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Snf5 (Ini1�Baf47�Smarcb1), a core member of the Swi�Snf chro-
matin remodeling complex, is a potent tumor suppressor whose
mechanism of action is largely unknown. Biallelic loss of Snf5 leads
to the onset of aggressive cancers in both humans and mice. We
have developed an innovative and widely applicable analytical
technique for cross-species validation of cancer models and show
that the gene expression profiles of our Snf5 murine models closely
resemble those of human Snf5-deficient rhabdoid tumors. We
exploit this system to produce what we believe to be the first
report documenting the effects on gene expression of inactivating
a Swi�Snf subunit in normal mammalian cells and to identify the
transcriptional pathways regulated by Snf5. We demonstrate that
the tumor suppressor activity of Snf5 depends on its regulation of
cell cycle progression; Snf5 inactivation leads to aberrant up-
regulation of E2F targets and increased levels of p53 that are
accompanied by apoptosis, polyploidy, and growth arrest. Further,
conditional mouse models demonstrate that inactivation of
p16Ink4a or Rb (retinoblastoma) does not accelerate tumor forma-
tion in Snf5 conditional mice, whereas mutation of p53 leads to a
dramatic acceleration of tumor formation.

chromatin remodeling � gene expression analysis � mouse models �
Swi�Snf

The Swi�Snf ATPase chromatin remodeling complex has
recently been linked to growth control and cancer develop-

ment (reviewed in ref. 1). Specific inactivating mutations in the
core Snf5 subunit are a hallmark of rhabdoid tumor (RT), an
aggressive pediatric cancer, and also lead to a familial cancer
predisposition syndrome (2–5). In mice, 15–30% of heterozy-
gotes develop RTs, all of which have lost the functional Snf5
allele (6–8). Induced inactivation of conditional Snf5 leads to
100% of mice developing lymphomas or RTs with a median
onset of only 11 weeks (9). This rate of cancer onset is extremely
rapid for inactivation of a single gene and indicates a critical role
for Snf5 in preventing cancer. However, the mechanistic basis for
this activity is largely unknown. Because Snf5 is present in all
variants of the Swi�Snf complex and is itself a bona fide tumor
suppressor, we sought to use our Snf5-targeted mouse models to
identify genes whose transcription is regulated by Snf5 and
determine whether altered expression of these targets contrib-
utes to oncogenesis.

Materials and Methods
Cell Culture. Murine embryonic fibroblasts (MEFs) were har-
vested at embryonic day 13.5. An adenoviral vector containing
the CMV promoter driving expression of green fluorescent
protein (Ad5CMV-GFP, University of Iowa Gene Transfer
Vector Core, Iowa City) was used to determine the most efficient
multiplicity of infection (moi). Excision of Snf5 was achieved

with Ad5CMVcre (University of Iowa Gene Transfer Vector
Core) at an moi of 50 to 2 � 106 MEFs on 10-cm plates. To rule
out contamination due to overgrowth of nondeleted cells, find-
ings at later time points were confirmed in parallel experiments
with transduction of a selectable pBabe-Cre-puromycinr vector.

Western Blots. SNF5�BAF-47 and �-tubulin antibodies were from
BD Biosciences, p16Ink4a and p21 antibodies were from Santa
Cruz Biotechnology, p19Arf antibody was from Abcam, Inc.
(Cambridge, MA), and p53 antibody was from NovoCastra
(Newcastle, U.K.).

Southern Analysis. Southern analysis was performed as described
in ref. 9.

