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ABSTRACT Skeletal muscle contraction is a canonical example of motor-driven force generation. Despite the long history of
research in this topic, a mechanistic explanation of the collective myosin force generation is lacking. We present a theoretical
model of muscle contraction based on the conformational movements of individual myosins and experimentally measured
chemical rate constants. Detailed mechanics of the myosin motor and the geometry of the sarcomere are taken into account.
Two possible scenarios of force generation are examined. We find only one of the scenarios can give rise to a plausible
contraction mechanism. We propose that the synchrony in muscle contraction is due to a force-dependent ADP release step.
Computational results of a half sarcomere with 150 myosin heads can explain the experimentally measured force-velocity
relationship and efficiency data. We predict that the number of working myosin motors increases as the load force is increased,
thus showing synchrony among myosin motors during muscle contraction. We also find that titin molecules anchoring the thick
filament are passive force generators in assisting muscle contraction.

INTRODUCTION

The mechanism of skeletal muscle fiber contraction has been

a topic of investigation since antiquity. The major force-

generating element in the muscle is the motor protein myosin

II (Huxley and Niedergerke, 1954; Huxley and Simmons,

1971; Cooke, 1986; Rayment et al., 1993; Piazzesi et al.,

2002; Reconditi et al., 2004). A large body of work has been

devoted to the mechanochemistry of myosin (Huxley and

Simmons, 1971; Reedy et al., 1965; Rayment et al., 1993;

Gulick and Rayment, 1997; Conibear et al., 2003; Pate et al.,

1993; Siemankowski et al., 1985; Greene and Eisenberg,

1990, 1980; Clark et al., 2003; Kurzawa et al., 1997; Lymn

and Taylor, 1971). Single-molecule measurements can now

detect the motion of myosins interacting with actin (Rayment

et al., 1993; Milligan et al., 1990; Howard, 1994; Conibear

et al., 2003). Combined with detailed x-ray structures of

myosins in different conformations (Gulick and Rayment,

1997; Conibear et al., 2003), a plausible mechanism is

emerging for the working cycle of individual myosin motors.

In this article, we attempt to connect the dynamics of

individual myosins with the observed behavior of muscle

contraction. We will show that there are important collective

effects in skeletal muscle dynamics. The geometrical

organization of the sarcomere and the kinematics of the

constitutive parts play an important role. We will provide an

explanation for the observed synchrony in muscle contrac-

tion and show how an increasing load force leads to an

increasing number of myosins working on actin. We show

that a force-dependent ADP release step can explain the

dynamics of skeletal muscle contraction.

Proteins of the myosin family are integral components in

several cellular activities. Even among the skeletal muscle

myosins, there is a rich diversity of observed behavior (Pate

et al., 1993; Bagshaw, 1993). In the present work, we focus

on the fast skeletal muscle of the rabbit. However, there are

universal features common among the myosins. For in-

stance, the powerstroke of the myosin motor occurs after

phosphate release (Cooke, 1986; Spudich, 2001; Howard,

2001). In addition, a force-dependent ADP release step

responsible for synchrony in muscle contraction is also re-

sponsible for the unidirectional motion of myosin-V on actin

(Lan and Sun, 2005). Therefore, the myosin motors generate

force in a similar manner; how the forces are utilized lead to

different observed behavior.

From known skeletal myosin kinetics with purified pro-

teins, the actin binding step is quite slow. In fact, it is energet-

ically unfavorable, by ;2.3 kBT, for myosin to bind to actin

(Greene and Eisenberg, 1980; Howard, 2001). Yet, the force-

velocity curve shows a rather large stall force, indicating that

many myosin heads must be working under load (Pate et al.,

1994; Howard, 2001). However, at low load conditions, if

there are many bound working heads, they must mechan-

ically oppose each other. Thus, synchrony must exist among

the motors and the number of actin-bound motors must

change as a function of the external load. Electron micro-

graphs of muscle under tension show increasing order in the

cross-bridge arrangement as a function of load force. These

measurements are consistent with the notion of synchrony

among the motors. In our model, we show how synchrony is

achieved during muscle contraction.

The work of Duke established the basic framework of

understanding muscle contraction (Duke, 1999; Vilfan and

Duke, 2003). Duke’s model is also based on the swinging

cross-bridge mechanism of Huxley and Simmons (1971),
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which now is widely accepted as the basic explanation of the

role of the myosin in muscle contraction. The model

presented in this article builds upon Duke’s and Huxley’s

earlier works. We show how the thin filament movement is

connected with the conformational change in the myosin

motors. Duke’s work treated the chemical rate constants as

fitting parameters. He contends that synchrony in muscle

contraction is due to a slow phosphate (Pi) release step.

Forces from other myosin motors can assist Pi release (Duke,

1999). Biochemical studies, however, suggest that Pi release

is rapid (Siemankowski et al., 1985; Howard, 2001). In our

current work, experimentally measured chemical rate con-

stants are used. Realistic geometrical arrangement of the

mechanical elements in the sarcomere is included. Thus, the

number of unknown parameters is limited to the mechanical

constants of the myosin motor during its chemical cycle and

the elastic modulus of the stalk protruding out of the thick

filament.

