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ABSTRACT Thepersistence length of titin from rabbit skeletalmuscleswasmeasured using a combination of static and dynamic
light scattering, and neutron small angle scattering. Values of persistence length in the range 9–16 nmwere found for titin-II, which
corresponds to mainly physiologically inelastic A-band part of the protein, and for a proteolytic fragment with 100-nm contour
length from the physiologically elastic I-band part. The ratio of the hydrodynamic radius to the static radius of gyration indicates that
the proteins obey Gaussian statistics typical of a flexible polymer in a u-solvent. Furthermore, measurements of the flexibility as
a function of temperature demonstrate that titin-II and the I-band titin fragment experience a similar denaturation process;
unfolding begins at 318 K and proceeds in two stages: an initial gradual 50% change in persistence length is followed by a sharp
unwinding transition at 338 K. Complementary microrheology (video particle tracking) measurements indicate that
the viscoelasticity in dilute solution behaves according to the Flory/Fox model, providing a value of the radius of gyration for
titin-II (63 6 1 nm) in agreement with static light scattering and small angle neutron scattering results.

INTRODUCTION

Titin is a giant single-chain muscle protein (Mw ; 3.0–3.5

MDa) and is one of the major constituents of the striated

muscles of vertebrates (Bray, 1992; Wang et al., 2001). The

protein is involved in a number of important regulatory

mechanisms of muscle related to its development, structural

organization, elasticity, and intracellular signaling (Tskhov-

rebova and Trinick, 2003; Granzier and Labeit, 2004).

Titin’s role in muscle elasticity is a major issue in current

studies of the molecular mechanisms involved in muscle

function.

A titin molecule is .1-mm long and spans half of the

sarcomere, the repeating structural and contractile unit of

muscle (Fig. 1). More than half of the molecule is an integral

part of different sarcomere elements, i.e., of the thick filament

and the Z- and M-line regions. The rest of the molecule is not

bound to the other sarcomere proteins, but functions as an

elastic connection between the thick filaments and the Z-line

region. When the sarcomere contracts or elongates this part of

titin coils up or extends in proportion. As a result, mechanical

properties of the molecule are directly related to the elastic

properties of the sarcomere. A full picture of the viscoelas-

ticity of titin, therefore, is of vital importance in modeling the

dissipative processes involved in the functioning of striated

muscles.

Studies of the titin gene indicate that the majority of the

polypeptide (.90%) is folded into a linear array of up to 300

immunoglobulin- and fibronectin-3-like domains, whereas the

mechanically active part consists mainly of tandem Ig

domains (Labeit and Kolmerer, 1995). The interdomain linker

sequences are estimated to contain between two and five

peptide residues along most of the length of titin. Flexibility of

the linker regions may provide some interdomain mobility

resulting in global flexibility of this multimodular protein.

The flexibility and extensibility of titin, its individual

segments, and expressed small fragments have been studied

previously using a series of techniques: dynamic light

scattering (Higuchi et al., 1993), atomic force microscopy

(AFM) (Rief et al., 1997), optical tweezers (Kellemayer et al.,

1997; Tskhovrebova et al., 1997), and transmission electron

microscopy (Tskhovrebova and Trinick, 2001). The esti-

mates of the persistence length obtained, which is a quanti-

tative measure of bending stiffness, vary for the native

protein by almost a factor of 10, ranging from 42 nm from in

situ mechanical measurements for the physiologically elastic

region (Linke et al., 1998), to 3 nm, from single-molecule

experiments as an average estimate over the majority of

titin’s length (Leake et al., 2004). The exact reasons for such

a discrepancy remain unclear. It is likely, however, that they

reflect both the structural and mechanical differences in the

titin segments studied, and the shortcomings of different

methodical approaches. Structural modeling does predict

that interdomain mobility will differ to some extent in

different regions of the molecule (Amodeo et al., 2001;

Fraternali and Pastore, 1999). Immunoelectron microscopy

also suggests that non-Ig/Fn3 regions of titin are significantly

more compliant than the regions composed from Ig and Fn3

domains (Granzier et al., 1996), and thus the relative

presence of these regions in a particular segment of the

molecule will affect the average estimate. Additional
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complications are related to the extent the behavior of the

molecule is compatible with models for its conformation,

subsequently used for fitting experimental curves. In

particular, there are a number of questions related to the

effects of torsional modes (Yoshizaki and Yamakawa, 1980)

and polyelectrolyte ionic strength effects (Odijk and

Houwaart, 1978), which could play a role in determining

the elasticity of this biopolymer and are not considered in

current simplified approaches.

In this work we have applied scattering techniques, static

and dynamic light scattering (Berne and Pecora, 2000;

Hohenadl et al., 1999) and small angle neutron scattering

(King, 1999), as well as video particle tracking microrheology

(Goodman et al., 2002; MacKintosh and Schmidt, 1999) for

the comparative study of purified titin-II corresponding to the

mainly physiologically inelastic A-band part of the molecule,

bound in situ to thick/myosin filament, and a proteolytically

isolated fragment from the physiologically elastic I-band part

of titin. In comparison to electron microscopy and mechanical

experiments on single molecules, these techniques have the

advantage that they minimally affect the equilibrium confor-

mation of the protein and give ensemble averages over a whole

series of molecules, thus producing accurate representative

measurements. The techniques provide direct information

regarding the size, viscosity, and diffusion coefficient of

the protein and estimates of the persistence length. In compar-

ison with light scattering, small angle neutron scattering is

significantly more sensitive to small length scales, allowing

access to the direct signature of the chains’ flexibility (Higgins

and Benoit, 1994) and providing better discrimination be-

tween possible models of the chains’ conformations.

