local curvature could be

more fully examined. Moreover, it is important to note that

the deviations in curvature are very small by design, as the

goal in this study is to see how small deviations in local

curvature can couple to domain structure. The rough vesicle

contained a number of surface defects, whereas the smooth

vesicle contained only very small surface deformations. In

Fig. 1, the lowest set of two snapshots show how the small

surface irregularities are distributed over the SPAM GUV

surface. The more darkly shaded blue regions correspond to

regions of more negative curvature, with the darkest regions

denoting those regions of the largest negative curvature (i.e.,

a bulge). The white regions actually correspond to local

regions of positive curvature (i.e., a dent).

One can define an apparent GUV radius from Eq. 45 with

V ¼ 1 mm4/10�16 kg, which can be used as a diagnostic to

define how accurately =2r is measuring the curvature. In the

rough case of ÆHæ¼�0.186V, it is found that Æ=2ræ gives an
apparent vesicle radius of 10.8 mm, which is slightly less

FIGURE 1 Column a, SPAM simulation snapshots of the rough GUV

after 700 ms with a*¼ 0.4 mm�2 and L*¼ 5. The top image corresponds to

CH dynamics, whereas the middle employs LG. Column b, SPAM

simulation snapshots of the smooth GUV with a* ¼ 0.2 mm�2 and L* ¼
8. The top image corresponds to CH dynamics, whereas the middle employs

LG. The red regions correspond to domains with f;�1, whereas the white

regions have f ;1. The corresponding curvature fields as found from H ¼
V=2r are shown on the bottom two images, where the color-coding scheme

is given on the bar on the left. The dark blue regions correspond to dents,

whereas the white regions correspond to bulges.
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than the actual radius of the vesicle, whereas, in the smooth

case, the apparent radius was found to be ;13.7 mm. In

either case, enforcing that V ¼ 1 mm4/10�16 kg, and mea-

suring the curvature directly via the SPAM curvature of the

density, is a reasonable approximation. It should noted that

in measuring the curvature, a SPAM weight function with a

larger cutoff was employed, where sc ¼ 3s and s represent

the original cutoff. This was found to be necessary to obtain

a smoother local measure of the membrane curvature. In

contrast to the composition dynamics where large gradients

such as =f occur, =2r is small and requires a slightly longer

range to detect the mass density curvature.

The results for the static rough GUVwill be presented here

first. Both LG and CH dynamics were employed; however, it

is important to note that the LG dynamics do not conserve

compositionwhen the curvature coupling term is included.As

such, a composition-stat was employed (Eq. 41). However,

even with the composition-stat, the LG dynamics seeks the

minima, but not necessarily in a physically meaningful way.

In fact, an inspection of Eq. 41 reveals that the LG dynamics

with ai can, in essence, pull composition out of the air or from

a fictitious composition reservoir whose chemical potential

is �Æaæ/G. That is, whereas the curvature coupling term will

always drive the composition to more negative values, the

composition-stat, ai, adds positive composition to maintain

the constraint that the composition must remain constant.

In contrast, the CH dynamics, by virtue that it changes

composition via fluxes, cannot locally create or destroy

composition. Rather, it must be transferred from one region

to another in a conserved fashion. It is important to note that,

although the total composition of the system is constrained to

be constant (i.e., zero), there is nothing explicit in either the

LG or CH dynamics, which constrains f to be rigorously

bounded by 61. Thus, the bistable potential V*(f) in Eqs. 7

and 15 acts not only to phase-separate the system but is also

a potential barrier to keep the composition within 61. As

such, the potential was chosen to be V*(f) ¼ a*f10/10 �
b*f2/2, which results in very steep repulsive walls, where, in

all cases, b*¼ a*. The values chosen for a* andL* are listed
in Table 1, and the simulations were performed over 300 ms.

The values chosen for a* and L* are not unique, and very

similar behavior was observed for a* ;0.2 � 0.6 and L*

;0.2� 1.0. This behavior will be discussed in more detail in

the next section.