SARCOMERE ULTRA-STRUCTURE

The basic arrangement of the sarcomere is shown in Fig. 1.

Each thick filament, comprised of a bundle of myosin stalks,

is surrounding by a hexagonal arrangement of thin filaments

(actin). The thin filaments are anchored to the Z-disk

(Huxley and Hanson, 1954). The thick filaments are an-

chored to the M-line (Reedy et al., 1965). The thick filaments

are also connected to the Z-disk via an elastic element made

of titin (Linke et al., 1996, 1998; Linke, 2000; Li et al.,

2002). In the experiments that we shall attempt to explain, an

external load force is applied to the Z-disk in the x direction
(Reedy et al., 1965). All of the actin filaments are under

tension, as well as the titin elastic elements. The elastic ele-

ments are passive force generators (Minajeva et al., 2002;

Linke, 2000); the myosin motors along the thick filament are

active force generators.

The gross structural features of the myosin motor are also

shown in Fig. 1. The myosin domains are labeled as the

motor domain, the light-chain domain (LCD), and the stalk.

During muscle contraction, a myosin motor binds to the actin

filament and undergoes a conformational change (Cooke,

1986; Rayment et al., 1993). The conformation change,

or powerstroke, is coupled to the ATP hydrolysis cycle

(Rayment et al., 1993; Finer et al., 1994; Lymn and Taylor,

1971). Given the three domains, we defined unit vectors, â
and b̂, oriented along the motor domain and the LCD, re-

spectively. â and b̂ define an angle, u, at point B. The

powerstroke motion is a rotation in u. Changes in u are

translated to the movement of the thin filament in the x
direction. In Energy Transduction within the Skeletal

Muscle: Two Scenarios, the kinematics of this movement

is discussed in more detail.

There are ;150 myosin motors interacting with the hex-

agonal thin filaments. When an external load force is ap-

plied to the Z-disk, all six actin filaments are under the same

amount ofmechanical tension. If we simplify the problem and

assume that the Z-disk can onlymove in the x direction, then it
is equivalent to model 150 myosin motors interacting with

a single actin filament. If the Z-disk is always held perpen-

dicular to the x axis by other tissue, then the current assump-

tion is a valid one.

The dimensions of the actin-myosin system are important

for kinematic considerations. The distance between the

centers of the thick filaments is ;42 nm. The distance be-

tween the centers of the thick and thin filaments is 24 nm.

The radii of the thick and thin filaments are 6 nm and 3 nm,

respectively (Epstein and Herzog, 1998). Thus, the distance

between the surfaces of the thick and thin filaments is 15 nm.

High resolution structures are available for the motor domain

and a part of the LCD. Cryo-electron micrographs of muscle

under tension show a cross-bridge connecting the thick and

thin filaments. Since the motor domain is 6 nm in length and

approximately the same size as the thin filament, we estimate

FIGURE 1 The ultra-structure of a sarcomere. (a) The rough arrangement

of the thick and thin filaments between the Z-disk and the M-line. (b) The

detailed side-view of the sarcomere. The myosin motors are arranged all

along the thick filament. The thick filament is connected to the Z-disk via the

elastic titin molecules. The titin molecules restrain the movement of the

Z-disk away from the thick filament, thus they are passive force generators.

(c) The rough geometry of the actin-myosin interaction. The myosin motors

are spaced 42-nm apart. The stalk domain protruding from the thick filament

is;50 nm in length and is elastic. The angle a is actually quite close to zero.

Here, the figure is exaggerated to show the stalk. (d) The myosin motor

consists of three domains. The angle, u, between the motor domain and the

light-chain domain (LCD) changes during the powerstroke. The stalk, which

consists of a coiled-coil motif, actually continues into the thick filament.

A bend is thought to occur in the light-chain, angling it upward to actin.
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that the observed cross-bridge is mostly the LCD which is

;12–15 nm in length. The stalk, which protrudes slightly

out of the thick filament, is known to be elastic and

semiflexible. The persistence length, lp, of the stalk is esti-

mated to be ;100 nm (Uyeda et al., 1996) and the length of

the stalk is ;50 nm (Cooke, 1986; Bagshaw, 1993).

Therefore, bending of the stalk is perhaps important. The

effect of stalk elasticity will be extensively discussed in

Energy Transduction within the Skeletal Muscle: Two

Scenarios.

High resolution x-ray structures of myosin bound to actin

are currently not available. However, fitting of myosin

structures to cryo-EM shapes indicates that the myosin motor

domain contacts actin with an angle b ¼ ;42� (Milligan

et al., 1990). It is not known whether the contact angle be-

tween actin and myosin changes if the catalytic site of myo-

sin changes occupancy. In our model, we have assumed that

this angle is fixed. The exact structural change within the

myosin domain during the powerstroke is also unknown.

Instead, we postulate that there is a conformation energy as

a function of u that is ultimately derived from the underlying

atomic level interactions. In absence of atomic-scale details,

kinetic measurements and structural considerations are used

to parameterize our model.