EXPERIMENTAL

Sample preparation

Titin was prepared as described before (Trinick et al., 1984). SDS-PAGE

shows that the size of the purified protein in these preparations is smaller

than the size of intact protein present in muscles. This is due to the loss of an

N-terminal segment containing the Z-line and part of the I-band regions, due

to the action endogenous proteinases during the purification. This

preparation is therefore usually referred to as titin-II. The b-connectin

preparation used in previous light scattering studies is similar (Higuchi et al.,

1993). The titin-II includes the full length A-band part together with the

C-terminal portion of the I-band part of the native molecule. The samples

were kept in glycerol at �20�C and subsequently dialyzed for 24 h against

selected buffers. The buffer recipes for titin-II in solution were: 1), buffer A

(pH ; 7.4–7.5, Debye screening length K�1
D ¼ 0:61 nm) contained 0.5 M

KCl, 10 mM TRIS, 1.0 mM DTT, 2.0 mM EGTA, 1.0 mM NaN3; and 2),

buffer B (pH ; 7.4, K�1
D ¼ 0:43 nm) contained 0.5 M NaCl, 20 mM

TRIS, 0.3 mM DTT, and 1.0 mM EGTA.

A proteolytic fragment from the physiologically elastic part of titin

(referred to further in the text as the ‘‘I-band titin fragment’’) was prepared

as described by Houmeida et al. (2003). From transmission electron

microscopy measurements, the fragment length was 100 6 20 nm. The

fragment included the tandem Ig segment of the molecule starting at the Ig

domain I20 (according to the annotation given by Labeit and Kolmerer,

1995) from the I-band region near the end of the thick filament (Fig. 1).

Measurements were performed at room temperature, except in dynamic

light scattering experiments where the temperature dependence was studied.

Static/dynamic light scattering

An ALV-5000 goniometer was used for both static and dynamic light

scattering experiments with a fast correlator (from 12.5 ns to 1000 s) and an

FIGURE 1 (a) Schematic arrangement of titin within the sarcomere, (b)

diagram of titin structure, (c) electron micrograph of purified titin molecules,

and (d) SDS-PAGE of titin preparation. (a) Single titin molecules span half

of the sarcomere, with the N-terminus in the Z-line and C-terminus in the

M-line. The A-band part of titin is bound to the thick/myosin filament and

the I-band part forms an elastic connection between the tip of the thick

filament and the Z-line. (b) The A-band part of titin (shown in black)

contains both Ig and Fn3 domains; the elastic I-band part is formed by two

segments of Ig domains arranged in tandems (medium gray) that are

separated by unique sequences (light gray). The position of the proteolytical

fragment that was isolated from the ‘‘elastic’’ part of titin is marked (Fr). (c)

The contour length of the purified molecules is ;1 mm. The C-terminals

have characteristic small ‘‘heads’’. (d) Left column shows sarcomere

proteins as molecular weight markers. The titin preparation (right column)

contains .90% of titin, most of which is in titin-II or b-connectin form.
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argon ion laser (488 nm, 100 mW). The intensity of the scattered light was

calibrated with respect to a toluene standard. The temperature control was

accurate to 60.1�C, and was provided by water circulating around the

toluene bath and cuvette.

The dynamic light scattering/static light scattering (DLS/SLS) measure-

ments were performed in the range of angles between 30 and 120� with an

angular step of 10�. The collection time for each angle was 10–15 min,

depending on the signal/noise ratio.

Titin-II at a concentration of 1.41 mg/mL in buffer B was centrifuged at

40,000 g at a temperature of 288 K for 2 h to remove dust contaminants and

aggregates, as reported previously (Higuchi et al., 1993). After centrifuga-

tion, the solution was carefully transferred into the scattering cell. The elastic

fragment at a concentration of 1.60 mg/mL in buffer B was filtered with

polyethersulfone membranes (low binding protein filters) with 0.8-mm pore

size to minimize the presence of aggregated protein.

Analysis of static light scattering data

The radius of gyration of titin-II was calculated from fits of the Debye

function (P(x)) (Berne and Pecora, 2000) for the flexible polymers to the

measured intensity versus scattering vector curves:

PðxÞ ¼ 2

x
2

� �
½expð�xÞ � 11 x� (1a)

x ¼ q2Llp
3

¼ q
2
R

2

g; (1b)

where q is the scattering vector defined as q ¼ ð4pn=lÞ sinðq=2Þ, q is the

scattered angle, n is the index of refraction of the solvent and l is the

wavelength. L indicates the contour length of the protein, lp is the persistence

length, and Rg is the radius of gyration.

