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ABSTRACT Phase separation in a model asymmetric membrane is studied using Monte Carlo techniques. The membrane
comprises two species of particles, which mimic different lipids in lipid bilayers and separately possess either zero or non-zero
spontaneous curvatures. We study the influence of phase separation on membrane shape and the influence of the coupling of
composition and height dynamics on phase separation and domain growth, via both the degree of shape asymmetry and
relative kinetic coefficients for height relaxation.

INTRODUCTION

There is an increasing amount of evidence that the plasma

membrane of many cells is heterogeneous (Friedrichson and

Kurzchalia, 1998; Harder et al., 1998; Pralle et al., 2000;

Varma and Mayor, 1998). One type of membrane heteroge-

neity, termed ‘‘rafts,’’ are enriched in cholesterol, saturated

lipids such as sphingomyelin and glycosphingolipids, and

certain membrane proteins (Simons and Ikonen, 1997; Simons

and Toomre, 2000). They have putative roles in regulating

many cell functions, including signaling, endocytosis, apo-

ptosis, protein organization, and lipid regulation (Anderson

and Jacobson, 2002; de Jong et al., 1997; Edidin, 2001;

Simons and Ikonen, 1997; Thomas et al., 1994).

Raft formation in plasma membranes is a complex issue.

Not only is the composition of the plasma membrane of

living eukaryotic cells extremely complex, consisting of up

to 500 different lipid species and numerous proteins, but the

plasma membrane is also structurally and dynamically cou-

pled to the extracellular matrix and the cytoskeleton network

(Mayor and Rao, 2004). However, raft formation can be

driven by lipid-lipid interactions. Evidence for this comes

from model membrane studies in which a mixture of a sat-

urated lipid, an unsaturated lipid, and cholesterol can exhibit

phase coexistence (Dietrich et al., 2001; Lawrence et al.,

2003; Veatch and Keller, 2003). In this case the unsaturated

lipid assumes the role of nonraft lipids, because the nonraft

region of a membrane is enriched in phosphatidylcholine,

which typically has a saturated and an unsaturated acyl chain

(Barenholz and Thompson, 1999; Shinitzky, 1984). The

unsaturated acyl chain contains one or more double bonds of

the cis configuration (Barenholz and Thompson, 1999;

Shinitzky, 1984), which produces ‘‘kinks’’ and prevents the

lipids from close packing. Lipids in membrane rafts, on the

other hand, are more ordered owing to their saturated acyl

chains facilitating close packing. The saturated nature of raft

lipids is thought to promote their interaction with cholesterol

(Brown and London, 1998). The ordered (raft) phase can

range in size from the nanometer to the micron scale (Silvius,

2003).

There is no current agreement on the size of rafts in living

cells (Devaux and Morris, 2004), but the consensus is that

their sizes are smaller than the optical diffraction limit

(250 nm) (Kusumi et al., 2004). For example, clusters of

specific proteins thought to be raft components have been

estimated to be ,70 nm in size (Friedrichson and Kurzchalia,

1998; Varma and Mayor, 1998). However, Gaus et al. (2003)

observed that domains of higher acyl-chain alignment in

living cell macrophages appeared to be of the order of mi-

crometers. They propose that either individual rafts could be

clustering together or that raft sizes in macrophages has been

previously underestimated. It is well known that the plasma

membrane of eukaryotic cells is asymmetric, with phospha-

tidylserine and phosphatidylethanolamine predominantly

found on the inner leaflet, and phosphatidylcholine, sphingo-

myelin, and glycosphingolipids predominantly, if not exclu-

sively, found on the outer leaflet (Devaux, 1991). Hence,

membrane components in rafts in biological membranes are

likely to be asymmetrically distributed across the bilayer.

Furthermore, sphingolipid headgroups occupy larger areas in

the plane of the outer leaflet than their predominantly sat-

urated acyl chains (Simons and Ikonen, 1997). This leads to

these lipids packing as a truncated cone (Israelachvili, 1998).

Given that there is a likely asymmetric distribution of mem-

brane components across the bilayer of rafts and the geom-

etries of the components facilitate membrane bending, it is

reasonable to assume that rafts have a spontaneous curvature.

A recent

two-photon microscopy experiment performed on living cells

indeed suggests that membrane domains do have curvature

(Gaus et al., 2003). This spontaneous curvature sets a length

scale for domains given by the radius of curvature. Therefore

it is possible that the spontaneous curvature of rafts may limit

their size in living cells. However, model membranes tend

to have a symmetric distribution of membrane components

across the bilayer (Devaux and Morris, 2004), and so, the-
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oretically, the maximum length scale of a domain is set by the

system size. In practice, however, the domain size in this case

is limited by slow coarsening.

There have been many studies in the past decade of the

influence of bending and spontaneous curvature on the

morphology of membranes. Lipowsky (1992) in particular

studied budding in a simple model of a domain of spon-

taneously curved material in a flat matrix. He showed that

the instability to budding is governed by the competition

between line tension of the domain edge and the bending

energy of the domain, where an increase in line tension leads

to a more budded domain. However, surprisingly, this work

did not consider the effect of frame tension on domain

morphology. Jülicher and Lipowsky (1993, 1996) later

studied the energetics and shapes of budding of single or few

domains on vesicles in much detail. Experiments performed

around the same time include work by Kas and Sackmann

(1991) and Döbereiner et al. (1993). They observed rich

shape-transition behavior, including domain-induced bud-

ding, in multicomponent lipid bilayer membranes. Recently

Baumgart et al. (2003) visualized coexisting liquid phases in

giant unilamellar vesicles via fluorescence imaging. They

used two dyes that preferentially labeled different fluid phases

in a ternary system, comprising sphingomyelin, dioleoyl-

phosphatidylcholine, and cholesterol, hence providing a

correlation between domain composition and curvature.