MECHANICAL ENERGY TRANSDUCTION IN A
SINGLE MYOSIN

The dynamics of molecular motors can be described by the

coupled Langevin equations

z _jj ¼ �@Eðj; s~Þ
@j

� F1 fBðtÞ

@s~

@t
¼ KðjÞ � s~; (1)

where j is a dynamical observable of interest. The value z is

the friction due to the surrounding medium. The value F is an

external load force and fB(t) is the Brownian random force

obeying the fluctuation dissipation theorem. The value s is
the chemical state of the molecular motor and E(j, s) is the
elastic energy of the motor as a function of the dynamical

observable and the chemical state. K is a matrix of kinetic

transition rates describing the chemical reactions in the

motor catalytic site. K is, in principle, a function of j also.

A single myosin motor binds and hydrolyzes ATP to

generate force. The binding and hydrolysis is also coupled

to myosin’s affinity for actin (Conibear et al., 2003; Greene

and Eisenberg, 1980; Lymn and Taylor, 1971). The

chemical cycle in a single skeletal muscle myosin is shown

in Fig. 2. The actin-bound myosin states are labeled A.M.E,
A.M.T, A.M.DP, and A.M.D, corresponding to empty, ATP,
ADP.Pi, and ADP occupancies in the catalytic site. The

actin-free myosin states are similarly labeled, but without

the A designation. The overall free-energy change after the

hydrolysis of one ATP at normal cellular conditions is ;25

kBT.

Myosin conformational energy

Changes in the chemical state are coupled to conformational

changes in the myosin motor domain. We propose that u is

FIGURE 2 The mechanochemistry of a single myosin motor. (a) The kinetic cycle is shown along with the measured rate constants for the reactions k0s/s9 in

s�1. The relative free energies of the states are also displayed. The most probable kinetic pathway is shown in heavy arrows, although no particular pathway is

assumed in our model. All of the observed states are included. (b) The myosin motor energy as a function of the angle u, defined in Fig. 1. The free energy

differences between equilibrium conformations are given by the kinetic constants. The M.* states have the exactly the same shape as the corresponding A.M.*

states except for additive constants. (c) The kinetic rate constant as a function of u for ADP release from A.M.D and (d) ATP release from A.M.T. The functions

have a sigmoidal shape, as explained in the text. At the equilibrium conformation, u0 (indicated as spheres), the rate constants correspond to the experimental

values with purified proteins.
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a dynamical variable under the influence of the protein con-

formational energy. The equilibrium value of u, u0 is a

function of the chemical state, s. Thus, for most of the chem-

ical states, we write the elastic energy of myosin motor as

a function of u as

E0ðu; sÞ ¼
1

2
kðsÞ½u� u0ðsÞ�2 1 cðsÞ; (2)

where u0(s) is the preferred angle (conformation) of the

myosin motor domain and k(s) is the force constant. The

value c(s) is an additive constant that specifies the relative

height of the energies. For the *.M.DP states, a slightly dif-

ferent E0 is used, as

E0ð�:M:DP; uÞ ¼
1

2
k1½u� u0ð�:M:DPÞ�2 1 cð�:M:DPÞ if u, u0;

1

2
k2½u� u0ð�:M:DPÞ�2 1 cð�:M:DPÞ if u $ u0:

8>><
>>:

(3)

The functional form of E0 is currently unknown. In principle,

it can be obtained from experiments or computer simulations.

For most of the chemical states, we have chosen the simplest

function possible to describe the energy. However, the

harmonic form of Eq. 2 is inadequate for the s¼M.DP state.

For ATP hydrolysis to proceed, the *.M.DP state should

always be lower in energy than the *.M.ATP state. The alter-

native function of Eq. 3 satisfies this constraint.

The energetic constant, c(s), can be computed from ex-

perimental kinetic measures of unstrained purified myosins.

The detailed balanced condition states that

k
0

s/s9

k
0

s)s9

¼ exp½ðE0ðu0ðsÞ; sÞ � E0ðu0ðs9Þ; s9ÞÞ=kBT�; (4)

where k0s/s9 is an experimentally measured kinetic rate

constant with purified proteins. This allows us to compute

c(s) unambiguously. The constants used in the present model

are summarized in Table 1. Fig. 2 b displays E0(u, s) used in
our model.

Myosin chemical kinetics

The kinetic rate constants describing the chemical changes in

the catalytic site are functions of the conformational variable,

ks/s9(u). Experiments have measured the rate constants with

purified proteins (Pate et al., 1993; Siemankowski et al.,

1985; Greene and Eisenberg, 1990, 1980; Bagshaw, 1993).

The experimental rate constants, k0s/s9, represent the rate

constants at conformational equilibrium:

k0s/s9 ¼ ks/s9ðu0ðsÞÞ: (5)

In addition, detailed balance must be satisfied, as

ks/s9ðuÞ
ks)s9ðuÞ

¼ exp½ðE0ðu; sÞ � E0ðu; s9ÞÞ=kBT�: (6)

With these constraints, we have devised the following set of

functions for ks/s9(u):

1. Binding to actin. The value kM.*/A.M.* is independent of

u. Therefore, binding can occur regardless of the motor

conformation.

2. Hydrolysis and Pi release. The values kA.M.T/A.M.DP and

kA.M.DP/A.M.D are independent of u and are set to

k0A:M:T/A:M:DP and k0A:M:DP/A:M:D, respectively.