Analysis of dynamic light scattering data

In the dynamic light scattering experiments the normalized time autocor-

relation function g2(q,t) of the scattered intensity (I(q,t)) is measured:

g2ðq; tÞ ¼
ÆI � ðq; 0ÞIðq; tÞæ

ÆIðq; 0Þæ2 : (2)

The latter can be expressed in terms of the field autocorrelation function

g1(q,t) (i.e., the time autocorrelation function of the scattered electric field)

through the Siegert relationship (Berne and Pecora, 2000)

g2ðq; tÞ ¼ 11bjg1ðq; tÞj2; (3)

where b is the coherent factor, which is ;0.51 for the equipment employed.

Standard Contin analysis of the correlation curves showed a single

relaxation time in the decay rate distribution versus time. Therefore,

diffusion coefficients (D) were calculated from the field correlation functions

g1(q,t) fitted with a single exponential decay.

g1ðq; tÞ ¼ expð�GtÞ
G ¼ Dq

2
; (4)

where G is the relaxation rate and t is time.

Small angle neutron scattering

The experiments were carried out on two different large-scale facilities,

KWS1 (FRJ2) (www.neutronscattering.de.) and D11 (ILL) (www.ill.fr/lss/

grasp/grasp_main.html), at the Forschungszentrum Jülich (KWS1) and the

Institute Laué Langevin (Lindner et al., 1992), respectively.

KWS1 (FRJ2)

A combination of three camera lengths (2, 8, and 20 m) was used, providing

a momentum transfer q between 10�3 Å�1 and 0.2 Å�1. The raw two-

dimensional data were corrected for the empty cell scattering and D2O

background. The detector sensitivity corrections and the transformation

to absolute scattering cross sections were made with a Lupolene standard

(dS/dV ¼ 1.78155 cm�1).

The specimens were dialyzed against D2O buffer to provide the correct

contrast for the small angle neutron scattering (SANS) experiments, and

ultraviolet absorption was used to calibrate the sample concentrations after

dialysis. The samples in D2O were loaded in flat Helma cells with a 2-mm

thickness of specimen to provide the optimal pathlength. The sample

temperature was maintained at 296 K during the experiment.

D11 (ILL)

The camera lengths used were 2 and 8 m to insure overlap between the

separate measurements and access to all the relevant length scales.

Momentum transfers could be accessed in the range between 2.5 3 10�3

and 2 3 10�1 Å�1. The software package Grasp was used combined with the

MATHLAB 5.1 software to analyze the SANS data (D11) of the fragment.

The flat field correction was taken from a 1-mm H2O sample. The empty cell

background was subtracted; the beam center was calibrated with respect to

the direct beam and absolute normalization was achieved relative to the

water standard.

The scattering cross section (dS/dV) for neutrons is defined as:

dS

dV
¼ mV

2ðDrÞ2
PðqÞSðqÞ; (5)

where m is the number concentration of scattering centers, q is the mo-

mentum transfer, V is the volume of one scattering center, and Dr ¼
ðr � rmÞ is the contrast factor between the polymer and the matrix solvent,

calculated on the basis of tabulated values of the amino acid coherent

scattering lengths (Jacrot, 1976); P(q) and S(q) indicate the intramolecular

form and the intermolecular structure factors, respectively (Higgins and

Benoit, 1994). In the specific case of the dilute regime S(q) [ 1.

The radius of gyration of titin-II was evaluated by Guinier analysis of the

SANS data using Eq. 6, which is valid in the dilute regime, where the inter-

particle interactions are negligible, and in the limit of qRg , 1 (King, 1999):

dS

dV
¼ mV

2ðDrÞ2
expð�q

2
R

2

g=3Þ: (6)

Video particle tracking microrheology

Microrheology experiments were performed on titin-II in buffer A in the

range of concentrations 0.12–0.50 mg/mL, using poly(amino) probe beads

(Sigma Aldrich, St. Louis, MO) of 0.472 mm diameter. The experimental

temperature was held constant at 296 K. Probe particles were tracked using

an Olympus OH2 microscope and a modified version of the IDL tracking

software of Weeks and co-workers. (http://glinda.lrsm.upenn.edu/;weeks/

idl/tracking.html). A 1003 oil immersion lens was used to focus into the

sample a few micrometers underneath the coverslip. The poly(amino) beads

were chosen to reduce adsorption of titin-II onto the probes and improve

phase stability of the colloid/protein mixtures. The displacement of the

particle centroids was tracked in the focal plane of the objective at a rate of

25 frames per second.

Individual time-averaged mean-square displacements were calculated

from the two-dimensional trajectories, and the viscosity was measured at

a series of concentrations. Care was taken to provide a correct thermal

equilibration of the specimens and removal of the effects of convection

before recording a movie.

The viscosity of the buffer was measured to be 0.92 cP at 296 K.
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RESULTS

Static light scattering

From the fits of Eq. 1a to experimental data the radius of

gyration (Rg) of the titin-II molecule was calculated to be

60 6 3 nm at a temperature of 298 K (Fig. 2). The temper-

ature dependence of the radius of gyration is shown in Fig. 3

a; the exact values at each temperature are collected in

Table 1. The persistence length of titin-II calculated from Eq.

1b was found to be 11 6 1 nm at room temperature, for an

average contour length of the protein of 1 mm, as indicated

by electron microscopy (Tskhovrebova and Trinick, 1997).

The temperature dependence of the persistence length is

shown in Table 1 and Fig. 3 b. The persistence length

remained constant up to 318 K (;40�C), and then sharply

changed its value to ;1 nm, assuming the contour length of

the unfolded titin-II polypeptide is 10 mm.