RNA Isolation and Microarray Analysis. cRNA was prepared for the
Affymetrix GeneChip Mouse Genome 430A 2.0 Array as de-
scribed in ref. 10. MEF expression data were analyzed for fold
changes after the deletion of Snf5 by using the DNA-CHIP
ANALYZER (DCHIP) software following standard procedures for
normalization and modeled-based expression using default set-
tings (11). Probes were excluded if the presence call for either the
conditional or control samples was �20%. The remaining probes
were then compared with each other based on a criterion of at
least 1.5-fold change between the mean value of Snf5�/� and
Snf5flox/� samples. Real-time PCR was used to confirm microar-
ray data (Figs. 7 and 8, which are published as supporting
information on the PNAS web site). Primers used for this
analysis are listed in Table 1, which is published as supporting
information on the PNAS web site.

Patient Samples. All patient samples have been previously
published with the exception of the 10 new human RTs. Studies
were done with the approval of the Office for Protection of
Research Subjects at the Dana–Farber Cancer Institute, the
Committee for Clinical Investigation at Children’s Hospital
Boston, and the Institutional Review Board of The Children’s
Hospital of Philadelphia.

Matching of Human and Mouse Probes, Preprocessing, and Normal-
ization. The orthologous UniGene symbols were identified for
each mouse or human probe by using the Affymetrix software,
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and the corresponding species-specific probe was then deter-
mined. For the nonnegative matrix factorization (NMF) analysis,
gene expression values were thresholded (to 50). Genes with
either a �5-fold change or �500 units of absolute change across
the collection of samples were eliminated from further analysis.
There was a final common set of 2,653 gene symbols to proceed
with the analysis. Because the data sets correspond to different
types of human and mouse microarrays (e.g., Hu6800, U95, and
U133), we normalized the data before decomposing or project-
ing it. We replaced the expression value for each gene in each
data set by its rank in its column.

NMF Dimension Reduction and Projection. We constructed an ex-
pression matrix A of size 2,653 � 34 whose rows contain the
expression levels of the 2,653 genes in the 34 samples of human
pediatric brain tumors (12). We then used NMF to factor matrix
A into two matrices with positive entries, A � WH. The matrix
W has size 2,653 � 4, with each of the four columns defining a
metagene; entry wij is the coefficient of gene i in metagene j. The
matrix H has size 4 � 34, with each of the 34 columns
representing the metagene expression pattern of the correspond-
ing sample; entry hij represents the ‘‘expression level’’ of met-
agene i in sample j. We chose four as the middle dimension
because the corresponding metagene expression levels can be
used to yield an accurate clustering of the data into the four
represented subtypes (13). To project other signatures into the
4D metagene set obtained from the Pomeroy et al. (12) data, we
computed the Moore–Penrose generalized pseudoinverse of W
and applied this value to all of the data, including the original.
This computation yielded Ap, a 4 � 58 metagene expression
matrix for all of the signatures under consideration, which could
be viewed as a heat map (Fig. 2a).

Gene Set Enrichment Analysis (GSEA). GSEA was performed as
described in ref. 14. The cumulative distribution function was
constructed by performing 10,000 random gene set member-
ship assignments; thus, the smallest obtainable P value was P �
1 � 10�4.

Biplot. Ap was visualized by using 2D and 3D biplots (15), which
use metric scaling to map variables and observation in a single
plot. The biplots were implemented in R by calling the ‘‘prin-
comp’’ routine and rescaling to match the observations.

Software. The program to compute the NMF decomposition is
our own (13). The pseudoinverse, biplot map, heat map, hier-
archical clustering, and scatter plots were implemented by using
functions in the R environment (i.e., GINV, BIPLOT, IMAGE,
HCLUST, PLOT, and SCATTERPLOT3D).

Results
The Gene Expression Profile of Murine RTs Is Highly Related to That of
Human RTs. We first sought to use cross-species conservation of
gene expression to validate the Snf5 murine cancer model
system. Of note, the histological appearance of the murine
tumors is essentially indistinguishable from human RT, including
the presence of classic rhabdoid cells (6). We developed a unique
analytical projection approach partially based on our previous
work using NMF (13) and principal component analysis projec-
tion of tumor samples (12). NMF is an algorithm based on
decomposition by parts that can reduce the dimension of ex-
pression data from thousands of genes to a handful of met-
agenes. Each metagene represents a weighted average of several
genes that tend to be coexpressed in a particular sample class.
NMF is an efficient method for identification of distinguishing
molecular patterns and provides a powerful method for class
discovery. We used NMF on a data set containing our previously
published gene expression signatures derived from four classes

of human pediatric brain samples: RTs, medulloblastomas,
gliomas, and normal cerebellum (12). We identified a small
number of gene combinations (metagenes) whose profiles best
represented the most distinguishing features of the expression
patterns of this four-class data set (Fig. 1a). We then indepen-
dently evaluated the expression levels of these metagenes in four
murine RTs. As additional controls, we included signatures from
four murine lung tumors, an additional 10 human RTs, and four
glioblastomas derived from a previously published CNS tumor
data set (17). These results revealed that murine Snf5 tumor
signatures are closely related to those of both sets of human RT
samples and are distinct from the controls (Fig. 1a). We then
used a biplot transformation to project a representation of each
signature into 2D and 3D space. The murine RTs cluster within
the human RTs, indicating that the NMF expression signatures
of these tumors are more closely related to each other than to the
human and murine control samples (Fig. 1b).

Snf5 Loss Leads to Transcriptional Activation. Having established
the validity of the murine model, we sought to investigate the role
of Snf5 in transcriptional regulation. We wanted to use a highly
controlled system that enabled complete inactivation of Snf5,
avoided off-target effects on gene expression, could be per-
formed in normal nontransformed cells, and could be readily
validated. MEFs from mice carrying conditional Snf5 alleles met
these criteria. We thus isolated conditional (Snf5flox/�) and
control (Snf5�/�) MEFs. We focused on early changes in gene
expression after Snf5 inactivation to avoid secondary effects. An
adenoviral-Cre vector was used to inactivate Snf5 because it
provided highly efficient and rapid recombination in MEFs (Fig.
9, which is published as supporting information on the PNAS
web site). Excision of the floxed allele was complete by 24 h, and
the level of Snf5 protein had decreased significantly by 24 h and
was essentially absent by 48 h (Fig. 2). Pilot data revealed
minimal changes in gene expression at 24 h, and we therefore
isolated RNA at 48, 72, and 96 h in triplicate from independent
experiments. There was no difference in the growth rate of the

Fig. 1. The expression signature of murine RT is highly related to that of
human RT. (a) NMF was performed on the human pediatric CNS samples, and
four metagene factors whose profiles best represented the most salient
features of the expression patterns were identified. Expression values for
these metagenes were then independently calculated for the four murine RT
samples. A heat map reveals that expression of the metagenes is highly
correlated between both sets of human RT sample and the murine RT samples.
(b) A biplot transformation was performed on the NMF results, and a repre-
sentation of each sample was projected into 2D (Left) and 3D (Right) space.
Note that the murine RTs cluster with the human RTs and are distinct from all
other controls. Samples originally published in Pomeroy et al. (12) are medul-
loblastomas (Medullo), gliomas, normal cerebellum (normal), and RTs
(hRab#1). mRhab, murine RTs; hRhab#2, the 10 previously unpublished human
RTs; GBM, published glioblastoma multiformae tumors (17); mLungT, murine
KRAS2 mutant lung tumors (21).
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two genotypes at these early times. Gene expression results from
the nine Snf5flox/� arrays were compared with results from the
nine Snf5�/� arrays.

Deletion of Snf5 resulted in 1,457 probes corresponding to
1,300 genes having a �1.5-fold change in expression level (Table
2, which is published as supporting information on the PNAS
web site). Considerably more probes were up-regulated (1,097)
than were down-regulated (322). We defined the up-regulated
probes (corresponding to 978 genes) as the MEF Snf5 up-
regulated gene set and the 360 down-regulated probes (corre-
sponding to 322 genes) as the MEF Snf5 down-regulated gene
set.

