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With the advent of drugs targeting specific molecular defects in
cancerous cells [Gorre, M. E., et al. (2001) Science 293, 876–880], it
is important to understand the degree of genetic heterogeneity
present in tumor cell populations and the rules that govern
microdiversity in human cancer. Here, we first show that popula-
tions with different genotypes in genes influencing cell growth
and programmed cell death coexist in advanced malignant tumors
of the colon, exhibiting microsatellite instability. Detailed, physical
mapping of the diverse populations shows them to be arranged in
small, intermingling areas, resulting in a variegated pattern of
diversity. Using computational modeling of the experimental data,
we find that the coexistence between similar competitors is en-
hanced, instead of deterred, by spatial dynamics [Hanski, I. (1999)
Metapopulation Dynamics (Oxford Univ. Press, New York)]. The
model suggests a simple and plausible scenario for the generation
of spatial heterogeneity during tumor progression. The emergence
and persistence of the patterns of diversity encountered in the
tumors can be generated without a need to invoke differences in
mutation rates, neutrality of interactions, or separated time scales.
We posit that the rules that apply to spatial ecology and explain the
maintenance of diversity are also at work in tumors and may
underlie tumor microheterogeneity.

The standard model invoked to explain tumor progression, the
increase of biological malignancy with time, is clonal evolu-

tion, first proposed by Nowell in 1976 (1). Successive acquisition
of mutations generates diverse clones, and it is postulated that
the emergence of a dominant clone underlies the biological and
clinical properties of a tumor at a point in its natural history (2).
The study of structural genetic alterations found in human
tumors provides further support for the clonal evolution model
(3, 4), and limited observations suggest that the tempo of tumor
progression may follow a punctuated pattern with long periods
of stasis and periods of rapid genetic change in the tumor cells
(5). In contrast to the concept of the emergence of a dominant
clone, it is becoming increasingly apparent not only that micro-
heterogeneity of tumor cells can be demonstrated at the phe-
notypic level, but that genetic heterogeneity is present in many
advanced tumor types. Recent reports demonstrating genetic
diversity within loci that play a key mechanistic role in tumor
formation [e.g., K-ras, p53, transforming growth factor-�RII
(TGF�RII), and BAX] present a paradox (6–8). How can the
prolonged coexistence of genetically diverse populations and the
concomitant lack of dominance be explained? After studying
microdiversity in tumors exhibiting a microsatellite instability
(MSI), we present a possible answer to this question. In silico
modeling of the geography of clonal diversity suggests that the
same fundamental principles that explain lack of dominance in
complex ecosystems underlie the maintenance of clonal diversity
in human tumors.

Materials and Methods
Human Tissues and Microdissection. Annotated, anonimized tissues
were obtained after approval by the human investigations
committee at the Ciutat Sanitària i Universitària de Bellvitge,

Barcelona. The six tumors were part of a group of colorectal
neoplasms previously studied for MSI (9). All were adenocar-
cinomas with variable amounts of mucin production. Four
tumors were staged as Duke’s B (T-2, T-3, T-5, and T-6), and two
tumors belonged to the Duke’s C with visceral metastases (T-1
and T-4). For microdissection, archival paraffin tissue blocks
were cut at a thickness of 6 �m and stained with methyl green.
Microdissection was carried out by laser capture (PixCell; Arc-
turus Engineering, Mountain View, CA), by using a �40 lens and
paying attention to the exclusion of stromal cells. Intraepithelial
lymphocytes in tumor glands were not identified. The micro-
graphs in Fig. 1a show how a tumoral glandular structure is
acquired: from the field shown at Left, a single structure is lifted
from the tissue (Center). The result (Right) verifies the purity of
the microdissected cell population. Each pool of cells analyzed
represents the population of tumor cells enclosed in a contiguous
surface of 100 �m2.