3. Reverse hydrolysis and Pi binding. The values

kA.M.DP/A.M.T and kA.M.D/A.M.DP are given by the

detailed balance condition of Eq. 6 and our choice of

kA.M.T/A.M.DP and kA.M.DP/A.M.D.

4. ADP release. An important postulate of our model is that

ADP release, kA.M.D/A.M.E, is a strong function of the

conformation. Thus, the ADP release rate is given by

kA:M:D/A:M:EðuÞ ¼ k
0
3

tanh½aðu� D� u0ðA:M:DÞÞ�1 1

tanhð�aDÞ1 1
;

(7)

where the constants are aD ¼ 5.0, D ¼ 31�. The value k0

is the equilibrium ADP release rate measured in kinetic

experiments. The parameters are chosen so that

kA:M:D/A:M:Eðu0ðA:M:DÞÞ ¼ k0 [ k0A:M:D/A:M:E: (8)

This function is plotted in Fig. 2. A similar function was

also used to explain the processivity of myosin-V (Lan

and Sun, 2005).We propose that the angular position of the

light-chain is coupled to the geometry of the catalytic site.

If the angle swings past the equilibrium value, the binding

site becomes more open, and ADP release is enhanced. If

the angle is forced to be smaller than the equilibrium value,

the catalytic site is closed and ADP release rate is

exponentially smaller.

Notice that our choice for kA.M.D/A.M.E is equivalent

to the notion of torque-enhanced ADP release (Veigel

TABLE 1 Parameters used in the definitions of E0(u, s)

si Identity k(si)(kBT/rad
2) u0(si) (degrees) c(si)(kBT)

1 M.E 32.0 �10 �5.1

2 M.ATP 29.0 �5 0.0 (�25.0)

3 M.ADP.Pi 36.0 (1.0) �86 �2.0

4 M.ADP 32 �31 �8.7

5 A.M.E 32.0 �10 �18.1

6 A.M.ATP 29.0 �5 0.2

7 A.M.ADP.Pi 36.0 (1.0) �86 �7.8

8 A.M.ADP 32 �31 �20.5

The differences in the c(si) are the measured free energy differences

between chemical states. For *.M.DPi states, the two constants, k1(k2), are

given.
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et al., 2001). If an external torque is applied to the light-

chain, then we expect that the torque will cause some

conformational change in the catalytic site. Therefore, the

ADP release rate should be modified to

kA:M:D/A:M:EðuÞ ¼ k
0

A:M:D/A:M:Ee
tDup=kBT; (9)

where t is the applied torque and Dup is the strain

developed in the binding pocket. The value Dup is an

unknown parameter. The rate expression of Eq. 9 is

equivalent to the our rate expression near u0(A.M.D). Our

functional form is a sigmoid, indicated that there is an

upper bound to the ADP release rate.

5. ATP release. For reasons similar to those for the ADP

release, the ATP release rate should also depend on the

conformation. Since the lever-arm position is correlated

with the openness of the binding pocket, we expect larger

release rates when the lever-arm swings past the

equilibrium position. Thus, the same functional form of

Eq. 7 is used for kA.M.T/A.M.E, where a ¼ 8.0, D ¼ 5�.
The value k0 is now the measured ATP release rate.

6. ATP and ADP binding. ATP and ADP binding are deter-

mined using the detailed balance condition of Eq. 6.

For instance.

kA:M:E/A:M:DðuÞ ¼ kA:M:D/A:M:EðuÞ
3 e

ðEðu;A:M:EÞ�Eðu;A:M:DÞÞ=kBT: (10)

7. Chemistry when detached from actin. For all the

chemical rates, ks/s9, where s and s9 are both detached

from actin, the rate constants are all independent of u:

ks/s9 ¼ k
0

s/s9: (11)

Fig. 2 shows the experimentally estimated myosin rate

constants at conformational equilibrium. We have used

simplest assumptions in modeling the u-dependence of the

kinetic rates. Aside from the conformation-dependent

ADP and ATP release rate, no other assumptions are

made. Whenever possible, experimental values are used to

parameterize the model.

Thus, we have completely specified the energy

transduction mechanism in a single myosin motor. Pi

release leads to a powerstroke that changes the preferred

angle of the light-chain. But how does this motion

translate to muscle movement? Here, we will examine

two possible scenarios. These are depicted in Fig. 3. If

the shape of the stalk is described by the function R(s),
the angle c is defined as the angle formed between â and

the tangent vector t(L) of the stalk at point C:

tðLÞ ¼ @R
@s

����
s¼L

: (12)

In scenario I, the myosin motor simply rotates around

point C, creating a powerstroke in the x direction. The value
c is allowed to change during the powerstroke. To a first

approximation, we treat c as completely flexible. In addition

to this motion, a slight bend occurs in the stalk. (Actin is

much more rigid than the light-chain filament, and therefore

is treated as undeformable.)

In scenario II, we assume the opposite extreme and treat c

as completely fixed. The powerstroke distorts the stalk do-

main. The subsequent relaxation of the stalk leads to the x
movement. Both scenarios will now be examined in detail.

