Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1976 Sep;260(2):425–445. doi: 10.1113/jphysiol.1976.sp011523

An electrophysiological study of the sacral parasympathetic pathway to the colon of the cat.

W C de Groat, J Krier
PMCID: PMC1309099  PMID: 185366

Abstract

1. Electrophysiological techniques were used to study the sacral parasympathetic pathway to the colon of the cat. 2. Electrical stimulation of the sacral ventral roots or the pelvic nerve elicited contractions of the colon and firing in nerve filaments on the serosal surface of the colon. Both responses were markedly reduced by the administration of ganglionic blocking agents. It is concluded that sacral preganglionic fibres to the colon make synaptic contacts with extramural ganglion cells. These cells were identified histologically in small ganglia on the serosal surface of the distal colon and rectum. 3. Transmission in extramural colonic ganglia was cholinergic and mediated by nicotinic receptors. Colonic ganglia did not exhibit large recruiting responses during repetitive (1-4 c/s) preganglionic nerve stimulation or an adrenergic inhibitory mechanism, both of which have been identified in bladder parasympathetic ganglia. It is concluded that colonic ganglia unlike bladder function primarily as simple relay stations and have little potential for modulating the neral activity arising in the central nervus system. 4. The preganglionic input to colonic ganglia was mediated by C fibres with maximal conduction velocities ranging from 0-5 to 1-4 m/sec. Bladder ganglia, on the other hand, received a preganglionic input composed of B fibres with maximal conduction velocities ranging from 8 to 10 m/sec. The possible physiological significance of different types of preganglionic fibres in the sacral outflow is discussed.

