
JOURNAL OF APPLIED BEHAVIOR ANALYSIS

A SIMPLIFIED TIME-SERIES ANALYSIS FOR
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Time-series analysis procedures for analyzing behavioral data are receiving increasing
support. However, several authorities strongly recommend using at least 50-100 points
per experimental phase. A complex mathematical model must then be empirically de-
veloped using computer programs to extract serial dependency from the data before the
effects of treatment interventions can be evaluated. The present discussion provides a
simple method of evaluating intervention effects that can be used with as few as 8 points
per experimental phase. The calculations are easy enough to do by hand.
DESCRIPTORS: time-series analysis, statistics, statistical inference

Time-series analysis is a quantitative method
for assisting the subjective art of data interpre-
tation. Several studies (e.g., Gottman & Glass,
1978; Jones, Weinrott, & Vaught, 1978) have
provided empirical demonstrations that visual
and statistical evaluations of typical applied be-
havior analytic data sets often differ. Although
it is not universally agreed that statistically based
judgments are better than visual judgments (e.g.,
Baer, 1977), many authors (Hartmann, Gott-
man, Jones, Gardner, Kazdin, & Vaught, 1980;
Jones, Vaught, & Weinrott, 1977; McCain &
McCleary, 1979) have argued that it is desirable
to use time-series statistics to analyze behavioral
data. More confidence can be placed in data in-
terpretations when statistical and visual analyses
agree than when they disagree.
The particular time-series analysis most often

suggested (e.g., Glass, Willson, & Gottman,
1975) is based on an auto-regressive integrated
moving average. This procedure involves the
empirical construction of a complex mathemati-
cal model that is subsequently validated against
the very data from which it was constructed. The
model is used to extract serial dependency from
the data only after all the criteria of model con-
struction have been met, thereby leaving an un-
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correlated time series. Standard inferential sta-
tistics are used to evaluate changes in the mean
level and slope of the time series due to the in-
tervention.
A major limitation of the auto-regressive in-

tegrated moving average approach is that many
data points are required for adequate model de-
velopment. Hartmann et al. (1980) cited several
authorities who recommended collecting at least
50 to 100 data points per experimental phase
before attempting to use auto-regressive inte-
grated moving average procedures. Less confi-
dence exists in the empirically constructed model
if fewer data points are used. Moreover, the
power of the auto-regressive integrated moving
average procedure is diminished as data are re-
duced, thus increasing the probability of falsely
accepting the null hypothesis.
The purpose of the current discussion is to

present a simple, yet elegant, method of time-
series analysis that can be used on small data sets
to evaluate the effects of treatment interventions.
This approach can also be used to decide when
responding has stabilized, i.e., when a new phase
of the experiment might begin (cf. Killeen,
1978). The logic underlying the C statistic is the
same as the logic underlying visual analysis;
variability in successive data points is evaluated
relative to changes in slope from one phase of
the experiment to another.
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THE C STATISTIC

vonNeumann, Kent, Bellinson, and Hart
(1941) described two orthogonal estimates of
the variance of a time series. The first measure
is the variance calculated as indicated in Equa-
tion 1.

S2 ±(XiX)2 (1)

i=i

This variance of the time series increases in di-
rect proportion to changes or trends in the mean
value of the series. Consider the following data:
1, 2, 3, 4, 5. Their mean is 3 and their variance
is 2.5. If this trend extends to include: 1, 2, 3,
4, 5, 6, 7, 8, 9; then their mean is 5.0 and their
variance is 7.5. Hence, the presence of a trend
increases both the mean and the variance. Said
otherwise, the variance is inversely proportional
to the stationarity of the series.
The second estimate of the variance of a time

series is the Mean Square Successive Difference
(MSSD) statistic. It is calculated as its name im-
plies. The consecutive differences among data
points are calculated, squared, and then averaged
as indicated by Equation 2.

IN-1

MSSD = D2 (Xi+1-X)2 (2)
'=lN1

N-1

J(Xi Xi41)2
i= I

C= 1-
N

21(Xi - X)2
i=l

(3)

The numerator of the right-hand term is the sum
of the N - 1 squared consecutive differences
associated with the time series. The denominator
of this same term is twice the sum of the N
squared deviations of the time-series data points
from their mean.

The standard error of the C statistic is easily
calculated using Equation 4 and it depends en-
tirely on the number of data points in the time
series.