They followed the model of Jülicher and Lipowsky (1996) to

extract the line tension between coexisting liquid domains in

the absence of spontaneous curvature. They observed domain

ordering over the entire vesicle that corresponded to the

curvature pattern of the domains. If these domains were in a

fluid phase and were surrounded by a gel matrix, then one

possible mechanism for domain curvature is that the more

flexible fluid phase will bend. However, in that study, the

bending moduli of the domains were approximately equal;

and since there was no spontaneous curvature, bending

energy must not be responsible for domain curvature.

The static morphology of domains in the high concentra-

tion limit has been well studied, and a variety of striped and

hexagonal structures have been predicted as a function of

composition, degree of segregation, and different elastic

constants of the separate phases (Andelman et al., 1992;

Gozdz and Gompper, 2001; Guttman and Andelman, 1993;

Harden and MacKintosh, 1994; Kawakatsu et al., 1993;

Taniguchi et al., 1994). More recently, the dynamics of

multicomponent membranes has been explored. Kumar and

Rao (1998) introduced an off-lattice kinetic Monte Carlo

technique for studying the dynamics of multicomponent

membranes in vesicle form. More recently, Chen (2004)

studied membrane shape instabilities in active membranes.

Hansen et al. (1998) addressed the effects of intermonolayer

coupling both on the lateral ordering processes and the con-

formational behavior of the bilayer membrane. The inter-

monolayer coupling was represented by a term that

incorporates the spontaneous curvature. They show a variety

of phase diagrams including both symmetric and transversely

asymmetric phase-separated states with different degrees of

bilayer undulation. Laradji and Kumar (2004) recently

studied domain coarsening in multicomponent bilayer fluid

vesicles via dissipative particle dynamics in the absence of

spontaneous curvature. Their study is novel since it considers

hydrodynamic effects and area/volume constraints. They

found that flat circular domains form initially regardless of the

area/volume ratio. At later times, budding that leads to

vesiculation was observed when there is excess area, in order

to reduce line tension. For the case where there was no excess

area, coarsening proceeded mainly via coalescence of flat

circular patches.

In this article we study how the spontaneous curvature and

associated bending (curvature) of phase-separated domains

under an applied frame tension control both their morphol-

ogy and evolution. We represent a membrane as a binary

mixture of U and S particles, respectively representing un-

saturated and saturated lipids. To implicitly treat a bilayer,

a particle represents an assumed local compositional dif-

ference between two leaflets of a bilayer, and hence we

assume locked monolayers. This single layer model cor-

responds to a quench into the transversely asymmetric HO2

state in the work by Hansen et al. (1998). Our approximation

is expected to fail for short times because of interlayer fric-

tion, and one can, in principle, have much richer dynamics in

which phase separation within the two monolayers is either

coupled or uncoupled, depending on the lipid environments

of the two monolayers. We leave these complications for

the future, but see recent work by Sens (2004) addressing

budding induced by adding excess lipids to one leaflet,

which leads to a competition between bending and inter-

monolayer diffusion. To model the spontaneous curvature

of the domains, the membrane is assumed to have a local

spontaneous curvature proportional to the area fraction of

S particles. Note that in reality, however, either saturated or

unsaturated lipids can induce a spontaneous curvature in a

membrane since this merely reflects the degree of asymmetry

across the bilayer, which is determined by the local envi-

ronment of the two leaflets.

The summary of this article is as follows. In Morphology

of Domains, we use a simple analytic model of a spherical

cap in a background matrix to study the expected transition

to budding and raftlike (nonbudded domains) as a function of

frame tension, line tension, and bending energy. This com-

plements and duplicates more detailed recent (largely

numerical) work on budding in homogeneously phase-

separated domains (Gozdz and Gompper, 2001; Harden and

MacKintosh, 1994; Kumar et al., 2001), and also sets the

scene for the relevant parameter range to be explored

numerically. In this section we also simulate the morphology

and membrane shapes as a function of different degrees of

phase separation, both coarsening extent and composition

difference between phases. Then, in Continuum Theory for

Coarsening of Domains, we study the evolution of height
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and composition degrees of freedom within a continuum

model, following the classical theories of spinodal de-

composition coupled to height fluctuations. We compare

membranes that relax by either permeable or impermeable

dynamics, and explore how height fluctuations can speed up

coarsening and influence the length scales. We then present

our Conclusions.

MORPHOLOGY OF DOMAINS

Macroscopic model

Initially we study how the competition between the energetic

features within a membrane control the shape of domains. To

do this we use a macroscopic model. The free energy G of the

membrane comprises three terms: the line energy, the bending

energy, and the frame energy. The line energy is given by

Gline ¼ lLd; (1)

where l is the line tension and Ld is the length of the domain

edge. For a flat circular domain, the length of the domain

edge is given by 2pR, where R is the radius. However, this

does not correspond to the lowest line energy since it can be

reduced through the domain becoming budded (Lipowsky,

1992); see Fig. 1.