ENERGY TRANSDUCTION WITHIN THE
SKELETAL MUSCLE: TWO SCENARIOS

Scenario I

If the angle c is completely flexible, then the conformational

change in u can be mapped to a movement in x using the

relationship

x ¼ l0 sinðu1c0Þ; (13)

where l0 is the length of the light-chain domain and c0 ¼
p/2� b. Using this relationship, E0(u, s) can be directly map-

ped to the energy E0(x, s). In addition, when the myosin

head rotates, a strain is developed in the light-chain filament

that is proportional to the vertical displacement,

FIGURE 3 Two powerstroke scenarios. (a, scenario I) Myosin motor

rotates with respect to point C. The angles, c and u, change during the

powerstroke. The light-chain filament is largely undeformed during the

powerstroke, except for a small deflection when the myosin motor is almost

perpendicular to the actin filament. This deflection energy is accounted for in

our model. (b, scenario II) In the second scenario, the angle c is fixed during

the powerstroke. The motion is achieved through bending the stalk domain,

and the subsequent relaxation of the bending energy drives the thin filament

forward.

A Model of Muscle Contraction 4111

Biophysical Journal 88(6) 4107–4117



y ¼ l0 cosðuðxÞ1c0Þ: (14)

Therefore, the total energy of the actin filament per myosin

motor is

Eðx; sÞ ¼ E0ðx; sÞ h ðsÞ1
1

2
MhðsÞðyðxÞ � y0Þ2; (15)

where y0 is the equilibrium length in the y direction and h(s)
is a function that is 1 if s ¼ (A.M.*) and 0 if the head is

detached from actin. The second part of the elastic energy is

the small deflection energy of a straight filament. The value

M is not a free parameter, but related to the bending stiffness

of the filament, lp. In Appendix B, we give an expression for
M as a function of the persistence length of the stalk. The

value M is essentially 0 for the present case.

We note that single molecule experiments have measured

the size of the myosin powerstroke (Finer et al., 1994). The

value l0 is obtained from the myosin structure and is not

a fitting parameter. Thus, for given l0 and known power-

stroke size (10 nm) (Huxley and Simmons, 1971; Cooke,

1986; Pate et al., 1993; Finer et al., 1994) u0(s) specifying
E0(u, s) is in fact fixed. The only possible freedom is in

choosing k(s).
The total energy of actin depends on the number of bound

myosin heads,

eðx; s1; . . . ; sNÞ ¼ +
N

i¼1

Eðx; siÞ; (16)

where N is the total number of myosin heads and E(x, si)
appears in Eq. 15. The movements of the actin filament can

be computed using the Langevin equation of Eq. 1, or the

Fokker-Planck equation explained in Muscle Dynamics

using Non-Equilibrium Statistical Mechanics. The chemical

transitions of each myosin motor are largely unmodified

except for myosin unbinding from actin. Due to the vertical

elastic energy, the unbinding rates become

kA:M:�/M:� ¼ kA:M:�/M:�e
1
2MðyðxÞ�y0Þ

2
=kBT: (17)

This modification preserves detailed balance between the

bound and unbound states.

Scenario II

If the contact angle, c, between the myosin head and the

actin filament is fixed, then powerstroke can only occur by

flexing the myosin stalk. The total elastic energy of the

myosin and the stalk is therefore

Eðx; u; sÞ ¼ E0ðu; sÞ1El½x; fðuÞ�; (18)

where f(u) is the angle of the tangent vector, t(L). The
value f is a function of the myosin conformation, u.

The exact relationship is made explicit in Appendix A. The

value x is the location of the bound myosin head with

respect to point A. The value El(x, u) is the elastic energy

of the stalk domain that depends on the geometry of the

filament but not the chemical state. The way we compute

El(x, s) is given in Appendix A. Because the stalk is very

close to the thick filament, when the stalk bends, it can

impinge on the thick filament. We approximate El is a sum

of two contributions,

El ¼ El0 1Es; (19)

where El0 is the energy of pure bending and Es is the

interaction energy between the stalk and the thick filament.

Note that El should be larger than El0 and Es is always

positive.

After E(x, u, s) is computed, the powerstroke motion can

be obtained from comparing E(x, u, A.M.DP) and E(x, u,
A.M.D). Since u relaxes much more quickly than x, the work
delivered in the x direction can be found by minimizing u for

each x, i.e.,

Eðx; sÞ ¼ Eðx; u�
; sÞ; (20)

where u* is the value that minimizes E for fixed x.
In Fig. 4, we plot the work delivered in the x direction and

the powerstroke size for each myosin motor using scenario

II. The energy surface E(x, u, A.M.D) is also shown. Here, to

simplify the presentation, we have set Es ¼ 0. Single

molecule experiments have established that the powerstroke

size of a single myosin II motor is ;10 nm. Thus,

u0(A.M.DP) – u0(A.M.D) is not an adjustable parameter.