Dynamic light scattering

Fig. 4 shows a typical Contin analysis on the correlation

functions from both titin-II and the I-band titin fragment

indicating a single diffusive mode and suggesting a mono-

disperse protein preparation. The spectra width was

quantified using a cumulant expansion of the correlation

function (Koppel, 1972). The polydispersity index for both

the whole molecular and fragments were on the order of

0.30, independent of angle and temperature (below the

unfolding temperature). The diffusion coefficients were cal-

culated from the gradient of the relaxation rate (G) versus q2

plots in the angular range 30–120�. The hydrodynamic

radius was then evaluated from the diffusion coefficients

using the Stokes-Einstein relationship:

D ¼ kBT

6phSRh

; (7)

where kB is the Boltzmann constant, T is the temperature,

hS is the solvent viscosity, and Rh is the protein’s hydrody-

namic size.

Under ambient conditions (temperature 298 K) we found

that the translational diffusion coefficient (D) of titin-II is 5.0

6 0.2 3 10�8 cm2s�1 and its hydrodynamic radius (Rh) is

49 6 1 nm; for the fragment, values of D and Rh at T ¼
298 K are 2.0 6 0.2 3 10�7cm2s�1 and 12.0 6 0.5nm,

respectively. The values of diffusion coefficients were not

dependent on the concentration of the proteins, indicating

negligible interchain interactions (Fig. 5).

Intensity correlation functions g2(q,t) from solutions of

both titin-II and the I-band titin fragment, as a function of

temperature for a representative angle of 90�, are shown in

Fig. 6. The values of the diffusion coefficients obtained are

summarized in Table 1. The figure shows a noticeable

slowing down of the dynamics with increasing temperature;

a large change is observed around 333 K. The change was

not related to aggregation effects, because our procedure to

remove possible aggregates by centrifugation of the speci-

mens did not affect the results, indicating that the tem-

perature-related transition is intramolecular in nature and

involves an increase in the hydrodynamic size of the proteins

above 318 K (Fig. 7).

To calculate persistence lengths of the proteins, the

Kirkwood formula that relates the translational diffusion

coefficient to the persistence length was used (Yamakawa,

1971):

D ¼ 0:195
kBT

hSðL=gÞ
1=2
; (8)

where L is the contour length, hS is the solvent viscosity, and

g is defined as 1/(2lp), where lp is the persistence length.

At 298 K, the persistence length was estimated to be ;16

nm for titin-II and 10 nm for the fragment. The calculations

were done with the assumptions that the contour length of

titin-II and the I-band titin fragment were 1 mm and 100 nm,

respectively. The values of lp of both proteins at different

temperatures are collected in Tables 1 and 2. The tem-

perature dependence of the persistence length for titin-II,

calculated according to Eq. 8, is shown in Fig. 3 b (solid
symbols). Initial experiments examined the effect of reducing

the buffer concentration to physiological strengths (0.2 M

KCl) and showed no effect on the resultant persistence length

of the titin-II molecules with DLS and SLS.

Small angle neutron scattering

Neutron scattering profiles from solutions of titin-II (1.31

mg/mL, deuterated buffer A) and fragment (1 mg/mL,

deuterated buffer B) are shown in Fig. 8, a and b. The data

were fitted with the modified Sharp and Bloomfield equa-

tion in the limit L/2lp . 2 (Pedersen and Schurtenburger,

1996):
FIGURE 2 Representative SLS curve (I(q) versus q) for titin in buffer A.

The solid line is the fit to the data according to Eq. 1a.
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IðqÞ ¼ I0PcrðqÞ PDebyeðqÞ1
4

15
1

7

15u
� 11

15
1

7

15u

� ���

3expð�uÞ
�

2lp
L

�
3expð�ðq2lp=q1Þp1

1
1

2Llpq
2 1

p

Lq

� �
ð1 � expð�ðq2lp=q1Þp1Þ; (9)

where Io is the forward scattering related to the molecular

mass of the chain (Io ¼ mV2Dr2); Pcr(q) is the scattering

function for a cylindrical shape ([2J1(qR)/(qR)]2), which

approximates locally the finite cross section of the

molecules; u ¼ q2R2
g; q1 and p1 are empirical constants,

and PDebye (q) is the Debye scattering function (Eq. 1a; see

earlier text). Such an analysis has the advantage over the

Kratky-Porod graphical method (Kratky, 1982), because it

includes the effects of the cross section of the molecules. The

graphical method does however clearly demonstrate the

semiflexible nature of titin-II and the I-band titin fragment

with a q�2 scaling (Gaussian coil) at large length scales and

q�1 scaling (rodlike) at small length scales (see Fig. 8 a,

inset). Fits of Eq. 9 to experimental data are shown in Fig. 8,

a and b. This analysis provided values of the radius of

gyration for titin-II and the I-band titin fragment of 50 and

17 nm, respectively. From these values the persistence

lengths were estimated to be 10 and 9 nm for titin-II and the

I-band titin fragment, assuming a contour length of 1 mm and

100 nm, respectively, and a cross-radius of 2 nm for both

proteins.