Such domain shapes shown in Fig. 1 can incur a bending

energy, given by

Gbend ¼
kA

2
ðC1 1C2 � C0Þ2

(2)

(Boal, 2002), where k is the bending rigidity, A is the surface

area of the domain, C1 and C2 are the principal curvatures of

the domain, and C0 is the domain’s spontaneous curvature.

The domain has a minimal bending energy if its curvature is

equal to the spontaneous curvature. We have neglected the

Gaussian bending energy, which would give rise to an ef-

fective shape-dependent line tension at the interface between

domains, proportional to the difference in Gaussian cur-

vature moduli. However, we are interested in how the spon-

taneous curvature influences the morphology and evolution

of domains, and thus consider identical curvature moduli in

both phases.

Finally, frame tension in the membrane suppresses mem-

brane deviations from the flat state. Frame tension arises

because the membrane is assumed to be part of a larger

system, i.e., a vesicle or a cell. The work done against the

frame tension is given by

Gframe ¼ sðA � AflatÞ; (3)

where s is the frame tension and Aflat is the projected area of

the S domain onto the flat plane.

We define the dimensionless quantities,

R̂ ¼ R

Rmin

; b ¼ A

Amin

; ŝ ¼ s

kC
2

0

; l̂ ¼ l

kC0

; e ¼ G

kAC
2

0

;

(4)

where G ¼ Gline 1 Gbend 1 Gframe, and Rmin ¼ 2/C0 and

Amin ¼ 4pR2
min, are the domain radius and area, respectively,

that minimize the bending energy. With this notation, the total

energy now has the form

e ¼ 1

2

1

R̂
� 1

� �2

1
ŝb

R̂2 1
l̂

2

1

b
� 1

R̂2

� �1=2

: (5)

We now calculate the shape of a domain of S particles

within a U membrane as a function of ŝ and b. We assume an

ideal spherically curved S domain and a flat U domain (Fig. 2),

and neglect thermal fluctuations and the elastic interactions

between the U and S domains. This will give a lower limit on

the domain free energy, since a physical system will relax the

sharp interface between phases. More precise shapes have

been calculated previously (Harden and MacKintosh, 1994;

Lipowsky, 1992), but this calculation gives a serviceable

estimate of the boundaries between different shapes.

Minimizing Eq. 5 with respect to R̂ gives

R̂ ¼ 11 2ŝb� l̂

2

1

b
� 1

R̂
2

� ��1=2

: (6)

A fully formed bud occurs when cos u ¼ – 1, where cos u

is given by

cos u ¼ 1 � 2b

R̂
2 : (7)

Hence the condition for a bud is R̂2 ¼ b: Substituting this

into Eq. 6 gives

ŝ ¼ b
1=2 � 1

2b
: (8)

FIGURE 1 Possible domain shapes.

FIGURE 2 Spherically curved raftlike domain comprising S particles

within a flat U membrane.
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Therefore, the maximum value of ŝ allowable to form

a bud is 0.125. Substituting average values for the lateral

tension (;10�4 m Nm�1) and the bending modulus (;10�19 J)

from Baumgart et al. (2003) into the expression for ŝ shown

in Eq. 4 leads to a minimum value of spontaneous curvature

required to form a bud of 2.83 mm�1. In this particular case,

domains that have a flat radius Rdomain . 2.83 mm will form

a bud, using the expression for b in Eq. 4 and given that

Rmin ¼ 2/C0.

For a raft, cos u $ 0, giving the condition R̂2 $ 2b:
Substituting this into Eq. 6 gives

ŝ$
1

ð2bÞ1=2
11

l̂

2
� 1

ð2bÞ1=2

 !
: (9)

Eqs. 8 and 9 define the shape of the S domain as a function

of ŝ and b (Fig. 3).

For b ¼ 4, ŝ ¼ 0:3; and l̂ ¼ 0:0; a domain would be in

the raft regime. Reducing ŝ at constant b causes the domain

to bud, and eventually leave the membrane. Similarly, for

b ¼ 0.5, ŝ ¼ 0:2; and l̂ ¼ 0:0; a domain would be in the raft

regime. Increasing b at constant ŝ, i.e., due to coarsening after

a quench into the phase coexistence region, causes the domain

to enter the budding regime before re-entering the raft regime.

This re-entry into the raft regime arises because the bending

energy per unit area A of a domain is independent of A and the

applied frame energy per unit area is linear in A (Eq. 5).

Therefore for small A the bending energy dominates and the

system favors a curvature approximately equal to C0. As A
increases, the tension term dominates, which reduces the

height of the domain. Upon increasing l̂ the raft line shifts

toward higher ŝ and lower b. Hence, the length of the domain

boundary decreases in order to reduce the line energy. This

causes the domain to approach or enter the budding regime.

Whether the re-entrant regime would be reached during

coarsening depends on the relative kinetics of height growth

and coarsening; in all likelihood the budding regime would

intervene kinetically. The bud line does not depend on l̂ since

this is where the length of the domain edge becomes zero. Our

study is consistent with Lipowsky’s study of domain budding

(Lipowsky, 1992) in the zero frame tension limit, but the re-

entry behavior at finite frame tension is new.