The only adjustable parameters are the stiffness constants,

k(s), determining E0(u, s). Since El is close to 0 immediately

after myosin binds to actin, k(A.M.DP) is relatively

unimportant. The important parameter determining the mag-

nitude of the powerstroke is k(A.M.D). We see that, al-

though the size of the powerstroke is 10 nm, the work

delivered in the x direction is, at most, 10 kBT—far below the

work delivered using scenario I. Thus, without the inclusion

of Es, the work delivered suggests that the stall force in

scenario II is substantially smaller. With the inclusion of Es,

our calculations show that the powerstroke size is sub-

stantially smaller (,5 nm). The work delivered in the x
direction is also smaller. The combined results suggest that

the efficiency and the stall forces using scenario II must be

much smaller than scenario I. This conclusion is also

confirmed by computations not reported here.

MUSCLE DYNAMICS USING NON-EQUILIBRIUM
STATISTICAL MECHANICS

Given the overall energy of the actin filament as a function of

x and the chemical states of the myosin motors, we now can

solve for the dynamics of the muscle contraction using

scenario I. If an external load force, F, is applied to the

Z-disk, the overall energy is modified to
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eðx; s1; s2; . . . ; sNÞ ¼ +
N

i¼1

Eðx; sÞ � Fx: (21)

To obtain the mean contraction velocity, we solve a

Fokker-Planck equation for the actin position probability,

P(x,s1,s2,. . .,sN),

@P

@t
¼ 1

z

@

@x

@e
@x

P

� �
1D

@
2
P

@x
2

1 +
N

i¼1

+
s9i

kðx; s1; . . . ; sN/s91; . . . ; s9NÞPðx; s91; . . . ; s9NÞ; (22)

where z is the friction acting on the actin filament and the

Z-disk. The chemical transition rates, k(x;s1, . . . ,sN/
s91, . . . ,s9N), have been specified in Mechanical Energy

Transduction in a Single Myosin. Due to the large number

of myosin motors (N ¼ 150), the dimension of the energy

surface is quite large. A more natural way to solve the

equation is by using Monte Carlo trajectories. We discretize

x and describe the changes in x and the chemical states as a set

of Markov equations:

@rðsÞ
@t

¼ +
s9

Ks;s9rðs9Þ � rðsÞ+
s9

Ks;s9: (23)

Here, if the actin filament is at the ith position along x, then
s labels the composite state of the system

s [ ði; s1; s2; . . . ; sNÞ: (24)

The transition probability matrix, Ks, s9, is given by

where

k6 ¼ D

Dx
2

½eðxi61Þ � eðxiÞ�=kBT
expð½eðxi61Þ � eðxiÞ�=kBTÞ � 1

: (26)

TheMarkov equations obtained after discretization are good

approximations to the Fokker-Planck equation if Dx¼ xi – xi–1
is not too large (Wang et al., 2003). A trajectory in this

multidimensional space is a sequence of jumps among the

states. A method to sample this ensemble in trajectory space

was first proposed by Bortz et al. (1975). Given the current

state of the system, s, the time to leave the current state, Dt, is
given by e�Dt/t where

1

t
¼ +

s9

Ks;s9: (27)

A random number is chosen according to e�Dt/t to obtain

Dt. Another random number is chosen from 0 to 1/t to

determine the identity of the destination state. In this fashion,

a sequence of jump times between the states is generated

according to the probability distribution of the trajectories.

An observable such as the average speed of actin movement

is given by

v ¼ @

@t
ÆxðtÞæ ¼ @

@t
lim
n/N

1

n
+
n

j¼1

xjðtÞ; (28)

where xj(t) is the position as a function of time for the

jth trajectory and n is the total number of trajectories.

RESULTS

Using 150 myosin motors, we have computed the force

versus velocity curve for muscle contraction. This is shown

in Fig. 5. The computational results are slightly different

from the experimental data at large load forces. We argue

that this is not surprising. In the experimental situation, the

contraction is not only due to the myosin motors working

along actin, but also due to the contraction of the passive

force generator, titin. Thus a fraction of the applied force is

balanced by titin, and the force along the actin filament is

lower than the total applied force. Titin is also a nonlinear

elastic object. At high load forces, the resorting force

generated by titin can be quite substantial. Independent

measurements of titin elasticity suggest that titin is

responsible for ;20% of the contractile force (Minajeva

et al., 2001, 2002; Linke, 2000; Linke et al., 1996, 1998).

Thus, our computational results are consistent with exper-

imental measurements.

To explore the dependence of our force-velocity relation-

ship on the shape of the myosin conformational energy, E0,

we used a more complicated nonharmonic function to model

E0(u, A.M.D). The function is similar to what we used for

myosin-V, as

E0ðu;A:M:DÞ ¼ � 6 exp½�6:2ðu� u0Þ2�
1 21ðu� u0Þ2 1 cðA:M:DÞ; (29)

and gives a slightly larger force near u � u0. However, the

force-velocity relationship is insensitive to this change.

Thus, our result is robust with respect to different forms of E0.

The efficiency, e, of the muscle, is defined as

e ¼ Fv

ÆræDGATP

; (30)

Ks;s9 ¼
ksi/s9iðxiÞ if s ¼ ði; s1; s2; . . . ; si; . . . ; sNÞ and s9 ¼ ði; s1; s2; . . . ; s9i ; . . . ; sNÞ
k1 if s ¼ ði; s1; s2; . . . ; sNÞ and s9 ¼ ði1 1; s1; s2; . . . ; sNÞ
k� if s ¼ ði; s1; s2; . . . ; sNÞ and s9 ¼ ði� 1; s1; s2; . . . ; sNÞ

;

8<
: (25)
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where DGATP ¼ 25 kBT and Æræ is the average rate of overall
ATP hydrolysis. Our results shown in Fig. 5 display a similar

trend. The measured efficiency is always slightly higher.