Genotyping. DNA extraction with proteinase K, as manufacturers
recommend, was followed by PCR amplification by using 40
cycles of three loci: bat26 (a 26 A tract within an intron of
hMSH2) (10), a G8 repeat (codons 38–41) within BAX (11), and
an A10 tract (nucleotides 709–718) within TGF�RII. The
100-bp fragment of TGF�RII was amplified from �200 pg of
DNA by using 40 cycles of 94°C for 30 s, 60°C for 45 s, and 72°C
for 45 s with the primers as described (12). Detection of
mutations was performed by electrophoresis in sequencing gels
and silver staining. The results of the genetic analysis (Fig. 1b)
can be interpreted easily for each of the selected areas. Lane e
in Fig. 1b shows a BAX���; TGF�RII���; bat26���. Heterozy-
gosity is not caused by contamination of normal cell elements
because the DNA extracted from a single area often shows a
mutation�mutation genotype for one of the three loci examined.
The 27 possible genotypes for any given area make it unlikely
that heterozygosity would be caused by an equal mixture of ���
and ��� cells. To ascertain that allele dropout was not a source
of artifact, we performed triplicate PCRs by using serial dilutions
of the input DNA. Each original reaction was performed with
200 pg of DNA. Allele drop-out emerged (one of three repli-
cates) at 2 pg. To verify the results of the TGF�RII genotyping,
especially in the case of heterozygosity, we have pooled three
samples and verified that the genotype remains the same after 35
cycles. In addition, 30 samples were chosen randomly and the
genotyping for TGF�RII was repeated. In all instances, the
genotypes were confirmed.

In Silico Model. Our model is a simple, stochastic, cellular autom-
aton (voter-like) model on a 3D grid � with N�N�N sites and
zero-flux boundary conditions (13–16). Here, we use n � 45. The
spatial position of each site is given by r � (i, j, k) with 1 � i, j,
k � N. Cell types are indicated by means of an integer variable
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S(r) � � � {0,1,2}. These three states correspond to empty
[S(r) � 0], normal epithelium [S(r) � 1], and cells with MSI
[S(r) � 2], respectively. Each cell with MSI will be characterized
by two additional values, b(r), t(r) � {0,1,2}, indicating the
number of mutated alleles in BAX and TGF�RII, respectively.
Each run of in silico tumor growth involves, at the beginning,
eight cells (located at the center of the lattice �). These cells are
in state 1 (i.e., normal epithelium), and the rest of the lattice is
empty (state 0).

Three rules define the dynamics of this cellular automaton.
(i) Cell death: any given cell can die with probability Pd � Dk�,
where � is the basal probability of death per cell per replication
round and k � b(r). Here, D0 � 1, and 0 � D1, D2 � 1
multiplicative factors that decrease apoptosis (cell death) de-
pend on b(r). (ii) Cell replication: a given cell can replicate to any
of its six nearest grid sites, with probability Pr � Rk�, where k �
t(r) and � is the basal replication probability (here this is fixed to
� � 0.05). Now R0 � 1 and R1, R2 	 1. An additional constraint
to this rule would restrict cell proliferation to the presence of
available empty sites. Under this approach, dominant clones
expand at a rate that essentially is defined by the die-off of less
dominant cell populations. This additional constraint does not

modify our final conclusions, but it is computationally expensive.
(iii) Mutation: once replication takes place, mutations in BAX
and TGF�RII also can occur in cells with MSI. Each gene
can independently add a mutation with fixed probability �, i.e.,
t (m) 3 t(m) � 1 and�or b(m) 3 b(m) � 1.

We use a simple algorithm (17) to search over the six-
dimensional parameter space T � (�, �, D1, D2, R1, R2). Using
the rules specified above, a set of M � 102 candidate solutions
defined as 6-tuples Ci � (�i, �i, D1

i , D2
i , R1

i , R2
i ); i � (1, . . .,M) is

created by randomly generating the parameters, with �i, �i, D1
i ,

D2
i � [0, 0.25] and R1

i , R2
i � [1, 3]. This defines the G � 0

generation in the algorithm. For each of these vectors, in silico
tumor growth occurs over T � 200 steps, and this is repeated over
20 replicas. At the end of each replica, the cell populations with
different frequencies of mutations in BAX and TGF�RII are
computed, and the distance Fi between the ith simulation
average and the experimental data are stored (here, this distance
will play a role of inverse fitness in the algorithm). Once all M
runs are finished, the average distance F � �i Fi�M is computed,
and those solutions such that Fi 	 F are eliminated. The
eliminated solutions are replaced by new ones derived from the
survivors after small changes (within 5% of their current values)
in the parental parameters.