SC (- 2
N(-1)(N+ )

(4)

Young (1941) has shown that the ratio of C
to its standard error is the Z statistic

SC (5)

and is normally distributed for time series con-
taining 25 or more values. Moreover, the devia-
tion from normality is not marked even for time
series containing just 8 values. Table 1 presents
the 5% and 1% critical values for samples of
size 8 to 25.

The MSSD or D squared statistic is independent
of changes in the mean value of the time series,
i.e., it is independent of the stationarity of the
series. Reconsider the two brief data sets given
above. The MSSD statistic equals 1.0 for both
sets: integers 1-5 and integers 1-9. Notice that
the continuing trend increased the mean squared
deviation from the mean by a factor of 3 but did
not alter the mean squared successive difference.
vonNeumann (1941) extensively discussed

the distribution of the ratio of the MSSD to the
variance. However, it was Young (1941) who
developed this reasoning into the highly useful
C statistic given by Equation 3.

Characteristics of the C Statistic
Reference to Equation 3 will help illustrate

the basic characteristics of the C statistic. The
value of C will be zero when the sum of the
squared deviations from the mean equals one-
half the sum of the squared consecutive differ-
ences, because the denominator of the right-hand
fraction is multiplied by 2 which makes it equal
to the numerator and thus the right-hand frac-
tion equals unity. Subtracting unit from one
leaves zero. This situation is most likely to occur
when the data hug the mean rather closely.

The sum of squared deviations from the mean
increases more rapidly than does the sum of
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Table 1
Critical values for testing the C statistic for selected
sample sizes (N) at the .01 level of significance,, b*

N 1% N 1%

8 2.17 18 2.25
9 2.18 19 2.26
10 2.20 20 2.26
11 2.21 21 2.26
12 2.22 22 2.26
13 2.22 23 2.27
14 2.23 24 2.27
15 2.24 25 2.27
16 2.24 0o 2.33
17 2.25

aTaken from Young (1941).
bThe critical value for the .05 level of significance

is 1.64 for all sample sizes above.

squared successive differences, given the pres-
ence of any type of trend or nonstationarity.
This causes the right-hand fraction of the C sta-
tistic to become small, which makes the C sta-
tistic become large. The C statistic aids the in-
vestigator in evaluating how large the squared
deviations from the mean are (which reflect the
presence of all types of trends) relative to the
sum of the squared consecutive differences
(which are independent of all types of trends).
The logic of this fraction is directly analogous
to that of the F statistic.

The statistical significance of C is evaluated
by dividing it by its standard error (cf. Equation
5). It should be noted that the standard error is
entirely a function of sample size. This means
that the standard error can be reduced to any
value, and thus a significant Z can always be
found given any value of C. Hence, the power
of the test approaches infinity as the sample size
approaches infinity. Entirely trivial effects can
be found to the statistically significant if enough
data points are collected. It should be noted that
this predicament is generally true of all statisti-
cal analyses and is not a unique limitation of the
C statistic.

Applying the C Statistic
The main logical question answered by the

C statistic is whether or not the time series con-

tains any trends, i.e., any systematic departures
from random variation. An initial use of the C
statistic is to evaluate the baseline data. Two
outcomes are possible. Evidence of a trend will
either be found or not. It is more desirable that
the baseline data not contain any statistically sig-
nificant trends because this allows a more power-
ful application of the C statistic by appending
the first treatment series to the first baseline se-
ries and testing the ensemble or aggregate series
with the C statistic. A significant result is evi-
dence that the treatment series departs from the
baseline series.
Two less powerful applications of the C sta-