A Subset of the MEF Snf5 Gene Sets Are Differentially Expressed in
Human RT. To both validate findings from our MEF model system
and determine whether genes in the MEF Snf5 gene signature

were differentially expressed in human RT, we compared the
MEF Snf5 up- and down-regulated gene sets to the data set
containing our previously published gene expression signatures
derived from RT and other human pediatric brain tumors (12).
Many of the transcriptional pathways related to the general
phenotype of cancer are undoubtedly shared among RT and
other cancers. Additionally, many of the genes displaying altered
transcription after Snf5 loss likely have their expression modified
by subsequent genetic mutations that contribute to cancer
formation. Nonetheless, our hypothesis was that there would be
a conserved subset of genes that meet the following three
criteria: (i) they are affected by Snf5 inactivation in normal
mouse cells, (ii) they are similarly affected by Snf5 loss in human
cancer cells, and (iii) they remain a distinguishing feature of RT
when compared with other cancers. We compared expression
data from 10 human RTs to expression data from 10 medullo-
blastomas, 10 glioblastomas, and four normal cerebellum sam-
ples to generate the human RT data set. GSEA was then used
to independently evaluate the distribution of the MEF Snf5 up-
and down-regulated gene sets in the human RT data set. GSEA
is a computational method that determines whether a defined set
of genes (e.g., members of the MEF Snf5 up-regulated gene set)
shows statistically significant, concordant differences between
two biological states (e.g., human RT vs. other pediatric tumors)
(14). GSEA provides an enrichment score (ES) that measures
the degree of enrichment of the gene set at the top (up-regulated
in RT vs. other pediatric CNS tumors) or bottom (down-
regulated in RT vs. other pediatric CNS tumors) of a rank-
ordered gene list derived from the data set. A nominal P value
is used to assess the significance of the ES.

We found significant enrichment of the MEF Snf5 up-
regulated gene set in genes that are up-regulated in the human
RT data set (P � 1 � 10�4) (Fig. 3a; see also Table 3, which is
published as supporting information on the PNAS web site).
Similarly, there was significant enrichment of the MEF Snf5
down-regulated gene set in genes that are down-regulated in the
human RT data set (P � 0.03) (Fig. 3b and Table 3). These
results validate the MEF data, reveal that at least a subset of Snf5
target genes remain distinguishing features of RT, and demon-
strate shared biological pathways of gene expression between
Snf5-deficient MEFs and Snf5-deficient human RT.

Fig. 2. Inactivation of Snf5 in MEFs. (a) Southern analysis of Cre-mediated
recombination at the Snf5 locus in MEFs at 0, 24, 48, 72, and 96 h. At time 0,
before transduction, the knockout and floxed alleles are unexcised. Cre-
mediated recombination results in excision of the neomycin resistance cas-
sette in the knockout allele and excision of exon 1 in the floxed allele. (b)
Anti-Snf5 Western blot of Snf5flox/� and Snf5�/� cells at 0, 24, 48, 72, and 96 h
after adenovirus-Cre transduction.