The composition dynamics simulations were initialized

by randomly assigning each SPAM particle a composition

between 1 and�1, such that the total average composition of

the system was zero. As the system evolved in time under

either CH or LG dynamics, the initial composition distribu-

tion changed, eventually reaching a free-energy minimum.

The difference between CH and LG dynamics is more

clearly seen if the free-energy time-evolution is examined.

The free energy of the SPAM system can be evaluated from

Eq. 4. Defining the average number density rN¼ N/A, where
A is the surface area of the GUV, and considering the case

where local density fluctuations are small, then the free

energy can be expressed as

2FT½f;H�rN=z
2 ¼ +

j
j=fjj

2
1 a

�ðf10

j =10� f
2

j =2Þ
�

1L
�
fjH

2

j

�
: (46)

In Fig. 2 a, the quantity 2FT[f,H]rN/z
2 is shown for

the smooth GUV, where the LG dynamics (solid lines) are
characterized by an initial fast relaxation, while the CH

dynamics (dashed lines) exhibits a roughly 1/tn behavior.

The origin of the fast LG free-energy decay is not

immediately clear, but it suggests that after a relatively fast

relaxation the system reaches a free-energy minimum. The

CH dynamics, on the other hand, approaches the free-energy

minimum in a slightly different fashion. The interesting point

is that even though the raw LG dynamics do not conserve

composition in the case that curvature coupling is included,

they still seem to reach a similar free-energy minimum as

the CH dynamics when the composition-stat is included.

Apparently, the ad hoc addition of the composition-stat not

only maintains constant total composition, but actually

assists in directing the system to the free-energy minimum.

That the two dynamics give similar free-energy minima

can also be seen in Fig. 1, where the system has phase-

separated into two phases with very similar domain structure

(here the red regions correspond to domains with f ; �1,

whereas the white regions have f ; 1). The locations of the

domains are seeded by the small variations in the local

curvature, as shown in Fig. 1 (lower pair of images); here the
dark-blue regions corresponding to more negative curvature

H are roughly correlated with the red domains seen in the

upper panels of Fig. 1. These small bulges tend to anchor the

domains spatially, inhibiting the system from reaching a

FIGURE 2 The time-evolution of the scaled free energy, 2F[f,H]rN/z
2,

under CH and LG dynamics for the smooth GUV. The pair of curves in

a corresponds to the original smooth GUV with a*¼ 0.2 mm�2 andL*¼ 8.

The lower two pairs of curves correspond to systems undergoing the external

deformation, resulting in two symmetric dents along the simulation x axis.

The curves in b correspond to a*¼ 0.2 mm�2,L*¼ 8, whereas c is a*¼ 0.2

mm�2, L* ¼ 4. In each case, the lower curve in the pair corresponds to the

LG dynamics case (solid line), whereas the upper curve in the pair

corresponds to the CH dynamics (dashed line).
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completely phase-separated state (in the spherical GUV case,

this would eventually correspond to the system separating

into hemispherical domains). The rough GUV, as shown in

Fig. 1 a (left column of images) shows a patchy domain

structure under both CH and LG dynamics, whereas the

smooth GUV in Fig. 1 b (right column of images) has a more

organized structure.

COMPOSITION DYNAMICS OF GUVS:
DYNAMIC MEMBRANE

In McWhirter et al. (2004) a scenario was considered where

domain formation was examined at mesoscopic length-

scales, with thermal undulations giving significant defor-

mations of the membrane. In contrast, the lengthscales

employed in this study are much greater and on the order of

mm, far beyond resolvable amplitudes of the thermally in-

duced membrane undulations. As such, for the membrane to

actually deform in time, some sort of external perturbation

must be included.

One possibility for an external deformation would follow

along the lines of micromanipulation experiments (Rawicz

et al., 2000; Olbrich et al., 2000) where, in essence, the GUV

is poked, resulting in an indentation. In situations where the

domain formation was coupled to curvature, this experiment

could give insight into the details of the coupling. Of course,

in the case that curvature coupling is small, or even non-

existent, then this external deformation should not perturb

the underlying domain structure. Either way, this simple

deformation results in a controlled means of introducing a

locally enhanced region of curvature on the vesicle surface

that could influence and even alter domain formation. It

should be noted that an end goal of the present methodology

development is to describe cellular interactions where such

deformations are clearly important.