Mesoscopic model

We now investigate how the competition among the bending

energy, the frame energy, and the interaction energy between

the U and S particles leads to different morphological do-

mains for a mesoscopic model. We model the bilayer as a

two-dimensional lattice with sides of length L. Each lattice

site is occupied by one of the two types of particles, U or

S, of equal area a2. The particles have two degrees of free-

dom; they can laterally exchange positions with neighboring

particles, and can change their height h(x, y). We adopt the

Monge representation of a single-valued height h(x, y),

which prohibits overhangs. All energies are measured in

units of kBT and all lengths are measured in units of the

lattice spacing a. Particle height changes are selected

randomly between 60.13a since this gave rise to acceptance

percentages of order 20%. Particles positioned at the edges

of the membrane have zero height.

The lipid-lipid interaction energy is given by

Gint ¼ +
Æi;jæ

+
a;b

fiafjbVab; (10)

where fia is the composition of species a at lattice site i,
where a can be U or S. The value Vab is the contact energy of

nearest neighbors. The physical contribution to Vab is from

electrostatic, van der Waals, and hydrophobic interactions

between the lipids. This term can lead to phase separation if

the strength of the energetic interaction between U and S
particles (VUS) relative to their self-interactions (VUU, VSS),

x, given by

x[
2ð2VUS � VUU � VSSÞ

kBT
; (11)

satisfies x . xMF ¼ 2 within mean field theory (Jones,

2002), or x . xc ¼ 3.526 in a physical system incorporating

critical fluctuations (Ising model) (Huang, 1987). Hence, for

VUU ¼ VSS ¼ 1, phase separation occurs if VUS . 1.88.

The bending energy is given by

Gbend ¼
k

2
+
i;j

ð2Hij � C0ijÞ2
; (12)

where the summation is over all lattice sites. We assume

kS ¼ kU [ k for simplicity. The local mean curvature Hij at

site i, j is given by

Hij ¼
ð11 h

2

xÞhyy 1 ð11 hyÞ2
hxx � 2hxhyhxy

2ð11 h
2

x 1 h
2

yÞ
3=2

(13)

FIGURE 3 Shape diagram illustrating bud, budding, and raft regimes for

an S domain within a flat U membrane as a function of reduced area b and

frame tension ŝ for different reduced line tension l̂. Raft line (solid); bud

line (dotted).
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(Boal, 2002), where hx [ @xh(i, j), hxy [ @x@yh(i, j), etc., and

all derivatives are computed discretely at each lattice site i, j
from height values averaged over nearest neighbors. To

reduce possible lattice symmetry effects, the mean curvature

was computed as an average of that calculated in x�y and

x9�y9 coordinate systems, where the x9�y9 axes are rotated

with respect to the x�y axes by 45�.
The spontaneous curvature C0ij is given by

C0ij ¼ �aÆfæij; (14)

where the local composition Æfæij is averaged over, typically,

N ¼ 25 lattice sites centered at i, j, so that the spontaneous

curvature varies smoothly. The spontaneous curvature factor

a implicitly contains both geometrical information about the

particle shapes (e.g., tail length, head size, and nature of pack-

ing) and their asymmetric distribution across the bilayer. The

character a ranges from no spontaneous curvature, a ¼ 0, to

a maximum value typically of order a ;1, when the height

difference between a central particle and its neighbors is

equal to one lattice spacing. The frame energy is given by

Gframe ¼
s

2
+
i;j

½ð11 ð=hijÞ2Þ1=2 � 1�; (15)

where hij is the height of the particle at site i, j.
The simulations were evolved from an initial state by

accepting or rejecting trial configurations according to the

Metropolis criterion (Metropolis et al., 1953). A series of

such steps allowed the membrane to approach equilibrium.

One Monte Carlo cycle is defined as the number of steps re-

quired for each lattice site to have the opportunity to change

its configuration.

Exploration of shape diagram from simulations

Simulations for a system comprising a central circular

domain of S particles within a U membrane were performed

to explore the shape diagram shown in Fig. 3 (Fig. 4). This

diagram is expected to be a mean field description of the

problem, since no thermal fluctuations were included in the

estimates above. Note that the effect of l̂ could not be

explored since the particles were only allowed to move in the

vertical direction.

As anticipated, an increase in ŝ at constant b leads to

a flatter membrane domain as it is forced further into the raft

regime (Fig. 4 a). Reducing b at constant ŝ leads to a higher

membrane domain (Fig. 4 b). For this range ofb, re-entry into

the raft regime should be observed according to Fig. 3.

However, the effect of elasticity at the interface between the

domain and the surrounding membrane was not considered in

the simple analytical model: an abrupt change in curvature

from the flat U domain to the spherically curved S domain is

energetically unfavorable, and continuity and boundary con-

ditions lead to a smooth deformation away from the idealized

cap morphology. Note that k was set equal to 1000 in Fig. 4

b for reasons of clarity since, for larger values of k, thermal

fluctuations have a smaller effect. However, similar trends are

observed for smaller values of k. Fig. 4 c shows membrane

cross sections for simulations having the same value of ŝ and

b but differing values of s and k. As expected by comparison

with the shape diagram (Fig. 3), these cross sections look very

similar, with changes in the detailed shape and degree of

thermal fluctuations for lower values of s and k.

Effect of composition on curvature

Simulations were then performed to analyze the effect of

varying the composition of the central circular domain on the

domain curvature (Fig. 5).