Fig. 3. A subset of the MEF Snf5 gene sets is differentially expressed in human RT. (a) Each vertical blue line represents the human ortholog of a probe in the
MEF Snf5 up-regulated gene set. The left-to-right position of each line indicates the relative position of the probe within the rank ordering of the 7,129 probes
present on the affyHu6800 human microarray from the probe most up-regulated in RT compared with other human tumors (position 1 on the left) to the most
down-regulated (position 7129 on the right). The probes near the middle are not differentially expressed. The MEF Snf5 up-regulated gene set is enriched among
genes up-regulated in the human RT data set, as evidenced by the increased number of blue marks on the left side and the positive enrichment score marked
by the red line (P � 1 � 10�4). (b) The MEF Snf5 down-regulated gene set is enriched among the down-regulated genes in the human RT data set, as indicated
by the increased number of blue marks on the right side and negative enrichment score (P � 0.03).
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Inactivation of Snf5 Leads to Activation of E2F Targets but Decreased
Growth of MEFs Due to Apoptosis, Growth Arrest, and Polyploidy. We
sought to use the MEF model system to investigate the normal
function of Snf5 and identify transcriptional pathways that may
underlie its tumor suppressor activity. We therefore rank-
ordered the murine probes from the most up-regulated after
Snf5 inactivation in MEFs (probe 1) to the most down-regulated
(probe 22690) and used GSEA to compare this list to an
annotated functional database of 526 metabolic and signaling
pathway gene sets (available with our GSEA software (14). Two
of the gene sets whose members were clustered high on the
rank-ordered list were ‘‘cell cycle,’’ which contained 130 probes
(P � 0.001) and ‘‘cell cycle checkpoint,’’ which contained 40
probes (P � 0.001). Inspection of the lists revealed that many of
the enriched genes were targets of the E2F pathway. We thus
asked whether targets of the p16Ink4a�Rb (retinoblastoma)�
E2F pathway are regulated by Snf5 within normal cells. Because
the probe for p16Ink4a on the Affymetrix chips cannot distin-
guish between the overlapping p16Ink4a and p19Arf genes, we
used quantitative real-time PCR and Western blotting to eval-
uate these genes. After inactivation of Snf5, p16Ink4a mRNA is
down-regulated 2-fold and the protein becomes essentially un-
detectable, whereas the expression of p19Arf is unchanged (Figs.
4 a and b and 5c). The decreased levels of transcript are not due
to methylation at the p16Ink4a promoter (not shown). Evalua-
tion of microarray data can be complicated by subjective iden-
tification bias. Hence, we compared our MEF Snf5 rank-ordered
list to an independently derived set of E2F targets derived from
cells expressing mutant Rb or p16Ink4a (18). There was indeed
marked enrichment of this independent E2F gene set within
genes up-regulated in the MEF Snf5 rank-ordered data set (P �
1 � 10�4) (Fig. 4c; see also Tables 4 and 5, which are published
as supporting information on the PNAS web site).

Thus, the gene expression data were consistent with aberrant
cell cycle regulation in Snf5-deficient MEFs. However, because

levels of many cell cycle regulators are also affected by post-
transcriptional processes, we sought to evaluate the phenotypic
consequences of Snf5 inactivation in MEFs. Our microarray
analysis was performed soon after Snf5 deletion at a time when
there was no observable phenotypic difference between Snf5-
deficient and control MEFs. To determine whether these tran-
scriptional alterations would ultimately manifest in phenotypic
changes, we evaluated Snf5-deficient MEFs at later times.
Shortly after E2F target genes are up-regulated, Snf5-deficient
MEFs no longer grow in culture (Fig. 5a). Cell cycle analysis
revealed a significant increase in apoptosis and a cell cycle arrest
with accumulation of cells in G2 (Fig. 5b). In addition, there was
a significant increase in polyploidy in Snf5-deficient MEFs (Fig.
5b). No significant change in senescence was detected by senes-
cence-associated-�-gal staining (not shown). Under normal
growth conditions, expression of E2F targets is concomitant with
cell cycle progression and growth. However, forced expression of
E2F in normal primary cells typically triggers a p53-dependent
checkpoint that leads to apoptosis and cell cycle arrest (19).
Given the apoptosis and growth arrest present in Snf5-deficient
MEFs, we examined levels of p53 and p21 by Western blot.
Inactivation of Snf5 leads to marked up-regulation of both p53
and p21 (Fig. 5c).