Again, due to the titin restoring force, the actual force ap-

plied to actin is smaller by ;20%. Therefore, our result is in

good agreement with the measurements.

In Fig. 6, we plot the average number of working heads as

a function of F. We see that the number of working heads is

very low when the load force is small. As the load force

increases, the number of working heads increases gradually.

The explanation of this result can be seen from Fig. 2. When

the load force is small, the rate-limiting step is actin binding.

After a myosin head is bound, it quickly releases Pi and

makes a powerstroke to reach the equilibrium conformation

of the A.M.D state. At this equilibrium conformation, the

ADP release rate is quick and the kinetic cycle proceeds

without hindrance. If the load force is high, then the myosin

head cannot complete its powerstroke. The conformation is

stuck in the ADP state before the equilibrium value. At this

position, ADP release is slow and rate-limiting. Thus, the

kinetic cycle is stopped until another myosin head binds to

actin and makes a powerstroke. If there are enough heads

bound, the collective powerstroke can overcome the load

force and reach the equilibrium conformation. Thus, the con-

FIGURE 5 (a) The force versus velocity curve for the skeletal muscle of

rabbit. The theoretical results are shown as the solid line and experimental

measurements are shown as circles. There are 150 cross-bridges in the

computation. (b) The efficiency versus velocity for muscle contraction. The

experimental results are shown as the open circles.

FIGURE 4 The origin of the powerstroke in scenario II. (a) The contour
plot of E(x, u, A.M.D) without contributions from Es, i.e., El ¼ El0. The

energetic minimum of E(x, u, A.M.DP) is at (x9, u9), labeled A. The energetic

minimum of E(x, u, A.M.D) is at (x*, u*), labeled C. After Pi release, the

system first drops to the A.M.D surface at (x9, u9). The subsequent change in
x, from B to C, is the powerstroke. (Here, the powerstroke goes from the

right to left.) In the inset, a representative shape, R(s), of the stalk is shown.

In this case, the stalk actually impinges upon the thick filament. (b) The

powerstroke as a function of k(A.M.D), again without contributions from Es.

k(A.M.D) is the only adjustable parameter in this problem. The powerstroke

size (whose scale is on the right, in nm) is given by the dotted line. The

energy of the powerstroke is given by the red line (scale at left, in kBT). For
all possible values of k(A.M.D), the powerstroke size never exceeds 10 nm.

More importantly, the powerstroke energy is never greater than 10 kBT.
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formation-dependent ADP release step is the explanation for

synchrony in muscle contraction.

Note in Fig. 6, when the applied force is large, the number

of attached heads shows an oscillatory behavior. In this

regime, the system is unstable and exhibits a dynamical

phase transition (Badoual et al., 2002).

DISCUSSION AND CONCLUSIONS

In the present work, we have presented a comprehensive

model for skeletal muscle contraction. We have considered

two scenarios of force generation by the myosin motors. We

have shown that scenario I, where only small deformations

occur in the stalk domain, is the most likely force-generation

mechanism. Scenario II generates a smaller powerstroke

with a lower efficiency. Experimentally measured rate con-

stants for the various chemical steps are used to parame-

terize our model. Because the actin binding step is slow and

energetically unfavorable, the number of working heads is

quite low. When the load force is increased, the myosin

motors are stuck at the conformation where they cannot

release ADP. The only way the kinetic cycle can proceed is

to bind more myosin motors. This leads to synchrony ob-

served in muscle contraction.

Using generic parameters, we are able to explain the

experimentally measured force versus velocity curves. We

found that the elasticity of titin plays an important role in the

overall contractile force. The load force experienced by the

thin filament is likely to be lower than the overall applied

force. The efficiency of the myosin motors is also lower than

expected. Thus, further experiments with isolated sarcomere

without titin are desirable.

In a model such as our work, there are a set of unknown

parameters; several of them are summarized in Table 2. We

emphasize that we have taken very generic functional

dependences to parameterize our model. For instance, simple

quadratic and sigmoidal functions are used to parameterize

E0(x, s) and ks/s9(x). Experimentally measured rates further

constrain our model. Whenever possible, parameters are

computed from known elastic properties of the components.

There is likely some dependence of our results on the

parameters. However, the behavior we observe and mech-

anism we propose are generic and stable with respect to

small changes in the parameters.

The conformational dependent ADP release step should

be examined in more detail in experiments. Laser trap

experiments with a single myosin have shown a force-

dependent ADP release (Veigel et al., 2001). Thus, some of

the assumptions of the model are already justified. The

quantitative dependence of the ADP release rate on u is un-

available. Perhaps molecular dynamics simulations or de-

tailed experiments can answer this question.