Using Eq. 6 and the definition for R̂, where Rmin ¼ 2/aÆfæ,
the estimated domain radii R are N, 41.6, 20.8, 13.9, 10.4,

and 8.3 for a domain of f equal to 0.0, 0.2, 0.4, 0.6, 0.8, and

1.0, respectively. The curvature radii of the domains was

calculated by inscribing a circle at the apex of the curved

domain, from Fig. 5 b. These radii are approximately equal

to N, 11.9, 9.5, 9.0, 7.6, and 6.2 for a domain of f equal to

0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. Differences

between the analytical estimates and the simulation data are

due to the simple analytical model used, in particular due to

FIGURE 4 Membrane cross sections at L/2 for

a circular domain of radius 12. (a) Varying ŝ by

changing s. (From left to right, s ¼ 6, 15, 25, 50, and

100; a¼ 0.3 and k¼ 100.) (b) Changing a and s to vary

b and maintain fixed ŝ ¼ 0:24: (From left to right, a ¼
1, s ¼ 240; a¼ 0.5, s ¼ 60; a¼ 0.3, s ¼ 27; a¼ 0.24,

s ¼ 13; a¼ 0.1, and s¼ 2.6.) (c) Varying s and k while

maintaining b ¼ 2.3 and ŝ ¼ 0:24; with a ¼ 0.5. The

thick solid line corresponds to the location of the S
domain. l̂ ¼ 0:0: Note that the vertical scale is magnified

compared to the horizontal scale, and the small slope

limit @h/@r � 1 is well satisfied in all cases.
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the neglect of smooth elastic deformation. Note that in Fig. 5

b the membrane immediately surrounding the S domain does

not have zero height, but is pulled up by the domain. This

effect is more pronounced for higher f. This buckling up

would lead to the smaller observed R. In either case (simple

model or calculation), the domain radii decreases (i.e., the

curvature increases) with increasing f, because this leads to

an increased asymmetry across the domain bilayer.

Next we analyze how a phase-separated state influences

the bending of the membrane. A membrane that was held flat

was quenched from a high-temperature mixed state into the

phase coexistence region (Fig. 6 a) and coarsening allowed

us to proceed with the membrane held flat. Once phase sepa-

ration had been achieved, the composition was held fixed

while the height evolved, until the shapes seen in Fig. 6 de-

veloped. As expected, peaks in the membrane cross sections

correspond to the location of S particles (Fig. 6, b–d).

Moreover, increasing a leads to higher and more highly

curved domains, corresponding to the local spontaneous

curvature. The range from a¼ 0.2 to a¼ 0.5 remains within

the raft regime noted in the shape diagram, Fig. 3.

CONTINUUM THEORY FOR COARSENING
OF DOMAINS

We next study the evolution of composition and height after

a quench into the phase-separated regime, using a contin-

uum model to describe the emergence of long wavelength

structure. In this work we only study the initial stages of

growth, in which the deviations of composition from the

mean and of the height from a flat state are both linear. The

free energy of a membrane comprising line energy, bending

energy, and frame energy can be written, in the Monge gauge

and to second order in height fluctuations, as

G ¼
Z

f0ðfÞ1
l

2
ð=fÞ2

1
k

2
ð=2

h � C0ðfÞÞ2

�

1
s1 kC0ðfÞ2

2

� �
ð=hÞ2

�
dx dy; (16)

where f0(f) is the free energy density for a uniform mixture

of composition f, and C0(f) is the spontaneous curvature

for a membrane of composition f. The final term above

proportional to kC2
0 arises from expanding the area measure

dA ¼ dx dy (1 1 (=h)2)1/2 to second order in h (Gozdz and

Gompper, 2001).

Phase separation and domain coarsening

The local composition variable f (typically area fraction)

obeys the continuity equation (mass conservation),

@f

@t
¼ �= � J; (17)

FIGURE 5 Effect of composition on curvature.

(a) Varying compositions of a central domain

within an all U membrane. (From left to right,
f ¼ 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.) U, solid; S,

open. (b) Membrane cross sections at L/2. S, (d);

l̂ ¼ 0:

FIGURE 6 Coupling of curvature to composition and degree of asym-

metry for a membrane that was quenched into the phase coexistence region.

(a) Top view of the final membrane configuration indicating the L/2 position.

x ¼ 8. U, solid; S, open. Membrane cross sections for simulations having

s¼ 60, k¼ 1000; (b) a¼ 0.2, ŝ ¼ 1:5; and b¼ 0.1; (c) a¼ 0.35, ŝ ¼ 0:5;

and b ¼ 0.3; and (d) a ¼ 0.5, ŝ ¼ 0:2; and b ¼ 0.6. U, (d); S, 3. l̂ ¼ 0:

b was determined as b ¼ p‘2/Amin, where ‘’ 6 is the characteristic length

scale of the phase-separated pattern.
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where the flux J of material is given by Fick’s law,

J ¼ �M=m (18)

(Jones, 2002), where M is the particle lateral mobility and

m [ dG/df is the chemical potential. Upon combining with

Eqs. 17 and 18, we can expand the composition dynamics to

linear order in deviations of composition and height. We use

a Fourier expansion,

f ¼ f0 1 +
q

~ffqt cosðq � rÞ (19)

h ¼ h0 1 +
q

~hhqt cosðq � rÞ; (20)

where f0 and h0 ¼ 0 are the constant composition and

height, respectively.