Inactivation of p53 Synergizes with Snf5 Inactivation in Oncogenic
Transformation. These findings were consistent with the possibil-
ity that the tumor suppressor effects of Snf5 could be mediated

Fig. 4. Loss of Snf5 leads to down-regulation of p16Ink4 and up-regulation
of E2F target genes. (a) Quantitative real-time PCR analysis of p16Ink4a and
p19Arf at 72 h after adenovirus-Cre transduction. (b) Anti-p16Ink4a Western
blot of protein from Snf5flox/� cells at 0, 48, 72, and 96 h after adenovirus-Cre
transduction. (c) E2F target genes are up-regulated after inactivation of Snf5.
Each vertical blue line represents an E2F target as defined by the work of
Vernell et al. (18). The left-to-right position of each line indicates the relative
position of the probe within the rank ordering of the 22,690 probes present
on the affy430A2.0 mouse microarray from the probe most up-regulated after
Snf5 inactivation (position 1 on the left) to the most down-regulated (position
22690 on the right). The genes near the middle are unaffected by Snf5 loss. The
E2F target gene set is clearly enriched among genes up-regulated in the MEF
Snf5 data set, as evidenced by the increased number of blue marks on the left
side of the distribution and the positive enrichment score marked by the red
line (P � 1 � 10�4). Fig. 5. Loss of Snf5 leads to increased apoptosis, polyploidy, and poor cell

growth. (a) MEFs from two wild-type embryos (blue) and three Snf5flox/�

embryos (red) were transduced with pBabe-puror (dotted lines, control) or
with pBabe Cre-puror (solid lines). Two days after transduction, cells were
selected in puromycin, and at day 4, cells were plated for growth assay and
monitored daily by absorbance of the Wst-1 reagent. (b) Cell cycle analysis by
means of BrdUrd incorporation and propidium iodide staining reveals cell
cycle arrest in Snf5flox/� Cre cells as evidenced by decreased S phase and
increased G2�M; apoptosis evidenced by increased sub-G1 population and
increased polyploidy seen as �4N population. (c) Western blot analysis dem-
onstrating decreased levels of both Snf5 and p16Ink4a and increased levels of
both p53 and p21 after deletion of Snf5.
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through stimulation of cell cycle progression via the E2F path-
way. Further, it seems possible that up-regulation of p53 serves
to combat the prooncogenic effects of Snf5 loss. We therefore
used mouse models to evaluate this. We have previously re-
ported that in vivo induced inactivation of a conditional inverting
allele of Snf5 leads to apoptosis of most Snf5-deficient cells but
also to the rapid onset of fully penetrant cancer at a median of
11 weeks (9). It should be noted that expression of Cre from the
IFN-inducible Mx promoter is slightly leaky. Consequently, even
when not treated with polyI�polyC, Mx-Cre� Snf5inv/� mice
succumb to CD8� mature T cell lymphomas, although at a
median of 29 weeks rather than the 11-week median when
polyI�polyC is given.

To evaluate the significance of increased expression of E2F
targets and to determine whether p53 serves a functional role in
suppressing oncogenic transformation after Snf5 loss, we bred
Snf5 inverting conditional mice to p16Ink4a-knockout, Rb con-
ditional, and p53 conditional mice in the presence of the Mx-Cre
transgene. Coinactivation of either p16Ink4a or Rb with Snf5
had no significant effect on the rate of tumor formation,
suggesting that these mutations may be redundant to Snf5,
possibly because Snf5 loss has already led to E2F activation. In
contrast, coinactivation of p53 led to a dramatic acceleration of
tumor onset in Snf5 conditional mice. The median latency of
tumor formation in noninduced mice decreased from 29 weeks
to 7 weeks, whereas the latency in induced mice further de-
creased from 11 weeks to a remarkably rapid onset of �3 weeks
(Fig. 6).