Results
We began by constructing a detailed, 2D diversity map of six
sporadic, advanced colonic carcinomas exhibiting MSI (18).
We used laser-assisted microdissection to acquire distinct
tumor cell populations occupying an average area of 100 �m2

each (Fig. 1a). For each of the 233 populations examined, we
determined the length of three microsatellite sequences lo-
cated in an intronic region of hMSH2 (bat26) and within exons
of TGF�RII and BAX (10–12) (Fig. 1b). The prevalence of
mutations in the 233 zones was as follows: bat26 heterozygous,
26%, homozygous, 68%; TGF�RII heterozygous, 42%, ho-
mozygous, 48%; BAX heterozygous, 41%, homozygous, 16%.
The heterozygous patterns are unlikely to be due to contam-
ination by nontumoral cells with normal genotypes because in
77% of the samples, at least one of the loci examined exhibited
a homozygously mutated pattern (Fig. 2b). The results showing
coexistence in the same sample of a homozygously mutated
locus with a WT genotype also argue against contamination
as an explanation for the results obtained. The possibility of
allele dropout also was ruled out by ascertaining that exclusion
of one allele did not occur with the conditions used (see
Materials and Methods). Mutations in two of these three genes,
TGF�RII and BAX, are functionally significant in terms of
cell growth and cell death and play a role in the pathogenesis
of colonic carcinomas with MSI (19, 20). We classified each
of the 233 distinct areas into 27 possible genotypes (���, WT;
���, heterozygous mutation; ���, homozygous mutation in
three loci). The degree and scale of heterogeneity present in
the six tumors we analyzed are depicted in Fig. 2 a and b. Fig.
2a illustrates the high degree of intermingling of clones with
diverse genotype seen in one of the tumors. The geographical
distribution of genotypes in advanced tumors indicates that
clones with homozygous loss of TGF�RII and hemizygous for
BAX are unable to take over the space occupied by a
TGF�RII-hemizygous�BAX-WT neighbor. The lack of dom-
inance is even more strikingly demonstrated by the presence of
isolated tumor clones that are WT for one or the other of the
tumor genes analyzed or even for both (Fig. 2b). The abnormal
morphology of the cells sampled and the demonstration of a
bat26��� genotype indicate that these populations lacking
shortening of the microsatellite sequences in TGF�RII and
BAX indeed are tumoral. The possibility that the WT pattern
(normal length of the repeat) could be produced by shortening
of a previously mutated (lengthened) microsatellite locus is

Fig. 1. (a) The micrographs show how a tumoral glandular structure is
acquired: from the field (Left), a single structure is lifted from the tissue
(Center). The result (Right) verifies the purity of the microdissected cell pop-
ulation. Each pool of cells analyzed represents the population of tumor cells
enclosed in a contiguous surface of 100 �m2. (b) The results of the genetic
analysis can be interpreted easily for each of the selected areas. Lane e shows
a BAX���; TGF�RII���; bat26���. Heterozygosity is not caused by contamina-
tion of normal cell elements because the DNA extracted from a single area
often shows a mut�mut genotype for one of the three loci examined. The 27
possible genotypes for any given area make it unlikely that heterozygosity
would be caused by an equal mixture of ��� and ��� cells.
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unlikely in view of the data presented by Ionov et al. (20). Table
1 gives the frequency of TGF�RII and BAX genotypes in the
totality of tumor areas sampled. The most prevalent genotype

is [TGF�RII���;BAX���], followed by [TGF�RII���;BAX���].
As is evident from the schematic representation of the results
found for each individual tumor (Fig. 2b), BAX��� predomi-

Fig. 2. (a) The dappled pattern of heterogeneity is shown for one of the tumors studied. Note the diversity of genotypes generated when three loci are referred
to a single area. The micrograph of the tumor also illustrates the advanced stage of the tumor growth, which penetrates the entire thickness of the intestinal
wall. (b) Summary of results for the six tumors studied. Each gene is represented in a column, with each file through the three columns representing an
independently sampled area of the tumor. In many instances, an area that contains cells with two mutated alleles (e.g., TGF�RII and bat26) and a WT BAX can
be seen. Tumors are arranged from the most cellular to the least cellular because of large mucin pools. The mucinous tumors, although in the same size category,
yielded less cellular areas for genotypic characterization. (c) The geographical distribution of clones in the model indicates that the parameters found by the
algorithm are close to the experimental data. The optional parameters found by the search algorithm were: � � 0.01, � � 0.0021, D1 � 0.760, D2 � 0.376, R1 �
1.399, R2 � 1.413. A cross-section of the 3D representation generated by the model shows the intermingling of clones with diverse genotypes to be close to the
experimental findings.
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nates in the less cellular, mucin-rich tumors for which the total
number of areas sampled is smaller.

To gain insight and explore possible explanations for the
striking lack of dominance we observed, we used a simple in silico
model of tumor growth and progression. Of the three loci we
studied, the model involves the two genes with functional
significance, TGF�RII and BAX. We used an evolutionary
algorithm (17) to search for the parameter values that would
yield results closest to the maps obtained experimentally. The
parameters are rates of replication, death, and mutation. Mono-
or biallelic mutations in both genes lead to corresponding
changes in the rates of division and death and, thus, explicitly
include selective advantages (see Materials and Methods). Each
generation or step of the algorithm creates 100 tumors, each
characterized by a different and specific set of parameters, and
selects those closest to the experimentally observed distribution
of mutations. For each step, the solutions laying below the
average distance to the experimental data are retained for a
subsequent step of selection. At the end of each step, the extinct
solutions are replaced by slightly altered replicas of the survivors
(see Materials and Methods). Each step in the algorithm involves
the growth of 100 virtual tumors. The robustness of the model
(Fig. 3) is indicated by the fact that executing the algorithm 100

times (thus, growing 10,000 tumors) always provides the same
optimal sets and no alternative solutions are found. An example
of the close fit of the solutions to the experimental data is given
in Table 1, and Fig. 2c shows that the geographical distribution
of the virtual tumor cell populations reproduces the variegated
spatial distribution observed in the human tumors (Fig. 2c).

Discussion
Genetic tumor cell heterogeneity in tumors showing MSI has
been observed previously, and different explanations have been
proposed. These explanations include: (i) mutations occur at
different points in the history of the tumor, (ii) different rates
of mutation exist for different loci in the same tumor, and
(iii) mutations that show diversity are irrelevant for progression
(7, 8). The model was designed to explain the maintenance rather
than the origin of diversity. The spatial resolution of our model,
at this point, does not match the spatial resolution of the
experimental results. The scenario generated by the model we
have used suggests an alternative, simple, and plausible expla-
nation for the generation of spatial heterogeneity. The algorithm
finds a solution that does not require differences in mutation
rates, neutrality of interactions, or separated time scales for the
emergence and persistence of diversity during tumor growth. It
suggests that the coexistence of small clusters of cells with
diverse genotype can be explained through the spatial dynamics
resulting from the growth of two populations of similar com-
petitors (14, 15). Under the local constraints imposed by explicit
space, competitive exclusion requires extremely long times
(more than 104 generations), and, thus, spatial diversity is
maintained. The model we present is actually close to the
so-called voter model (15) in which coexistence between similar
competitors is enhanced (instead of deterred) by spatial dynam-
ics. This is illustrated clearly in Fig. 2c Lower, where we can see
a rapid and simultaneous development of yellow (TGF�RII���)
and red (TGF�RII���) domains that coexist. In biological

Table 1. Percentage of TGF�RII�BAX genotypes obtained
experimentally�in silico

BAX

TGF�RII

WT�WT WT�MUT. MUT.�MUT.

WT�WT 6.44�5.08 20.17�21.53 16.31�20.17
WT�MUT. 3.00�2.98 16.73�16.00 21.03�19.33
MUT.�MUT. 0.86�0.38 4.72�5.21 10.73�9.28

MUT., mutation.

Fig. 3. The robustness of the search algorithm is shown. (A) The average distance (F) and the distance to the target for the optimal solution (E) is shown (the
SDs are obtained over 10 different runs of the search algorithm). After �40 generations, near-optimal solutions already are obtained. (B) An example of the
optimal values obtained for the parameters controlling apoptosis: D1 (■ ) and D2 (�) (see model description). The SD is shown (under the same conditions as in
A). The curves show that different runs of the search algorithm reach basically the same parameter values.
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tumors, this scenario would be enhanced by the high mortality
rates that are expected to occur in cells generating thousands of
mutations (21) and would provide a further source of diversity
through recruitment limitation (22) as it occurs in complex
ecosystems. Mutations in BAX spread at a slower pace (as shown
by the predominance of green areas in Fig. 2b). This is not
surprising because mutations in BAX, although important, have
a smaller effect on fitness, here defined as the effective repli-
cation rate, f (i,j) � (1 � Di �) Rj � (see Materials and Methods).
The fitness values for the mutated cells in the optimal solution
are very similar, with 0.069 � f (i,j) � 0.070. This explains the
differences in the spatial distribution between BAX and
TGF�RII and their shape. Both in the model and the tumor
clusters, TGF�RII cells tend to coalesce because of their
increase in proliferative capacity, whereas groups of BAX-
mutated cells persist and occupy their space. The model is also
consistent with experiments with spatially extended microbial
ecosystems (23, 24) and provides a strong indication that the
rules that apply to spatial ecology are also at work in tumor
dynamics. When we remove spatial constraints from the rules,
homogeneity is achieved rapidly and consistently (data not
shown).

Under the conditions defined by the search algorithm, the
model gives support to the spatially dependent mechanism for
the maintenance of diversity and also makes certain predictions
regarding the fitness value of mono- or biallelic loss of function.
The model indicates that a mutation in one allele of the BAX
gene modifies cell death rate by 0.760 and by a factor of 0.376
when the mutation is homozygous. The proportionality of these
effects is consistent with experimental studies in genetically
modified mice that assessed the functional impact of hemi- and
nullizygosity for BAX (25). With respect to TGF�RII, the model
predicts that mutation in a single allele increases fitness by a
factor of 1.399 and mutations leading to homozygosity increase
fitness by a factor of 1.413. This prediction indicates that the

second mutation in TGF�RII contributes little to the fitness as
defined in silico and suggests that haplo-insufficiency for
TGF�RII is of biological significance and an important deter-
minant of tumorigenicity. The available experimental evidence
in this regard is not inconsistent with this hypothesis (26, 27), and
the prediction presented here should serve as rationale for
studies that directly address this question.

The results we present offer a limited view of tumor cell
diversity because it takes three loci under consideration (two
functional and one neutral) and examines a single tumor type
caused by a specific mechanism. Nevertheless, three arguments
suggest that the general explanation we propose for a lack of
clonal dominance, and thus diversity, is likely to be applicable to
many forms of cancer and preneoplasia. First, similar genetic
heterogeneity patterns have been found in colonic carcinomas
without MSI (6); second, genetic heterogeneity has been docu-
mented in tumors of a variety of histological types (28, 29); and,
third, a common principle may underlie the geography of
diversity throughout biology. The development of highly specific
therapeutic agents targeting the products of abnormal cancer
genes gives urgency to the definition and understanding of tumor
microheterogeneity. Indeed, in silico therapeutic experiments
with the model we describe demonstrate that restitution of the
function of TGF�RII has a very different impact on tumor
growth and phenotype than restitution of BAX function (data
not shown). Thus, it is likely that validated tumor models that
closely replicate the biology of human tumors may play an
important role in the selection of therapeutic targets and, thus,
be relevant to the treatment and prevention of cancer.
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