To linear order in the q 6¼ 0 modes, we find

@~ffqt

@t
¼ �Mq

2 ðf$0 1 lq
2
1 ka

2Þ~ffqt � kaq
2~hhqt

� �
; (21)

where

f$0 ¼
@

2
f0

@f
2

����
f0

and we have used the relation C0 ¼ – aÆfæ, Eq. 14.

Neglecting height changes ~hhqt ¼ 0,

~ffqðtÞ ¼ ~ffq0 cosðqxÞ exp½�Mq
2ðf$0 1 lq

2
1 ka

2Þt�; (22)

where the exponential term governs the evolution of

composition fluctuations. Inside the spinodal line, f$0 , 0

and composition fluctuations grow for wavevectors q that

satisfy Mq2f$0 .Mq4l1Mq2ka2. Hence the bending energy,

according to Mq2ka2, acts to suppress phase separation.

Indeed, as can be seen from Eq. 21, the coupling to bend-

ing effectively increases the critical x for demixing by xc /
xc 1 ka2, within mean field theory.

We now compare with simulations. A flat membrane

comprising f¼ 0.5 was quenched from a high-energy mixed

state into the phase coexistence region. In the absence of

coupling to curvature, the characteristic domain length scale

‘ grows as ‘ ; t1/3, as expected for coarsening due to

diffusive growth (Jones, 2002). Fig. 7 shows the effect of

coupling to curvature on domain coarsening as a function of

varying the interaction parameter x, the bending rigidity k,

and the spontaneous curvature factor a.

For x equal to 3 or 4 (Fig. 7 a), the membrane is not in the

phase-separation regime. Increasing x from 5 to 8 leads to

purer phase-separated domains that grow more slowly as the

energy cost of a U–S contact becomes higher. Increasing

both k and a suppresses phase separation, since the bending

energy of a large S domain will be high because the

membrane cannot deviate from the flat state. This trend

agrees with the theory, since an increase in the ka2 term

leads to a reduction in the exponential growth of composition

fluctuations (Eq. 22). Hence, ka2 increases the effective

critical x of the mixing-demixing transition. Two of the

simulations performed had the same value of ka2 (marked

with an asterisk). The particle configurations are similar,

as expected in this case (Eq. 22). The simulations having

k ¼ 65 (Fig. 7 b) and a ¼ 0.4 (Fig. 7 c) are not in the phase-

separation regime. Interestingly, increasing the depth of the

quench into the phase coexistence region via increasing x

leads to slower coarsening since there is a reduction in

particle lateral mobility. However, increasing the depth of

the quench via reducing either k or a speeds up coarsening,

since these quenches do not increase the local incompatibil-

ity of different monomer species.

Height growth

The height evolution for a porous membrane is given by

@h

@t
¼ � 1

z1

dG

dh
; (23)

where the friction coefficient z1 is due to dissipation within

and solvent flow through the pores (Leng et al., 2001;

Marlow and Olmsted, 2002). Using Eqs. 23 and 16 and

ignoring edge effects, we find

@h

@t
¼ �k

z1

ð=4
h1a=

2
fÞ1 s

z1

=
2
h: (24)

In Fourier space, this is given by

@~hhqt

@t
¼ 1

z1

½kaq2~ffqt � ðsq2
1 kq4Þ~hhqt�: (25)

FIGURE 7 Effect of varying (a) x, (b) k, and (c) a on a flat membrane.

Particle configurations were obtained after 1750 Monte Carlo cycles.

L ¼ 100, f¼ 0.5. U, solid; S, open. The simulations marked with an asterisk

had the same value of ka2.
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For an impermeable membrane, this equation becomes

@~hhqt

@t
¼ 1

qz2

½kaq
2~ffqt � ðsq

2
1 kq

4Þ~hhqt� (26)

(Brochard and Lennon, 1975; Messager et al., 1990), where

qz2 is due to dissipation incurred in the velocity field set up

by moving membranes in the surrounding solvent (Brochard

and Lennon, 1975).

Equation 24 implies that a sharper interface will speed up

the initial height growth of the membrane. To study this in

the simulations, the height was evolved from a flat membrane

with a straight U stripe of varying width, which spanned the

system placed in the center (=2h ¼ =4h ¼ 0), so that

@h

@t

����
t¼0

¼ �ka

z1

=
2
f: (27)

Since Æfijæ drives the height evolution (Eq. 14), where the

average is taken over 25 sites centered at site (i, j), an

effectively sharper interface is formed for increasing stripe-

width w until saturation for w ¼ 5 lattice sites. This then

increases =2f, which speeds up the height growth of the

surrounding membrane (Fig. 8).

Equation 27 also predicts the form of the initial height

growth of a domain. The local composition on the U (C0 ¼ 0)

side of the interface between the U and S domains obeys =2f

. 0, so the local height should decrease with time; similarly,

=2f, 0 on the S side, where the local height should initially

increase with time. In the center of the domain, =2f¼ 0 since

the composition is uniform, and the center is initially sta-

tionary (Fig. 9 a). Hence growth should propagate in from the

edges of the domain, as found in the simulations (Fig. 9 b).