Discussion
Validating Human Cancer Models. Genetically modified mice are
often used to model human cancers, but there is active debate
on the extent to which such models represent human disease.
Thus, a major goal in the field has been to develop analytical
tools for evaluating and validating mouse models. The advent
of microarray-based gene expression profiling combined with
whole-genome sequencing and annotation has recently en-
abled cross-species comparison of murine and human tumors
(20, 21). Here, we report development of an innovative
analytical projection approach for validating mouse models
that extends our previous work using NMF clustering (13) and
unites it with a projection algorithm. There are unique ad-
vantages to our approach. The method-specific preprocessing

helps to normalize the data sets in a way that diminishes
platform idiosyncrasies and reduces noise. The NMF algorithm
then reduces expression data from thousands of genes to a
small number of metagenes, each of which best captures the
distinguishing features of one of the classes being modeled. In
our case, four metagenes were identified that best differenti-
ated the four classes of samples in the human CNS data set
from each other. By subsequently using the metagene matrix,
which has been optimized for human tumors, on individual
mouse models and projecting the results, it is possible to
evaluate how well a murine model matches the human con-
dition. Unlike hierarchical clustering, our method is not
dependent on a strict tree structure and instead provides
projections that better expose the overall biological similarities
and differences in the samples. In our case, it is noteworthy
that the murine RTs cluster with the human RTs because it
suggests that the transcriptional changes due to Snf5 loss and
the resultant distinct mesodermal appearance of the tumors
readily distinguish them from the human and murine controls.
Our unique NMF-based projection method for cross-species
validation should have wide applicability in assessing the fit of
other mouse models for human tumors.

Transcriptional Regulation by Snf5. Members of the Swi�Snf com-
plex were originally identified in yeast during screens for tran-
scriptional activators. Subsequently, whole-genome expression
analysis in yeast demonstrated a role for the Swi�Snf complex in
transcriptional repression as well as activation. Intriguingly,
studies examining wing vein development in Drosophila suggest
that SNR1, the Snf5 Drosophila ortholog, may repress transcrip-
tional activation by the ATPase Brm, a core Swi�Snf subunit
(22). We found that three times as many genes were activated
(978) as repressed (322) after Snf5 inactivation in MEFs, sug-
gesting that mammalian Snf5 may in fact act to repress tran-
scriptional activation by the Swi�Snf complex.

Studies of mammalian Swi�Snf regulated gene expression
have, to date, been performed on cancer cell lines that, in
addition to other oncogenic mutations, possess a mutant Swi�
Snf subunit. Restoration of the deficient Swi�Snf subunit in these
cell lines leads to growth arrest. This approach has significant
limitations because both phenotypic states being compared are
abnormal: a cancer cell line with a deficient subunit compared
with a cell line with normal Swi�Snf expression but an abnormal
growth arrest phenotype due to other genetic mutations. We
took the approach of using normal embryonic fibroblasts in
which both the Snf5 conditional and control cells were treated
in an identical manner. The Snf5�/� and Snf5flox/� genotypes for
MEFs were chosen to closely match control cells to experimental
cells. Both the experimental and control cells started with one
active allele of Snf5 and, as the neomycin resistance cassette that
has replaced exon 1 in the knockout allele (Snf5�) is f lanked by
lox P sites, both cells underwent Cre-mediated recombination at
the Snf5 locus.

We used cross-species comparison of gene expression to
validate the MEF model system. We identified a statistically
significant subset of genes that are both rapidly affected by Snf5
loss in MEFs and also differentially expressed in RT compared
with other brain tumors. It is likely that these genes are required
for development of RT and may thus constitute useful thera-
peutic targets for RT and other Swi�Snf mutated cancers.