With the present SPAM LG/CH-membrane model, in-

cluding a small external deformation and allowing the

composition to couple can be readily implemented. Since the

SPAM representation of the composition dynamics (as given

by Eqs. 41 and 42) naturally resolves the problem in the

required reference frame, incorporating external deforma-

tions requires no additional work. In fact, when membrane

deformations are considered, the simplicity and elegance of

the SPAMmethod becomes evident. As opposed to requiring

the calculation of complex Jacobians and/or transformations,

SPAM automatically evaluates the required quantities in the

correct local reference frame, regardless of the local orien-

tation of the membrane. Once the deformation is imposed on

the GUV, the composition can then respond via the free-

energy functional, Eq. 4.

The smooth GUV as described in the previous section,

with its parameters given in Table 1, was subjected to a de-

formation in the form of an indentation along the simulation

x axis, such that a small dent resulted on opposite ends of the

vesicle. This symmetric deformation kept the total momen-

tum of the GUV at zero. The shape of the dent was designed

to mimic the shape of the tip of an external probe, which

could be, for example, a narrow rod ;5–10 mm in diameter,

with a slightly rounded tip. The actual details of the structure

of the probe are not crucial here; only the resulting force

acting on the GUV was actually employed. As the tip was

pushed in slightly over the course of 12 ms, the average

radius of the GUV (defined as ravg ¼ Æriæ, where ri is the

radius of the GUV evaluated at the location of SPAM

particle i) decreased from ;12.61 mm to ;12.58 mm.

Then, under LG and CH dynamics, the composition was

allowed to couple to this deformation over the course of 700

ms. The time evolution of the free energy is shown in Fig. 2,

where the pair of curves in Fig. 2 b correspond to systems

with a*¼ 0.2 mm�2,L*¼ 8, whereas the pair in Fig. 2 c had
a* ¼ 0.2 mm�2, L* ¼ 4. In each pair, the lower curve

corresponds to the LG dynamics case (solid line), whereas
the upper curve corresponds to CH dynamics (dashed line).
Clearly, including the dent has resulted in a substantially

lower free energy relative to the undented case (Fig. 2 a), and
even under fairly weak curvature coupling (i.e., the curves

in Fig. 2 b) the system can access a lower free-energy state.

Again, after a sufficiently long time, both the CH and LG

dynamics converged to very similar structures.

When compared to how the radius of the GUV changes,

the effect of the external deformation on the free energy

persists over much longer times (even though it took only

;12 ms for the dent to form). This effect is due to the slow

reorganization of the domain structure in response to the

indented surface.

A snapshot of the dented GUV is shown in the lower

image of Fig. 3. The undented GUV with identical pa-

rameters, and in exactly the same orientation, is shown in the

upper image. This snapshot is the same GUV as in Fig. 1 b,
i.e., the smooth GUV, but with a different orientation. As

was observed previously, the small surface irregularities

(indicated here by blue regions corresponding to curvatures

where H,�0.27 mm�1), act as nucleating sites for negative

composition, eventually anchoring f ; �1 domains.

With this level of SPAM resolution (N ¼ 4000 SPAM

particles), the domain boundaries are not perfectly sharp, as

shown by the intermediate colors in the boundaries. At this

level of resolution, only 50 h of CPU time, in serial, on a

1533-mHz AMD Athlon PC, was required. As such, re-

solutions an order-of-magnitude higher are within computa-

tional reach. In fact, using massively parallel schemes

(Ayton and Voth, 2004), resolutions up to three orders-of-

magnitude higher are possible. Likewise, at the present

resolution, simulations three orders-of-magnitude longer in

time are readily accessible.