Coupled composition and height growth

Finally, we consider simultaneous composition and height

evolution after a quench. This problem has recently been

addressed firstly by Kumar and Rao (1998), who studied the

same problem in the absence of a tension and omitted the

contribution kC2
0 in Eq. 16, and secondly by Chen (2004),

who studied active membranes. Equations 21 and 25 can be

written as

@

@t

~ffqt

~hhqt

� �
¼ V

~ffqt

~hhqt

� �
; (28)

where

V ¼ Mq
2

�f$0 � lq
2 � ka

2
kaq

2

ka

Mz
� s

Mz
� k

Mz
q2

 !
(29)

and

z ¼ z1 for a porous membrane

qz2 for an impermeable membrane:

�
(30)

Hence, ka controls the strength of the coupling between

composition and height growth, and j ¼ ð1Þ=ðMzÞ controls

the dynamic coupling. For j � 1 the diffusive coarsening is

faster than height growth, whereas for j � 1 the height

evolves faster than diffusive coarsening.

Assuming the solutions

~ffqt ¼ fqvevqt
(31)

~hhqt ¼ hqve
vqt
; (32)

we have

vq

fqv

hqv

� �
¼ V

fqv

hqv

� �
: (33)

Hence, the eigenvalues (L1, L2) of the matrix V yield the

rates vq, which govern the growth of composition and height

fluctuations. Because the second eigenvalue L2 was stable in

the entire q-range for the parameters we consider, we will

focus on the effect of L1 on domain growth. Fig. 10 shows

the growth rate vq [ L1 as a function of q for a porous

membrane, for different degrees of dynamic coupling j and

static coupling a.

As j increases, corresponding to faster height growth, the

range of unstable q values is the same, i.e., vq ¼ 0 is

independent of system kinetics. However, some modes are

significantly less stable, and the dominant growing wave-

vector q* increases, corresponding to a smaller characteristic

length scale (Fig. 11 a). Additionally, the magnitude of vq

that leads to growth also increases upon an increase in j.

Hence, the ability of the membrane to buckle reduces the

effective resistance to coarsening, allowing faster coarsen-

ing, and presumably the presence of a characteristic length

scale (spontaneous curvature) leads to a smaller character-

istic coarsening length scale.

As the strength of the energetic coupling between

composition and height growth a increases, the range of

unstable q decreases, with a loss of the growth of the shorter

length-scale domains. Also, growth proceeds more slowly at

FIGURE 8 Effect of a straight U stripe in the center of the membrane,

with widths w ¼ 0, 1, 2, 3, 4, 5, and 6 lattice sites. The mean-square heightffiffiffiffiffiffiffiffi
Æh2æ

p
was calculated over a central strip having a width of eight lattice sites.
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the most unstable wavenumber. As mentioned earlier, this is

because ka2 increases the effective critical x (decreases the

critical temperature) of the demixing transition. For an

increase in coupling strength between the composition and

height growth the critical wavenumber q* decreases (Fig. 11

a). This effect is particularly noticeable for small j.

The projection of the eigenvector corresponding to the

unstable growing eigenvalue L1 onto the composition com-

ponent of the eigenvector defines an angle c, which pa-

rameterizes how height evolution contributes to the initial

growth. For cos c ¼ 1 the growth is purely compositional,

whereas for cos c ¼ 0 only the height evolves. Fig. 11

b shows cos c versus q for various j-values for a ¼ 0.4. For

j ¼ 0.001, cos c ¼ 1 for small q, whereas for larger q the

projection cos c decreases, implying that height growth

contributes to the evolution on these shorter length scales.

As j increases, cos c , 1 for the entire q-range, whereas for

j ¼ 10, there is a reversal in trend, with height evolution

dominating at long length scales (small q) and composition

at shorter length scales. The growth mode at the most un-

stable wavenumber q* as a function of dynamic coupling j is

shown in Fig. 11 c; growth is purely compositional for all a

for low values of j. For log(j) $ 1 height evolution

contributes, with a greater value for larger a, but of course

compositional growth always dominates. Similar trends were

observed for an impermeable membrane, with the only sub-

stantial difference, for the parameter range we have consid-

ered, being an enhancement of the contribution of height

motion to the low wavenumber unstable modes (Fig. 12);

this follows directly from the coupling of long wavelength

modes to the solvent hydrodynamics, which is more

effective in relaxing the instability to phase separation than

is pure diffusion. It would be of interest to extend this work

to examine the competition between diffusion and buckling

after an unstable quench in the nonlinear regime, similar to

the study of asymmetry relaxation by Sens (2004). However,

we leave this issue to the future.

CONCLUSIONS

In this article we have studied how the competition among the

bending energy of a domain, the line tension of the domain

edge, and the applied frame tension leads to different-shaped

domains. We first studied the energy-minimized shape of a

domain as a function of the reduced area and reduced frame

tension for different values of reduced line tension, using the

simple spherical cap on a flat membrane estimate introduced

by Lipowsky (1992) to study budding. A shape diagram

spanned by the reduced tension ŝ ¼ s=ðkC2
0Þ and the ratio b

of membrane area to the area of an ideal spherical bud, as

a function of reduced line tension l̂, is sufficient to describe

the shape diagrams. Interestingly, at finite frame tension,

a large line tension stabilizes a wide re-entrant raft regime

whereby larger domains are stable against strong deforma-

tions. This mean field estimate ignores fluctuations and the

smooth elastic deformation that would result from the full

minimization of the exact elastic problem (Harden and

MacKintosh, 1994; Jülicher and Lipowsky, 1996).