tistic are available for use when the initial base-
line is found to contain a trend. Both alternative
procedures involve creating a comparison series
and testing for a trend with the C statistics. The
more powerful of these two alternative proce-
dures involves calculating "difference scores
from the trend in the previous phase" (Hayes,
1981, p. 201). Several methods are available for
quantifying the trend in the previous phase.
Standard regression techniques can be used to
obtain a line of best fit. However, one or two
atypical data points can severely affect both the
slope and intercept values given small data sets.
Velleman and Hoaglin (1981) describe how to
fit a "resistant line" which passes through the
medians of each third of the data. The slope
and intercept values in the equation for the re-
sistant line agree favorably with the correspond-
ing values in the regression equation when no
atypical data points are present. If a straight line
does not adequately describe the trend in the
previous phase, then a more complex equation
is required. Perhaps a quadratic, polynomial, or
trigonometric function, like a sine wave, charac-
terizes the data more accurately. Daniel and
Wood (1971) and Lewis (1960) are good
sources of curve fitting procedures. The com-
parison series is obtained by subtracting the
trend line values associated with the first base-
line point from the first treatment point, then
subtracting the trend line value associated with
second baseline point from the second treatment
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point, etc., until all baseline and/or treatment
values have been exhausted. Often, more treat-
ment points will exist than baseline points. Mod-
est extrapolation of the first phase trend line can
provide a basis for adding a few more points
to the comparison series, thereby enhancing the
power of the test. The comparison series is tested
with the C statistic. A significant result is evi-
dence that the difference between the trends in
the two phases contains a trend or departure of
some kind. A significant C statistic only estab-
lishes that change has occurred. It does not guar-
antee that the change was due to the variable
manipulated by the experimenter; it could be
due to changes in an uncontrolled collateral vari-
able. As with visual analysis, it is the overall
pattern of results relative to the design used that
enables a determination that the independent
variable is responsible for change.

The second of the less powerful applications
of the C statistic is the easier to use. The com-
parison series is obtained directly by subtracting
the first baseline value from the first treatment
value, etc., until all baseline and/or treatment
values have been exhausted. The C statistic is
then calculated on this comparison series. A sig-
nificant result indicates that the treatment phase
departs from the trend set in baseline.

Both uses of a difference series (unlike the use
of raw scores when baseline is stationary) share
a common limitation. The C statistic will not be
significant when the slopes of data points in the
two experimental phases under consideration are
equal even when one series has been shifted up
or down dramatically relative to the other series.
This is because the difference series will be con-
stant, i.e., highly stationary.

The next use of the C statistic might be to
determine when responding has stabilized dur-
ing treatment. One criterion might be to con-
tinue data collection until 10 consecutive data
points are obtained for which the C statistic was
not significant (see Killeen, 1978 for other cri-
teria). These data would then provide a period
against which the subsequent phase could be as-
sessed. This process would continue for each

successive phase. Sometimes responding may not
meet the stability criteria before treatment must
be reinitiated or withdrawn. The less powerful
alternative procedure for using the C statistic
could then be used.

It may seem that if values associated with a
linear trend in a previous phase can be sub-
tracted from data in a subsequent experimental
phase then these values could just as well be
subtracted from a linear trend line associated
with the subsequent phase. Such a procedure
always gives artificial results. It can be shown
that the value of the C statistic is always entirely
a function of the sample size when values of one
linear trend line are subtracted from values of
another linear trend line. That is, the value of
C associated with all sets of, say, 15 data points
will be exactly the same regardless of the data
used. A different value of C is associated with
each value of N. This anomaly arises because the
difference between two linear trend lines is itself
a linear trend line where the differences between
consecutive values is constant and equal to the
slope of the comparison line. However, the sum
of the squared deviations from the mean associ-
ated with values on this comparison line is also
a function of its slope. The ratio of the sum of
the squared consecutive differences is a constant
fraction of the sum of the squared deviations
from the mean of such values depending only
on their number.

AN EMPIRICAL EXAMPLE

Tryon and Zager (Note 1) observed the fre-
quency of "talking-out" behavior in a class of
15 mentally retarded children aged 9-11 yr. A
"talk-out" was defined as all vocalizations not
authorized by the teacher. Observations were
made for 1 h in the morning and for 1 h during
the afternoon, Monday through Friday, yielding
10 baseline data points during the first week.
These data are displayed in Figure 1.
The first question was whether some trend

existed in the baseline data. The actual data are
presented in Table 2 where the C statistic has
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Table 2
Example of the Use of the C Statistic in an A-B-A Experimental Design

Score (X) D2

28 324 First Baseline Phase:
46 49
39 36 D2= 1112

First 45 441 2SS(X)= 13241112
Baseline 24 16 C=i1- ~=0.160Phiastline 220 225 1324

P e5Sc= 8 =0.284
37 i

C

9(11)
36 16 z 0.160 = 0.563, n.s.
~40 Z--0.284-053ns
24 64
16 441
37 64
45 729 First Baseline Plus Group Tokens:
18 1 D2= 2762
19 1
18 0 2 SS(X) = 8227.0
18 25
13 1 C=1-22 =0.664
12 9 8227