The values obtained were compared with the estimates

made from the Guinier plot (Ln dS/dV vs. q2) as it is shown

in Fig. 9. This analysis provided a value of 56 6 5 nm. Using

this estimate, the persistence length of 9 6 2 nm of titin-II

was calculated from the relation given for Gaussian coils

FIGURE 3 (a) The temperature dependence of the radius of gyration for titin-II in buffer B measured with static light scattering from fits to Eq. 1a. The arrow

indicates the point at which the protein is denatured. (b) The temperature dependence of the persistence length from DLS/SLS measurements of titin-II in buffer

B; s (Eq. 1b), d (Eq. 8).

TABLE 1 The temperature dependence of the persistence

length, diffusion coefficient hydrodynamic radius, and radius

of gyration for titin-II from light scattering experiments

T [K]

D

[cm2/s] 3 10�8

Rh

[nm]

Rg

[nm]

lp[nm]

(SLS)

lp[nm]

(DLS)

298 5.0 6 0.2 49 6 1 60 6 3 11 6 1 16 6 2

303 6.3 6 0.4 44 6 3 59 6 2 10 6 1 13 6 1

308 6.9 6 0.3 46 6 2 60 6 3 11 6 1 14 6 2

313 7.9 6 0.5 45 6 3 59 6 2 10 6 1 13 6 1

318 8.1 6 0.5 50 6 3 80 6 4 19 6 2 16 6 1

323 6.5 6 0.3 69 6 3 68 6 7 1.4 6 0.3* 3.0 6 0.5*

328 5.5 6 0.3 91 6 3 48 6 5 – –

333 1.4 6 0.5y 333 6 10y – y y

The persistence length was calculated using Eq. 1b for SLS data and Eq. 8

for DLS data.

*Indicates the unfolded state of titin-II where in Eq. 8 a contour length of

;10 mm is assumed.
yIndicates that the value of Rh is evaluated only from q ¼ 90�.

FIGURE 4 Relaxation spectra from Contin analysis for titin-II in buffer

B. Data refer to a representative scattering angle q of 90�, at T ¼ 298 K.
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(Eq. 1b), assuming a contour length of 1 mm. The Guinier

analysis could not be applied to the fragment, because the

condition qRg , 1 was not satisfied in the data set.

The models for the chain scattering may only be applied in

the limit of dilute concentrations, i.e., where S(q) ffi 1. Using

the estimated value of the radius of gyration from Guinier

analysis and a nominal value of 3.0 MDa for the molecular

weight of the protein, we evaluated the overlap concentration

(c*), i.e., the concentration above which intermolecular

interactions could not be neglected:

c
� � Mw

4p

3
NAR

3

g

; (10)

where Mw is the molecular weight of a chain, NA is the

Avogadro’s number, and Rg is the radius of gyration. We thus

calculate c* to be ;7 mg/mL and the measurements were in

the dilute regime. We deduce that the SANS experiments

were at sufficiently low concentrations to neglect interchain

interference, because there is good agreement of the radius of

gyration with results from other techniques (Table 3). The

impact of concentration would be even smaller on higher q
features such as the persistence length.

Video particle tracking microrheology

The viscosity of the titin-II solutions was calculated via the

definition of the diffusion coefficient (D) in two dimensions

as a function of time (t) and the mean-square displacement

(ÆDr2æ),

ÆDr2æ ¼ 4Dt: (11)

FIGURE 5 The concentration dependence of the diffusion coefficient (D)

for titin-II in buffer A. Data refer to uncentrifuged solutions.

FIGURE 6 DLS normalized correlation functions g2(q,t) from titin-II

(c ¼ 1.41 mg/mL) and the fragment from the I-band part of titin (c ¼ 1.61

mg/mL) (inset) in buffer B. Data refer to a range of different temperatures

(298–333 K) and scattering angle of 90�.

FIGURE 7 The temperature dependence of the hydrodynamic radius:

titin-II (s), and the fragment from the I-band part of titin (d). The arrow

indicates the denaturated state of the protein. Both the data sets refer to

preparations in buffer B.

TABLE 2 The temperature dependence of the persistence

length, diffusion coefficient, and hydrodynamic radius for

the proteolytical fragment of titin from the I-band part of

the molecule, from light scattering experiments

T [K] D [cm2/s] 3 10�7 Rh [nm] lp[nm]

298 2.0 6 0.2 12 6 1 10.1 6 0.4

308 2.6 6 0.1 12 6 1 10 6 1

318 3.5 6 0.1 11.5 6 0.3 9 6 2

328 3.0 6 0.2 17 6 1 1.9 6 0.4*

338 0.30 6 0.05y 200 6 40y –

The persistence length is calculated from Eq. 8.

*Indicates the unfolded state of the fragment where in Eq. 8 a contour

length of ;1000 nm is assumed.
yIndicates that the value of Rh is evaluated only from q ¼ 90�.
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The mean-square displacement of the poly(amino) beads

as a function of time for 0.12–0.50 mg/mL titin-II

concentrations showed a pure viscous behavior (Fig. 10)

(i.e., ÆDr2æ;t). Subsequently the viscosity was calculated

from the Stokes-Einstein relationship (Eq. 7), where Rh is

replaced by the radius of the probe particle.