We note that the computed results in this article are for

muscle movement near steady state. The transient, non-

equilibrium behavior of muscle contraction is also in-

teresting (Huxley and Simmons, 1971; Piazzesi et al.,

2002; Reconditi et al., 2004). For instance, a bistable

behavior is observed near stall. The discussion of the

transient aspects, and further elaborations on the role of titin

will be the subjects of a forthcoming article.

APPENDIX A: ELASTIC ENERGY OF THE STALK

The geometry and energy of an elastic filament are completely specified by

its boundary conditions (see Fig. 7). The shape of the filament is given by

a two-component function R(s) ¼ (X(s), Y(s)) in the x,y plane. We start with

the force and torque balance conditions,

_NN ¼ 0 (A1)

M1 _RR3N ¼ 0; (A2)

where N is the total force per unit length along the filament and M is the

torque per unit length. The dot notation represents a derivative with respect

to the arc-length, e.g., _RR ¼ @R=@s[ tðsÞ. We also define a body fixed

frame, (e1(s), e2(s)), where e1 ¼ _RR and

e1ðsÞ ¼ ðcosfðsÞ; sinfðsÞÞ (A3)

TABLE 2 Table of constants used in our model

Constants Value

Stiffness of the stalk, lp. 100 nm

Angle between the stalk and thick filament, a. �2�
Length of the LCD, l0. 12 nm

Length of the stalk, L. 50 nm

Distance between the thin and thick filaments,

d0.
15 nm

Force constant for light-chain deflection, M. See

Appendix B.

0.002 kBT/nm
2

These values are taken from estimates based on experiments. None of these

values are fitted parameters.

FIGURE 6 The average number of attached myosin heads as a function

of the externally applied force. The increasing number of attached heads is

our explanation of synchrony in muscle contraction.
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e2ðsÞ ¼ ðsinfðsÞ;�cosfðsÞÞ (A4)

_ee1ðsÞ ¼ � _ffe2 (A5)

_ee2ðsÞ ¼ _ffe1: (A6)

Written in component form, we have

_NN ¼ ð _NN1 1N2
_ffÞe1 1 ð _NN2 � N1

_ffÞe2: (A7)

This implies

_NN1 1N2
_ff ¼ 0 (A8)

_NN2 � N1
_ff ¼ 0: (A9)

The torque is

M ¼ lpkBT _ffðe1 3 e2Þ: (A10)

Combining with the torque balance condition of Eq. A2, we obtain

_MM1 e1 3N ¼ ðlpkBTf̈1N2Þðe1 3 e2Þ ¼ 0: (A11)

This implies N2 ¼ �lpkBTf̈. We finally arrive at four coupled equations

describing the filament geometry:

_NN1 ¼ lpkBT _fff̈ (A12)

lpkBTf
��� ¼ �N1

_ff (A13)

_XX ¼ cosf (A14)

_YY ¼ sinf: (A15)

The elastic energy in the filament is then given by

El0 ¼
Z L

0

ds
1

2
lpkBT _ff

2
: (A16)

To solve the elastic equations, six boundary conditions, i.e., X(0), Y(0),

X(L), Y(L), f(0), and f(L), are required. We have

Xð0Þ ¼ Yð0Þ ¼ 0 (A17)

XðLÞ ¼ f 1 l0 cosðb� uÞ (A18)

YðLÞ ¼ d0 � l0 sinðb� uÞ (A19)

fð0Þ ¼ a � 0� (A20)

fðlÞ ¼ a1 u� u0ðA:M:DPÞ: (A21)

The endpoint (X(L), Y(L)) is related to the filament position x by the

relationship

x ¼ XðLÞ � l0 cosðb� uÞ: (A22)

By varying u and X(L), we obtain El0(x,u).

APPENDIX B: THE RELATIONSHIP BETWEEN
M AND LP

During the powerstroke in scenario I, the vertical displacement of the stalk is

small compared to its overall length. Thus, small deflection approximation is

excellent in describing the overall change in elastic energy. The shape of the

filament is given by the function, y(x). The elastic energy in this case is

El ¼
1

2

Z xf

0

dxlpkBT
@
2
y

@x
2

� �2

; (B1)

where xf ¼ L cos a. The Euler-Lagrange equation minimizing the filament

geometry is therefore

lpkBT
@
4
y

@x4
¼ 0: (B2)

The solution is a polynomial, y ¼ ax3 1 bx2 1 cx 1 d. The boundary

conditions are

yð0Þ ¼ 0 (B3)

y9ð0Þ ¼ tana (B4)

yðxfÞ ¼ yf (B5)

y$ðxfÞ ¼ 0: (B6)

Therefore,

yðxÞ ¼�yf �Lsina

2L
3
cos

3
a
x
3
1
3ðyf � LsinaÞ
2L

2
cos

2
a

x
2
1x tana; (B7)

and

El ¼
3lpkBT

2L
3
cos

3
a
ðyf � L sinaÞ2: (B8)

Since the undeformed filament height is y0 ¼ L sin a, El is in the form of

El ¼
1

2
Mðyf � y0Þ2; (B9)

where

M ¼ 3lpkBT

L
3
cos

3
a
: (B10)

If lp ¼ 100 nm, L ¼ 50 nm, and a ¼ 2�, then M � 0.002 kBT/nm
2,

or essentially negligible.
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