Group 15 4
Tokens l13 4 Sc= 0171
Phase 15 1 3(3

16 25 0.664
1 1 9 Z=- -3.883

0.171
14 0 p < .001
14 4
12 1
13 1
14 9
17 1 Last Week of Group Tokens Plus
16 - First Week of Second Baseline:
15 36 D2=353

21 25 2 SS(X) = 882
16 49 c= 3-i53=0.571

Second
Baseline ~20 36 1Phaselin 26 36 1Sc= 0.212

Phase 26C0 1(21)
26 16
22 49 Z = 0.5712.193Z 0.21Y-.9
15 81
24 P<.01
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Fig. 1. The total number of children participating
in all incidents of unauthorized talk-outs during base-
line 1, group tokens, and baseline 2 phases.

been calculated. The value of Z = .563 is not

statistically significant, indicating the absence of
any substantial trend.

The next 11-day (22 observations) phase in-
volved a group consequences procedure (cf.
Barrish, Saunders, & Wolf, 1969; Herman &
Tramontana, 1971; Packard, 1970; Schmidt &
Ulrich, 1969). The teacher put a token in a glass
jar on the teacher's desk at the end of every

5-min period during which no "talking-out"
behavior occurred by any class member. Each
student earned the number of tokens in the jar
at the end of each period and tokens could be
exchanged for edibles. The basic question at is-
sue was whether the group tokens procedure had
any demonstrable effect on "talking-out" behav-
ior (see Figure 1). The data for this phase of the
experiment were appended to the baseline data
and tested for a trend. The resulting Z =

3.883, p < .001 confirmed the visual impres-
sion of a shift in the trend of the time series.

The next question concerned when respond-
ing under the group tokens procedure had sta-

bilized. Inspection of the D2 column of Table 2
reveals large consecutive changes early in the
intervention but leveling off shortly thereafter.
An analysis of all 22 group tokens data points
yielded a Z = 2.468, p < .05, confirming the
visual evidence of a trend. The last 10 data
points (1 wk of observation) were chosen to as-

sess stability to compare this portion of the series

RETNTO BASELINE with the first week of return to baseline. The
value of Z = .679 was clearly not statistically
significant, suggesting that this portion of the

I series was stable.
The group tokens procedure was discontinued

for a 2-wk period which constituted a second
baseline period. Table 2 contains the calcula-
tions associated with the last 10 data points from
the intervention plus the first 10 data points
from the second baseline. The resulting Z
2.693, p < .01 indicated the presence of a trend.

Visual inspection of Figure 1 may suggest to
some the presence of a trend occurring during
the 2-wk second baseline period. The resulting
value of Z = .146 is not statistically significant.
This is consistent with observations (Gottman &
Glass, 1978; Jones et al., 1978) that data anal-
ysis based on visual inspection and time-series
analysis can disagree substantially.

DISCUSSION

The C statistic is a simple, yet elegant, method
for quantitatively evaluating the presence of
changes due to treatment interventions in seri-
ally dependent time-series data. It is an omnibus
test for abrupt changes in the level of a time
series as well as gradual changes in its slope.
The major difference between the C statistic and
the auto-regressive integrated moving average
method is that the latter can test for abrupt
changes in level separately from changes in
slope while the former cannot. However, the C
statistic can be used with much smaller data sets,
does not require complex computer based model
construction, and is easily calculated by hand.

The C statistic is best applied when respond-
ing has stabilized in the previous phase. Then
the data from the subsequent phase can be ap-
pended to the previous phase and tested for any
trends using the C statistic. Two alternate meth-
ods can be used when responding has not sta-
bilized in the previous phase. The more power-
ful alternate method is to fit either a resistant
or regression line to the data in the prior phase
and then create a comparison series by subtract-
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ing the trend line values associated with the pre-
vious phase from the data points in the subse-
quent phase. This comparison series is then
tested for any trends using the C statistic. The
less powerful alternate method involves sub-
tracting corresponding data points in the previ-
ous phase from those in the subsequent phase
to create the comparison series. This series is
then tested for any trends using the C statistic
as before. Both of the less powerful methods
share the limitation that they cannot test for a
change in level if there has been no change in
slope.

This flexible and easily calculated time-series
C statistic should be of use to investigators who
did not previously have the resources to incor-
porate time-series designs into their research
and/or clinical practice.
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