The intrinsic viscosity, [h], was then used as a means to

estimate the size of titin-II in solution. [h] was determined

from the intercept of a plot of the specific viscosity versus

concentration according to the following relationship

(Burchard, 1999; Goodman et al., 2002):

h ¼ hSð11 ½h�cÞ ¼ hS 11
10p

3

NAR
3

h

Mw

 !
ðc/0Þ: (12)

Mw is the protein molecular weight, NA is the Avogadro

number, hS is the solvent viscosity, and Rh is the protein

size. Microrheology measurements provided a value for the

specific viscosity [h] of 400 6 40 mL/g, which is in

agreement with the 410 mL/g estimated from previous light

scattering data for b-connectin (Fujime and Higuchi, 1993).

In Fig. 11 the specific viscosity is plotted versus concentra-

tion with a fit of Eq. 12.

The value hS extrapolated from the experimental data

fitted with Eq. 12 was 1.2 6 0.1 cP, an accuracy of 20% on

the measured value for the solvent. A value of 65 6 5 nm

was found for Rh. In Table 3 the main results obtained from

the different experimental techniques for the persistence

length are collected. The persistence length of titin-II,

FIGURE 8 (a) SANS profiles (dS/dV vs. q) of titin-II (c¼ 1.31 mg/mL) in deuterated buffer A. The solid line indicates the fit of the experimental data to Eq.

9. The inset shows a Kratky-Porod representation, highlighting the crossover between rigid chain conformations (I; q�1) at small length scales and Gaussian

chains conformations (I; q�2) at large length scales. (b) SANS profiles (dS/dV vs. q) of titin fragment from the I-band part of the molecule (c¼ 1 mg/mL) in

deuterated buffer B. The solid line indicates the fit of the experimental data to Eq. 9.

FIGURE 9 Guinier plot (ln dS/dV vs. q2) of the low q section of the

SANS data from titin in deuterated buffer A. The fit of the experimental data

to Eq. 6 provides a value for Rg of 56 6 5 nm.

TABLE 3 Comparison of Rg and lp for titin-II and the fragment

from the elastic I-band part estimated from different

experimental methods

Titin-II

Fragment from the

I-band part of titin

Methods Rg [nm] lp [nm] Rg [nm] lp [nm]

SANS-Guinier fit 56 6 5 9 6 2 – –

SANS-Sharp and

Bloomfield modified

function

50 6 1 10 6 0.3 17 6 1 9 6 1

SLS-Guinier fit 60 6 3 11 6 1 – –

Microrheology-Flory/

Fox equation

63 6 1 12.0 6 0.3 – –

DLS-Kirkwood formula – 16 6 2 – 10 6 1
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calculated as for Gaussian coils (Eq. 1b), gave a value of 12

6 2 nm assuming a contour length of ;1 mm.

DISCUSSION

Scattering studies of titin (titin-II) represent a challenging

task, because preparations usually contain a mixture of mono-

mers and oligomers of two or more molecules. Separation of

these species is not easy due to the high molecular weight of

the protein and its susceptibility to proteolysis, which not

only disrupts the intermolecular interactions but also causes

fragmentation of individual molecules. One of the most

proteolytically sensitive sites is located in the middle of the

elastic I-band part of titin that contains unique sequences

(Kawamura et al., 1995), and its proteolysis during the

preparation results in a loss of ;1/3 of the length, producing

what is known as titin-II or b-connectin. This corresponds to

the mainly physiologically inelastic thick filament-bound

part of titin formed by a linear chain of immunoglobulin and

fibronectin-3 domains. Similar preparations (b-connectin of

chicken breast muscle) were studied previously by means of

dynamic light scattering by Higuchi et al. (1993) that pro-

vided estimates for the persistence length and other physical

parameters of this part of the molecule. We analyzed the

scattering properties of titin-II and of its fragment from the

physiologically elastic I-band part to obtain a closer insight

into the relationship between structure and flexibility of the

molecule. The molecular homogeneity of the proteins was

ensured by high-speed centrifugation before the experi-

ments, and was confirmed by estimates of its molecular

weight based on the parameters evaluated from the scattering

data.

Persistence length

The range of scattering vectors used in this neutron study

satisfy the condition 2p/q; lp for lp between 10 and 20 nm,

indicating that the experiments contain direct information

on the semiflexibility of the molecules in this regime. The

SANS data from titin-II and the I-band titin fragment allows

robust self-consistent measurement of the persistence length.

Fits of a modified Sharp Bloomfeld model shown in Fig. 8,

a and b, provided more accurate values of lp, than the Kratky/

Porod graphical method (Fig. 8 a, inset), because they take

better account of the chain’s statistics (semiflexible nature)

and include the cross section of the chain (Pedersen and

Schurtenburger, 1996). Combining the results from DLS/SLS

and SANS measurements the ratio between the hydrodynamic

size and the radius of gyration was calculated, which allows

information on the molecular geometry to be made (Rubin-

stein and Colby, 2003). Rg/Rh was evaluated as a function of

temperature. The naı̈ve theoretical calculation for a flexible

Gaussian chain in a u-solvent gives the expected value of

Rg/Rh from Zimm theory is 1.5, whereas the accepted ex-

perimental value (Rubinstein and Colby, 2003) is measured

to be 1.30. Our combination of SLS and DLS measurements

at ambient temperature provides a value of 1.3 6 0.1, in

agreement with the accepted experimental value and with

modern molecular dynamics simulations (Oono, 1983). This

gives an additional proof of the flexible Gaussian nature of the

titin-II molecules at large length scales. Within error we find

no significant change in the persistence length between the

titin I-band fragment and the titin-II molecules. We conclude

that the I-band section of the titin molecule beyond its

attachment point with the thick filament, is a semiflexible

chain of 10.06 0.3 nm persistence length (see Table 3), which

FIGURE 10 Mean-square displacement of poly(amino) beads from

particle tracking microrheology as a function of time at a series of titin-II

concentrations in buffer A for a range of concentrations between 0.12 and

0.50 mg/mL. The linear dependence indicates diffusion in a purely viscous

solvent, i.e., ÆDr2æ ¼ 4 Dt.