To study fluctuation effects and the effect of various

composition patterns on membrane height, we introduced a

mesoscopic Monte Carlo-based model in which particles,

representing a small lipid-sized patch of bilayer with local

spontaneous curvature due to the local composition, can

phase-separate and fluctuate in height within a Monge gauge

(no overhangs) approximation. The approximation of a shape

diagram spanned by the reduced variables frame tension ŝ

and area ratio b works well, except for the presence of fluc-

tuation effects. Note that the cap-on-a-plane approximation

actually missed a rather large amount of the flat phase that is

entrained by the elastic energy, as can be seen in the ‘‘skirt’’

FIGURE 9 (a) Schematic early-time behavior for

a membrane comprising a central circular S domain; a

smooth profile is shown because an average over neigh-

boring sites is used to define the local spontaneous

curvature. (b) Cross sections at L/2 after various times,

for a ¼ 0.5, k ¼ 1000, and s ¼ 60.

FIGURE 10 Growth rate vq for curvature couplings a ¼ 0.4, 0.5, and 0.6

for a porous membrane (dynamic coupling j ¼ ð1Þ=ðMz1Þ). j¼0.001 (solid);

j ¼ 0.1 (dotted); and j ¼ 10 (dashed). s ¼ 1, k ¼ 2, f$0 ¼ �1; and l ¼ 1.
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drawn up around the domains in Fig. 4. Interestingly, a fairly

flat raftlike domain, with curvature present mainly at the

domain edges rather than at the domain center, results for

high area ratio b ¼ AC2
0=ð16pÞ. This is thought to occur as

follows. The boundary obtains the locally preferred

curvature first because height growth is initiated from the

boundary of a domain. For the center of the domain to

subsequently evolve toward its preferred curvature the edges

must become less highly curved, and the resulting elastic

cost stabilizes the domain against further growth. Decreasing

b at fixed reduced tension via decreasing a (Fig. 4 b) leads to

a higher domain, in accord with the cap-on-plane model, but

re-entry into the raft regime at very low b was not observed.

Domain coarsening was then studied for a flat membrane.

The most striking effect of incorporating a composition-

dependent spontaneous curvature is an increase in the critical

FIGURE 12 Comparison between a permeable and impermeable membrane. (a) Growth rate vq versus q for a ¼ 0.5 and j ¼ 0.1; (b) cos c versus q for

a ¼ 0.5 and j ¼ 0.1.

FIGURE 11 (a) Most unstable wavevector q* as a function of the dynamic coupling ratio j; (b) cos c versus wavevector q for static coupling a¼ 0.4; and (c)

cos c q* versus j. All results are for a porous membrane (dynamic coupling j ¼ ð1Þ=ðMz1Þ). s ¼ 1, k ¼ 2, f$0 ¼ �1; and l ¼ 1.
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x (or decrease in the critical temperature) for phase separation

proportional to ka2. This is relevant for phase separation of

asymmetric membranes in situations where the height is fixed

by a strong external field, e.g., atomic force microscopy

observations of phase separation within a supported bilayer,

where membrane-surface interactions induce strong mem-

brane adsorption. The growth of a domain is also enhanced by

a sharper interface (Fig. 8). This implies, for example, that for

phase-separated domains of equal size and bulk compositions

(which would lead, in the main, to similar morphologies), the

state with the sharper interface width would grow faster.

We finally investigated, analytically, the initial domain

evolution when composition and height growth are coupled,

as a function of the dynamic coupling j, which parameterizes

the ratio of height to composition mobilities. We found that

the unstable range of q-values is independent of j. However,

for increasing j, i.e., for reduced particle lateral mobility, the

dominant unstable wavenumber q* increases, or equivalently

the initial domain size decreases. Additionally, the membrane

becomes more unstable. This is due to the availability of the

membrane buckling channel to help relax the instability

toward phase separation before diffusion on the membrane

can occur. Upon increasing the energetic coupling between

the composition and height growth, i.e., a, the most unstable

wavenumber q* decreases, leading to larger initial domains.

This is mainly because increasing a decreases the effective

temperature, which places a given quench closer to the critical

point and thus leads to larger fluctuations.

There is evidently much more to study in this rich system.

The development of asymmetry, which in the bilayer case

would be effectively due to different environments on either

side of the membrane that comprises two locked monolayers,

should actually be treated in terms of two separate interacting

monolayers. A step toward this complicated procedure was

taken recently by Sens (2004), and can be studied an-

alytically within the formalism of Seifert and Langer (1993,

1994). Full simulations of bilayers, even with united atom or

mesoscopic models, are far from full phase separation, but

may be capable in the near future of providing a numerical

tool for studying these effects. Accurate modeling of the

morphology of domains within bilayers must also account

for detailed changes in membrane thickness due to the details

of different tail length, degree of saturation, and different

headgroups. Finally the very important, but still poorly

understood, non-equilibrium nature of membranes, surely

has a larger influence on the purely relaxational effects we

have studied: pumps and embedded proteins provide point-

forces acting within the membranes (Chen, 2004; Prost et al.,

1998), contact with external proteins such as the cytoskel-

eton provides external constraints, and the constant transport

of materials to and from membranes provides sources and

sinks of both different compositions of lipids and force

perturbations.
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