The effect of denting the GUV is clearly evident. In the

lower image of Fig. 3, the blue ring of large negative

curvature, corresponding to the perimeter of the dent, is now

embedded within a f ; �1 domain that was not present in

the undented case (upper image). The original f ; �1
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domain, as seen in the upper image, flowed out and

enveloped the dented region. Also, new regions of f ;

11 have formed near the top of the vesicle so as to maintain

a total composition of zero. Thus the effect of the dent is not

a strictly local phenomenon, and it can alter domain

structures in other regions of the vesicle. These interesting

results may also be pertinent to the formation and evolution

of lipid domain rafts in real cellular membranes (see, e.g.,

Radhakrishnan et al., 2000; Pralle et al., 2000; Simons and

Ikonen, 1997). This will be a topic of future studies in our

group.

These results demonstrate that domain formation can, in

a sense, be controlled by externally imposed deformations on

vesicles. Of course, the degree of control is directly related to

the degree of curvature coupling in the system. As such, this

fairly simple test, whether carried out with a Landau free-

energy model or with a real experiment, could indicate

whether or not the curvature coupling is a key interaction in

the system.

COMPARISON WITH EXPERIMENT

In Composition Dynamics of GUVs: Static Membrane, a

static membrane was prepared with small surface deforma-

tions in the form of dents and bulges, and it was found that

the resulting domain structures were highly influenced by

small local deviations in curvature. The small dents and

bulges acted like both nucleation sites and domain anchors

inhibiting the domains from coalescing into larger structures.

In the absence of the curvature-composition coupling, the

coalescence would have eventually led to a complete phase

separation.

The experimental fact that some vesicles appear to form

bulged domains (Veatch and Keller, 2003; Baumgart et al.,

2004), whereas some do not (Veatch and Keller, 2002, 2003;

Bagatolli and Gratton, 2000), suggests that the full free-

energy model should span the entire regime from compo-

sition (Taniguchi, 1996; Jiang et al., 2000) to line tension

(Julicher and Lipowsky, 1993). The present model seems

adequate to explain those cases where bulged domains do not

appear. The present static membrane model can be thought

of as an adiabatic case, where the composition dynamics can

fully anneal to the underlying structure. Still, even when the

underlying membrane is static, some interesting comparisons

with experimental observations can be made. Firstly, the

domain structures in Fig. 1, a and b, clearly look nothing like
the dramatic bulged structures in Baumgart et al. (2004) and

Veatch and Keller (2003), where circular domains bulge out

of the vesicle. A least qualitatively, the present results appear

more like the patchy gel-liquid crystal domains as found in

Korlach et al. (1999) and Feigenson and Buboltz (2001) or in

Bagatolli and Gratton (2000). Of course, in our simulations,

the phase of the domain (i.e., liquid, gel, or even solid)

cannot be distinguished. Still, as noted in Veatch and Keller

(2002), liquid-liquid phase coexistence (typically observed

at cholesterol concentrations of ;10 mol % to 50 mol %) is

characterized by circular domains that eventually coalesce

into larger domains. However, when the phase coexistence is

solid-liquid, the solid domains are not necessarily circular,

and do not always merge.

Thus, based on these results, an interesting observation

can be made. In the gel-liquid crystal domains (Korlach et al.,

1999; Feigenson and Buboltz, 2001; Bagatolli and Gratton,

2000) it is reasonable to presume that the difference in the

bending modulus in the gel- and liquid-crystal phases is

fairly significant (compared to the fluid-fluid domains;

Baumgart et al., 2004). Furthermore, the domains in these

systems are not generally spherical and they do not coalesce.

The domain structures observed in Fig. 1 a result from a free-

energy model where the curvature coupling to composition

arises from a composition-dependent bending modulus. At

least qualitatively, the domain structures in the simulation

are similar to those observed in experiment. Thus, in the ex-

perimental case, could it be possible that these domains have

been both nucleated and anchored by very small, perhaps

almost not-measurable, variations in local curvature?