FIGURE 11 The intrinsic viscosity of the titin-II as a function of polymer

concentration. The solid line indicates the best linear fit to the data according

to Eq. 12.
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globally acts in a Gaussian manner. Small differences in the

persistence length derived from the different experimental

techniques are probably due to the different weighting of the

techniques to molecular specific features, e.g., torsional

modes of rotation, hydrophilic/hydrophobic interdomain in-

teractions, etc. Explanation of these subtle effects is a goal for

future improved modeling.

Evidence for association was found for noncentrifuged

samples as the forward scattering in SLS experiments

dropped during temperature ramps, indicating fragmentation

of the aggregates. In this behavior the molecules resemble

the behavior of sticky charged hydrophobically modified

polyelectrolytes (Di Cola et al., 2004).

Effect of temperature

The flexural rigidity (e) of the titin-II was calculated as a

function of the temperature according to the following re-

lationship:

e ¼ kBTlp; (13)

where kBT is the thermal energy. From our SLS/DLS

measurements of lp at ambient temperature of 298 K, e is

calculated to be ;5 and 7 3 10�20 dynecm2 for titin-II and

the I-band titin fragment, respectively, close to the value

found for b-connectin (e ¼ 6 3 10�20 dynecm2). The

flexibility of titin-II depends on the temperature in a manner

that is not explained by the standard temperature dependence

expected for the modulus of a wormlike chain (Odijk and

Houwaart, 1978). We deduce that a series of structural

changes occur during its denaturation.

In Fig. 3 b the temperature dependence of the persistence

length is shown; lp was calculated according to Eqs. 1.b and

8 assuming a contour length L of ;1000 nm in the tem-

perature range below 318 K; above this threshold the protein

starts to denature. The denaturation process involves a

change in the length of the molecules, due to the unfolding of

titin domains. L in the fully unfolded state is expected to be

;10 times the length in the native state. Thus a value of

10 mm was qualitatively assumed above 318 K, providing

an upper bound for lp. Temperature measurements showed

a gradual rather than a sharp transition between coil and

uncoiled states (Fig. 3, a and b), which could reflect the

unfolding of the domains in transient intermediate steps.

Generally, large proteins composed of multiple structural

domains lead to complex unfolding curves, because the in-

dependent domains unfold statistically depending on random

localized thermal perturbations (Creighton, 1993).

It is important to highlight that at a temperature of 333 K

the q2 dependence of the decay rate G was no longer

observed; thus the value of the diffusion coefficient was

calculated by the relaxation time at an angle q of 90�. This

only provides an estimate of the protein hydrodynamic size

in the unfolded state.

The persistence length of the unfolded titin domains is

measured to be at least 10 times shorter than that of the native

state, indicating a high flexibility in the denatured state of the

molecule (e.g., Rief et al., 1997). The DLS measurements

offer another piece of experimental evidence for this feature

of the protein dynamics.

Dynamic light scattering can be used as a molecular probe

of the thermal denaturation of titin. The results are in

agreement with the denaturation temperature (;333 K)

previously found for bovine and porcine titin using dif-

ferential scanning calorimetry (Pospiech et al., 2002). A new

result is that there is a gradual process of unwinding/decrease

in persistence length, which occurs as a precursor to the DSC

endotherm, in the range of temperatures between 318 and

333 K.

Viscoelasticity

Video particle microrheology examines the thermal motion

of colloidal particles embedded in a material to extract the

bulk rheological properties. Compared with conventional

rheology and scattering techniques, only small amounts of

material are required (order of mL) (MacKintosh and

Schmidt, 1999).

The microrheology experiments allowed a robust mea-

surement of the radius of gyration assuming the non-free-

draining Flory/Fox model (Edwards and Doi, 1986;

Goodman et al., 2002), for which the viscosity of a dilute

suspension of flexible polymers increases linearly with

concentration. The observed difference between the mea-

sured and the extrapolated value of the buffer viscosity in

the microrheology experiments (hs) could be explained

by a small degree of adsorption of the protein onto the

poly(amino) probe beads. Thus, a correction was made

taking into account that an adsorbed layer with thickness h is

formed onto the beads of size a. We assumed h was

independent of the titin-II concentration in the range in-

vestigated and we note that this assumption only has a small

effect on the calculated radius of gyration.

hm is defined to be the viscosity measured with single

particle tracking and is given by the Stokes-Einstein re-

lationship (Eq. 7). However in the expression of the diffusion

coefficient (Do) we now take into account that the dimension

of the bead is (a 1 h):

D0 ¼
kBT

6phða1 hÞ: (14)