Stimulation of Cell Cycle Progression and Synergy with p53 Loss. The
Swi�Snf complex has been shown to bind directly to Rb (23, 24).
The Brg1 and Brm ATPase subunits of the Swi�Snf complex are
required for Rb-mediated cell cycle arrest, whereas Snf5 is
dispensable for this activity (25). Reexpression of Snf5 in RT cell
lines leads to cell cycle arrest that is associated with induction of
p16Ink4a and repression of cyclin D1 (25–28). The significance

Fig. 6. Coinactivation of Snf5 and p53 leads to a dramatic acceleration of
tumor formation. Mx-Cre� Snf5inv/� mice that are not treated with polyI�polyC
(uninduced) develop tumors at a median of 29 weeks (red dotted line).
Administration of polyI�polyC to Mx-Cre� Snf5inv/� mice leads to tumor for-
mation at a median of 11 weeks (red solid line). Mx-Cre� Snf5inv/� p53flox/flox

uninduced mice develop tumors with a median onset of 7 weeks (blue dotted
line), and treatment with polyI�polyC further accelerates tumor onset to a
median of 3 weeks (blue solid line).
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of these findings with respect to tumor suppressor activity has
been unclear because the spectrum and kinetics of tumor
formation is distinct in Rb, p16Ink4a, and Snf5 mutant mice.
Recently, however, cyclin D1 was shown to be a critical down-
stream regulator of tumor formation in the absence of Snf5;
inactivation of cyclin D1 prevents formation of tumors in Snf5�/�

mice (29).
By inactivating Snf5 in normal cells, we demonstrate that

primary loss of Snf5 leads to perturbation of cell cycle control
pathways, including up-regulation of E2F targets and increased
levels of p53, apoptosis, polyploidy, and cell cycle arrest. Inter-
estingly, in the absence of cooperating hits, the same growth-
promoting mutations found in cancers typically trigger these
events in primary cells (30). For example, overexpression of
E2Fs in primary cells also leads to p53-dependent apoptosis,
polyploidy, and growth arrest (19, 31, 32).

To evaluate whether perturbation of the E2F pathway may be
the basis for tumor suppression by Snf5, we crossed Snf5
conditional mice to mice carrying targeted mutations in Rb,
p16Ink4a, and p53. There was a lack of synergy between induced
inactivation of Snf5 and either Rb or p16Ink4a. Of note, we
cannot entirely rule out interactions, because there is some
redundancy between the Rb and p16Ink4a tumor suppressors.
Longer-term studies using the uninduced strains may help
determine whether subtle interactions exist. In contrast to the
case with Rb or p16Ink4a, there is marked synergy between
inactivation of Snf5 and p53 that leads to tumor onset at 3 weeks
in induced mice. Intriguingly, these tumors were exclusively of
the phenotypic profile seen in Snf5 conditional mice (i.e.,
peripheral CD8��CD4� mature T cell lymphomas), suggesting
that the developmental phenotype of the cancers is determined
by Snf5 loss and that p53 deletion simply accelerates tumor onset

rather than affecting tumor spectrum. It is also worth noting that,
despite their rapid onset, these tumors were clonal, indicating
that an additional mutation is required for full oncogenic
transformation. Indeed, we have preliminary data that inactiva-
tion of p53 is not sufficient to fully reverse the negative growth
effects of Snf5 loss.

Collectively, our findings generate insight into the mechanism
by which Snf5 acts as a potent tumor suppressor. We speculate
that the Swi�Snf complex regulates overall signaling through
p16Ink4a�Rb�E2F at multiple points in this pathway, including
regulation of p16Ink4a expression and direct interaction with
Rb. In itself, decreased p16Ink4a activity is unlikely to explain
the aberrant effects we observed, because p16Ink4a is not
required for appropriate E2F regulation in primary MEFs (16).
As a consequence of Snf5 loss, the role of p16Ink4a and Rb in
repressing cell cycle progression may be compromised, which
could lead to increased expression of E2F target genes and
aberrant cell cycle control, causing up-regulation of p53 accom-
panied by a G2 arrest, polyploidy, and apoptosis. We have
identified the conserved transcriptional pathways regulated by
Snf5 as well as the subset of these genes with differential
expression in RT, and these data can now be used to further
elucidate the role of the Swi�Snf complex in transcriptional
regulation and also to identify and evaluate potential targets for
therapeutic intervention in RT and other Swi�Snf mutated
cancers.
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