The present free-energy model also employs a minimalist

feedback in terms of how domains can alter the actual

structure of the membrane. The model employed here can

form domains, depending on the balance of mixing,

demixing, and curvature coupling, but, once the domains

have formed their effect on the underlying membrane, is

limited to perturbing the elasticmaterial properties that appear

FIGURE 3 Dynamic composition coupling to induced curvature. The

upper image is a snapshot of the smooth GUV as in Fig. 1 b, but rotated
slightly. The lower image is the same system in exactly the same orientation,

but with a dent located at the x-axis poles. Both snapshots were obtained

after 700 ms with CH dynamics, with starting conditions as described in

Composition Dynamics of GUVs: Static Membrane. The color-coding for

the composition is given in the bar on the left of the image, where red

corresponds to f; �1 and white corresponds to f ¼11. The blue regions

are the local curvature field superimposed on the images.
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in the constitutive relation (Eq. 24). Thus, at best, the

membrane will become softer (f;�1) or stiffer (f;1) due

to domain formation, but no new driving forces will be

introduced that will cause the membrane to bulge or distort.

This minimalist feedback to the underlying membrane

structure could significantly restrict the system from further

deforming.Our futureworkwill seek to generalize thismodel.

In the case where a large dent is created by an external

force, the original domain formation is drastically perturbed.

Even regions far away from the dent can have altered domain

structures. In this case, the induced curvature of the large

dent attracts domains that are composed of the soft material

(i.e., with a lower bulk and bending modulus). The sub-

sequent softening of the material allows the external probe to

push in a bit farther, thus increasing the curvature. It would

be very interesting to see experimentally how real vesicles

with domain structures respond to external deformations.

SUMMARY

Composition dynamics and domain formation have been

examined in this article on GUVs by extending a novel

continuum modeling scheme known as SPAM. A relatively

generic Landau model for phase separation, extended to

include curvature coupling via a linear dependence of the

bending modulus, was coupled to an underlying elastic mem-

brane model for the GUV. Both the time-dependent Landau-

Ginzburg and Cahn-Hilliard dynamics were then used to

solve the composition dynamics within an overall SPAM-

like algorithm. It was found that recasting the entire problem

with SPAM resulted not only in much simpler expressions

than those obtained by more standard means, but also that the

resulting simulation method was both efficient and surpris-

ingly accurate, given its relative simplicity.

The preliminary goal of this work was to explore the kinds

of domain structures, if any, that result from the free-energy

model being coupled to the underlying GUV surface. As

such, the restriction of a perfectly smooth sphere with con-

stant curvature was removed from the onset. In the case

where a GUVwas prepared with small surface defects (in the

form of small dents and bulges), it was found that these small

deformations could trigger the formation of domains on the

surface of the GUV. Furthermore, over the simulation time

that the system was examined (;700 ms), these surface

features essentially anchored the domains, restricting the

phase separation from reaching a final fully phase-separated

state. However, when the surface of the GUV was deformed,

the composition field was able to couple to the deformation,

and the result was a significantly altered domain structure.

Comparing these results to experimentally observed phe-

nomena provides some interesting insights. An unresolved

question involves the determination of the best free-energy

functional required to describe domain formation on GUVs.

The present model, by design, was kept relatively simple, so

the coupling to curvature was based on a bending modulus

that was linearly dependent on composition. Furthermore,

the coupling of composition back to the underlying mem-

brane dynamics was restricted to variations in the underly-

ing material properties, where the variation was motivated

by previous atomistic-level studies of similar systems (Ayton

et al., 2002b). This free-energy model can both form do-

mains and couple composition to local curvature. However,

once the domains are formed, the present model cannot result

in budding or bulging. As such, it can apply to cases where

bulged domain structures do not appear. It may also be

applied to cases where gel-liquid crystal domains of binary

mixtures are observed.

The external deformation simulation performed here was

inspired by micromanipulation experiments and, in that case,

the simulation confirmed the existence of curvature coupling

to domain formation. These results provide an intriguing

possibility for real GUV systems in which domain-to-cur-

vature coupling is operational.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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