Thus the comparison between the three equations (Eqs. 7,

12, and 14) leads to the correct form of the measured vis-

cosity hm:

hm ¼ hða1 hÞ
a

/
hm � hS

hS

¼ h

a
1

a1 h

a
2:5

4p

3
R

3

h

c

N

� �
:

(15)
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Equation 15 provided a value for Rh of 63 6 1 nm. The

sizes found from microrheology measurements are compared

in Table 3 with values of Rg calculated by Guinier analysis of

both SANS and SLS data. Moreover, these experimental

results compare well with the theoretical predictions for the

end to end distance (ÆRæ) of a completely flexible Gaussian

chain in a u-solvent, i.e., ÆRæ ¼ (2lp)(Lc/2lp)1/2. For a sin-

gle titin-II molecule this leads to an estimate of 58 nm for

Rg ¼ (ÆR2æ/6)1/2.

Action of titin in vivo

It is interesting to consider the statistical mechanics of the

Gaussian titin chains in a pore, because this approximates to

their behavior in vivo contained between actin filaments. A

fundamental question is how the pore geometry will change

the conformation of the flexible titin molecules. This has

been previously explained in the synthetic polymer literature

using the concept of thermal blobs (Cifra and Bleha, 1999;

Daoud and de Gennes, 1977; Rubinstein and Colby, 2003).

A rough schematic diagram of the molecular arrangement of

the I-band part of titin in a pore formed by hexagonally

packed actin filaments is shown in Fig. 12. We take an

approximation for the diameter of the pore (Db) from the

x-ray measurements of Millman (1998), i.e., Db ; 40 nm.

The use of the cylindrical pore to approximate a hexagonal

actin cage is justified, because the excluded volume of the

blobs in the neighboring pores acts as a steric wall, pro-

hibiting the escape of titin blobs through the bars of the actin

cages.

The radius of gyration (Rk) of a flexible chain with its

monomer length of the order of its persistence length within

the pore is then given by (Cifra and Bleha, 1999; Daoud and

de Gennes, 1977; Grosberg and Khokhlov, 1994):

Rk � Na
Db

a

� ��2=3

: (16)

N is the number of Kuhn segments (;25), a is the Kuhn

segment length (30 nm with ;10 protein domains in a

segment), and Db is the pore size. Using values from the

scattering experiments this implies an increase in the ambient

unstretched length of the chain (Rk ; 600 nm compared to

Rg ; 60 nm) when compressed inside the 40-nm pore. The

end-to-end length is thus roughly 10 times longer due to

steric interaction with the surrounding actin filaments.

The entropic force f exerted on the ends of the chain by

the internal conformational fluctuations can be evaluated

according to (Rubinstein and Colby 2003):

f ¼ @FðU; SÞ
@b

¼ kBT
1

n

N
n

Db

� �1=n

b
1�n
n ; (17)

where b is the monomer size, F is the free energy, U is the

internal free energy, S is the entropy, y is an exponent that

equals 1/2 for a u-solvent (indicated by the measured ratio

of Rg/Rh) (Rubinstein and Colby, 2003). We thus calculate

that the force of an individual titin molecule is 5 pN at a

temperature of 298 K.

Note that there is no change in the elasticity of the

stretched titin chain confined to a pore, because the size of

the tension blob (j ¼ (Rx/(Nb1/y))y/y�1 is 8 nm, much smaller

than the steric blob size defined by the interaction with the

walls of the pore (40 nm) (Rubinstein and Colby, 2003).

Here Rx is the length of sarcomere section containing the

I-band segment of titin molecule, N is the number of mo-

nomers in the free 600-nm length section, and b is the

monomer length.

These calculations assume no repulsion/attraction of the

titin molecules by the walls of the pores. A more sophis-

ticated future analysis would require the consideration of the

effect of more than one titin molecule in a pore, better def-

inition of the effect of the persistence length, adsorption, and

charge effects, but should be considered a future goal for the

complete understanding of the molecules in vivo.

No change in the hydrodynamic radius and thus the per-

sistence length of the free solution state titin-II was found for

Debye screening lengths in the range 0.43–0.61 nm.

FIGURE 12 Schematic diagram of a section of titin molecule in a pore

formed by hexagonally packed actin/thin filaments, i.e., near the I-/A-

boundary of sarcomere beyond the myosin/thick filament. The blob concept

is used to calculate the effect of the steric interactions with the actin filaments

on the extension and entropic force of the chain.
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CONCLUSIONS

The persistence length of titin-II and a titin fragment from the

elastic I-band part of the molecule were measured with

neutron scattering and found to be 10 6 0.3 and 9 6 1 nm,

respectively. Dynamic light scattering indicates that in-

creasing the temperature causes two behaviors with the

molecules; gradual unwinding with a 50% change in per-

sistence length (318–333 K), followed by a sharp change at

333 K. Video particle tracking microrheology with amino

derivatized beads was successfully used to measure the

radius of gyration (63 6 1 nm) of the titin-II in solution in

agreement with DLS, SLS, and SANS results. Such

measurements indicate that the viscoelasticity of titin-II in

solution is that expected from a non-free-draining flexible

chain. The SANS, DLS, SLS, and microrheology results all

point to the flexible Gaussian chain nature of the whole chain

titin and fragment conformations.
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