Full text

PDF
425

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AGOSTONI E., CHINNOCK J. E., DE DALY M. B., MURRAY J. G. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol. 1957 Jan 23;135(1):182–205. doi: 10.1113/jphysiol.1957.sp005703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baumgarten H. G., Holstein A. F., Owman C. Auerbach's plexus of mammals and man: electron microscopic identification of three different types of neuronal processes in myenteric ganglia of the large intestine from rhesus monkeys, guinea-pigs and man. Z Zellforsch Mikrosk Anat. 1970;106(3):376–397. doi: 10.1007/BF00335780. [DOI] [PubMed] [Google Scholar]
  3. Bennett M. R., Burnstock G., Holman M. E. Transmission from perivascular inhibitory nerves to the smooth muscle of the guinea-pig taenia coli. J Physiol. 1966 Feb;182(3):527–540. doi: 10.1113/jphysiol.1966.sp007835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clifton G. L., Vance W. H., Applebaum M. L., Coggeshall R. E., Willis W. D. Responses of unmyelinated afferents in the mammalian ventral root. Brain Res. 1974 Dec 20;82(1):163–167. doi: 10.1016/0006-8993(74)90901-9. [DOI] [PubMed] [Google Scholar]
  5. Coggeshall R. E., Coulter J. D., Willis W. D., Jr Unmyelinated axons in the ventral roots of the cat lumbosacral enlargement. J Comp Neurol. 1974 Jan 1;153(1):39–58. doi: 10.1002/cne.901530105. [DOI] [PubMed] [Google Scholar]
  6. Coggeshall R. E., Coulter J. D., Willis W. D., Jr Unmyelinated fibers in the ventral root. Brain Res. 1973 Jul 16;57(1):229–233. doi: 10.1016/0006-8993(73)90582-9. [DOI] [PubMed] [Google Scholar]
  7. DOUGLAS W. W., RITCHIE J. M. Mammalian nonmyelinated nerve fibers. Physiol Rev. 1962 Apr;42:297–334. doi: 10.1152/physrev.1962.42.2.297. [DOI] [PubMed] [Google Scholar]
  8. De Groat W. C. Nervous control of the urinary bladder of the cat. Brain Res. 1975 Apr 11;87(2-3):201–211. doi: 10.1016/0006-8993(75)90417-5. [DOI] [PubMed] [Google Scholar]
  9. De Groat W. C., Ryall R. W. The identification and characteristics of sacral parasympathetic preganglionic neurones. J Physiol. 1968 Jun;196(3):563–577. doi: 10.1113/jphysiol.1968.sp008523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Groat W. C., Saum W. R. Sympathetic inhibition of the urinary bladder and of pelvic ganglionic transmission in the cat. J Physiol. 1972 Jan;220(2):297–314. doi: 10.1113/jphysiol.1972.sp009708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DeGroat W. C., Saum W. R. Synaptic transmission in parasympathetic ganglia in the urinary bladder of the cat. J Physiol. 1976 Mar;256(1):137–158. doi: 10.1113/jphysiol.1976.sp011316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garrett J. R., Howard E. R., Jones W. The internal anal sphincter in the cat: a study of nervous mechanisms affecting tone and reflex activity. J Physiol. 1974 Nov;243(1):153–166. doi: 10.1113/jphysiol.1974.sp010747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garry R. C. The nervous control of the caudal region of the large bowel in the cat. J Physiol. 1933 Mar 15;77(4):422–431. doi: 10.1113/jphysiol.1933.sp002977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garry R. C. The responses to stimulation of the caudal end of the large bowel in the cat. J Physiol. 1933 May 23;78(2):208–224. doi: 10.1113/jphysiol.1933.sp002998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gaskell W. H. On the Relation between the Structure, Function, Distribution and Origin of the Cranial Nerves; together with a Theory of the Origin of the Nervous System of Vertebrata. J Physiol. 1889 Apr;10(3):153–212.9. doi: 10.1113/jphysiol.1889.sp000299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hultén L. Extrinsic nervous control of colonic motility and blood flow. An experimental study in the cat. Acta Physiol Scand Suppl. 1969;335:1–116. [PubMed] [Google Scholar]
  17. Langley J. N., Anderson H. K. On the Innervation of the Pelvic and Adjoining Viscera: Part I. The Lower Portion of the Intestine. J Physiol. 1895 May 20;18(1-2):67–105. doi: 10.1113/jphysiol.1895.sp000558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. NORBERG K. A. ADRENERGIC INNERVATION OF THE INTESTINAL WALL STUDIED BY FLUORESCENCE MICROSCOPY. Int J Neuropharmacol. 1964 Sep;3:379–382. doi: 10.1016/0028-3908(64)90067-x. [DOI] [PubMed] [Google Scholar]
  19. RUSHTON W. A. H. A theory of the effects of fibre size in medullated nerve. J Physiol. 1951 Sep;115(1):101–122. doi: 10.1113/jphysiol.1951.sp004655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SCHNITZLEIN H. N., HOFFMAN H. H., HAMLETT D. M., HOWELL E. M. A study of the sacral parasympathetic nucleus. J Comp Neurol. 1963 Jun;120:477–493. doi: 10.1002/cne.901200306. [DOI] [PubMed] [Google Scholar]
  21. Wood J. D. Neurophysiology of Auerbach's plexus and control of intestinal motility. Physiol Rev. 1975 Apr;55(2):307–324. doi: 10.1152/physrev.1975.55.2.307. [DOI] [PubMed] [Google Scholar]
  22. de Groat W. C., Krier J. Preganglionic C-fibres: a major component of the sacral autonomic outflow to the colon of the cat. Pflugers Arch. 1975 Aug 29;359(1-2):171–176. doi: 10.1007/BF00581286. [DOI] [PubMed] [Google Scholar]
  23. de Groat W. C., Lalley P. M. Reflex sympathetic firing in response to electrical stimulation of the carotid sinus nerve in the cat. Brain Res. 1974 Nov 8;80(1):17–40. doi: 10.1016/0006-8993(74)90721-5. [DOI] [PubMed] [Google Scholar]
  24. de Groat W. C., Ryall R. W. Reflexes to sacral parasympathetic neurones concerned with micturition in the cat. J Physiol. 1969 Jan;200(1):87–108. doi: 10.1113/jphysiol.1969.sp008683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. de Groat W. C. The actions of gamma-aminobutyric acid and related amino acids on mammalian autonomic ganglia. J Pharmacol Exp Ther. 1970 Apr;172(2):384–396. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES