Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1977 Jan;264(2):411–428. doi: 10.1113/jphysiol.1977.sp011675

The alteration by ouabain of calcium movements in human red cell ghosts.

M Isern, P J Romero
PMCID: PMC1307769  PMID: 839460

Abstract

1. The influence of ouabain on net Ca movements was studied in human erythrocyte ghosts by atomic absorption spectrophotometry. 2. Ouabain (10(-5) M) showed a dual effect, altering both entry and exit of Ca from K-rich ghosts incubated in a high-Na medium in the presence of 10 mM-Ca. 3. Stimulation of Ca entry was observed in the first 15 min at 37 degrees C, whereas during the subsequent 15 min incubation ouabain elicited Ca extrusion. This latter effect was eliminated when the ouabain concentration was raised to 1 mM. 4. Ouabain-dependent Ca movements were abolished by replacing both internal K and external Na with choline. They were also absent from ghosts prepared at a high lytic ratio (1 : 100) or obtained from ATP-depleted cells. 5. A moderate increase in cell ATP enhanced the effect of ouabain on Ca efflux whilst it was eliminated at higher ATP levels. 6. The actions of ouabain markedly depended on the initial ADP/ATP ratio in ghosts, being optimal at about 2-5. 7. The results suggest that the effects of ouabain on Ca movements are mediated through the Na pump. Reversal of this pump in Na-rich K-free medium may provide the energy for active Ca transport.

Full text

PDF
414

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bodemann H., Passow H. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis. J Membr Biol. 1972;8(1):1–26. doi: 10.1007/BF01868092. [DOI] [PubMed] [Google Scholar]
  2. DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Glynn I. M., Hoffman J. F., Lew V. L. Some "partial reactions" of the sodium pump. Philos Trans R Soc Lond B Biol Sci. 1971 Aug 20;262(842):91–102. doi: 10.1098/rstb.1971.0080. [DOI] [PubMed] [Google Scholar]
  5. Glynn I. M., Lew V. L., Lüthi U. Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. J Physiol. 1970 Apr;207(2):371–391. doi: 10.1113/jphysiol.1970.sp009067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Glynn I. M., Lew V. L. Synthesis of adenosine triphosphate at the expense of downhill cation movements in intact human red cells. J Physiol. 1970 Apr;207(2):393–402. doi: 10.1113/jphysiol.1970.sp009068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HOFFMAN J. F., TOSTESON D. C., WHITTAM R. Retention of potassium by human erythrocyte ghosts. Nature. 1960 Jan 16;185:186–187. doi: 10.1038/185186a0. [DOI] [PubMed] [Google Scholar]
  8. Lant A. F., Priestland R. N., Whittam R. The coupling of downhill ion movements associated with reversal of the sodium pump in human red cells. J Physiol. 1970 Apr;207(2):291–301. doi: 10.1113/jphysiol.1970.sp009062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lant A. F., Whittam R. The influence of ions on the labelling of adenosine triphosphate in red cell ghosts. J Physiol. 1968 Dec;199(2):457–484. doi: 10.1113/jphysiol.1968.sp008663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lew V. L. Effect of ouabain on the Ca 2+ -dependent increase in K + permeability in depleted guinea-pig red cells. Biochim Biophys Acta. 1971 Oct 12;249(1):236–239. doi: 10.1016/0005-2736(71)90100-3. [DOI] [PubMed] [Google Scholar]
  11. Lew V. L., Glynn I. M., Ellory J. C. Net synthesis of ATP by reversal of the sodium pump. Nature. 1970 Feb 28;225(5235):865–866. doi: 10.1038/225865a0. [DOI] [PubMed] [Google Scholar]
  12. Ramakrishna T. V., West W., Robinson J. W. The determination of calcium and magnesium in acetylene flames. Anal Chim Acta. 1968 Feb;40(2):347–350. doi: 10.1016/s0003-2670(00)86737-9. [DOI] [PubMed] [Google Scholar]
  13. Riordan J. R., Passow H. Effects of calcium and lead on potassium permeability of human erythrocyte ghosts. Biochim Biophys Acta. 1971 Dec 3;249(2):601–605. doi: 10.1016/0005-2736(71)90139-8. [DOI] [PubMed] [Google Scholar]
  14. Romero P. J. The role of membrane-bound magnesium in the permeability of ghosts to K+. Biochim Biophys Acta. 1974 Feb 26;339(1):116–125. doi: 10.1016/0005-2736(74)90337-x. [DOI] [PubMed] [Google Scholar]
  15. Romero P. J., Whittam R. The control by internal calcium of membrane permeability to sodium and potassium. J Physiol. 1971 May;214(3):481–507. doi: 10.1113/jphysiol.1971.sp009445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
  17. SCHATZMANN H. J. THE ROLE OF NA+ AND K+ IN THE OUABAIN-INHIBITION OF THE NA+ + K+-ACTIVATED MEMBRANE ADENOSINE TRIPHOSPHATASE. Biochim Biophys Acta. 1965 Jan 25;94:89–96. doi: 10.1016/0926-6585(65)90011-7. [DOI] [PubMed] [Google Scholar]
  18. Scholar E. M., Brown P. R., Parks R. E., Jr, Calabresi P. Nucleotide profiles of the formed elements of human blood determined by high-pressure liquid chromatography. Blood. 1973 Jun;41(6):927–936. [PubMed] [Google Scholar]
  19. WHITTAM R., WHEELER K. P., BLAKE A. OLIGOMYCIN AND ACTIVE TRANSPORT REACTIONS IN CELL MEMBRANES. Nature. 1964 Aug 15;203:720–724. doi: 10.1038/203720a0. [DOI] [PubMed] [Google Scholar]
  20. Whittam R., Wiley J. S. Potassium transport and nucleoside metabolism in human red cells. J Physiol. 1967 Aug;191(3):633–652. doi: 10.1113/jphysiol.1967.sp008272. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES