Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1976 Jan;254(3):673–692. doi: 10.1113/jphysiol.1976.sp011252

Developmental aspects of potassium flux and permeability of the embryonic chick heart.

E E Carmeliet, C R Horres, M Lieberman, J S Vereecke
PMCID: PMC1309217  PMID: 1255502

Abstract

1. The rate coefficient of 42K efflux, the transmembrane potential, the intracellular concentrations of Na and K and the volume/surface area have been measured in embryonic chick hearts of different ages. 2. With respect to age, the rate coefficient for 42K efflux was minimal for preparations from 6-8 day old embryos, and distinctly higher values were obtained for the hearts of 3-5 and 18-20 days. With respect to the effect of external K concentration (Ko), all age groups showed a five- to sevenfold increase in rate coefficient between 2-5 and 140 mM-Ko. The effect of Ko was found to be indepedent of extracellular Na, except in the 18-20 day hearts bathed in K-free solution. 3. Intracellular concentrations of K and Na were found to decrease, membrane potential to increase with age. The volume/surface area measured by stereologic and morphometric techniques did not change with age. 4. The permeability coefficient for K (PK), calculated from the absolute K flux and the measured membrane potentials, was fairly constant for a given age between 2-5 and 20 mM-Ko. In K-free solution, PK was markedly reduced (factor 4). At a given Ko, PK increased twofold between 6-8 and 18-20 days while PNa remained relatively constant.

Full text

PDF
692

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoli T. E., Tieffenberg M., Tosteson D. C. The effect of valinomycin on the ionic permeability of thin lipid membranes. J Gen Physiol. 1967 Dec;50(11):2527–2545. doi: 10.1085/jgp.50.11.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carmeliet E. E., Lieberman M. Increase of potassium flux by valinomycin in embryonic chick heart. Pflugers Arch. 1975 Jul 28;358(3):243–257. doi: 10.1007/BF00587221. [DOI] [PubMed] [Google Scholar]
  3. Dunand P., Blondel B., Girardier L., Jeanrenaud B. Alpha-aminoisobutyric acid uptake by cultured beating heart cells. Biochim Biophys Acta. 1972 Feb 11;255(2):462–478. doi: 10.1016/0005-2736(72)90150-2. [DOI] [PubMed] [Google Scholar]
  4. Eisenberg B. R., Kuda A. M., Peter J. B. Stereological analysis of mammalian skeletal muscle. I. Soleus muscle of the adult guinea pig. J Cell Biol. 1974 Mar;60(3):732–754. doi: 10.1083/jcb.60.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Glitsch H. G. Activation of the electrogenic sodium pump in guinea-pig auricles by internal sodium ions. J Physiol. 1972 Feb;220(3):565–582. doi: 10.1113/jphysiol.1972.sp009723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Glynn I. M., Lew V. L., Lüthi U. Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. J Physiol. 1970 Apr;207(2):371–391. doi: 10.1113/jphysiol.1970.sp009067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldman D. E. POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES. J Gen Physiol. 1943 Sep 20;27(1):37–60. doi: 10.1085/jgp.27.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HARSCH M., GREEN J. W. ELECTROLYTE ANALYSES OF CHICK EMBRYONIC FLUIDS AND HEART TISSUES. J Cell Physiol. 1963 Dec;62:319–326. doi: 10.1002/jcp.1030620312. [DOI] [PubMed] [Google Scholar]
  9. KEYNES R. D., LEWIS P. R. The resting exchange of radioactive potassium in crab nerve. J Physiol. 1951 Mar;113(1):73–98. doi: 10.1113/jphysiol.1951.sp004557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KEYNES R. D. The ionic fluxes in frog muscle. Proc R Soc Lond B Biol Sci. 1954 May 27;142(908):359–382. doi: 10.1098/rspb.1954.0030. [DOI] [PubMed] [Google Scholar]
  11. KLEIN R. L., EVANS M. L. Effects of ouabain, hypothermia and anoxia on cation fluxes in embryonic chick heart. Am J Physiol. 1961 Apr;200:735–740. doi: 10.1152/ajplegacy.1961.200.4.735. [DOI] [PubMed] [Google Scholar]
  12. KLEIN R. L. Ontogenesis of K and Na fluxes in embryonic chick heart. Am J Physiol. 1960 Oct;199:613–618. doi: 10.1152/ajplegacy.1960.199.4.613. [DOI] [PubMed] [Google Scholar]
  13. Lant A. F., Priestland R. N., Whittam R. The coupling of downhill ion movements associated with reversal of the sodium pump in human red cells. J Physiol. 1970 Apr;207(2):291–301. doi: 10.1113/jphysiol.1970.sp009062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lieberman M., Paes de Carvalho A. The Electrophysiological Organization of the Embryonic Chick Heart. J Gen Physiol. 1965 Nov 1;49(2):351–363. doi: 10.1085/jgp.49.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lieberman M., Roggeveen A. E., Purdy J. E., Johnson E. A. Synthetic strands of cardiac muscle: growth and physiological implication. Science. 1972 Feb 25;175(4024):909–911. doi: 10.1126/science.175.4024.909. [DOI] [PubMed] [Google Scholar]
  16. Macdonald R. L., Mann J. E., Jr, Sperelakis N. Derivation of general equations describing tracer diffusion in any two-compartment tissue with application to ionic diffusion in cylindrical muscle bundles. J Theor Biol. 1974 May;45(1):107–130. doi: 10.1016/0022-5193(74)90046-0. [DOI] [PubMed] [Google Scholar]
  17. McDonald T. F., DeHaan R. L. Ion levels and membrane potential in chick heart tissue and cultured cells. J Gen Physiol. 1973 Jan;61(1):89–109. doi: 10.1085/jgp.61.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PAGE E., STORN S. R. CAT HEART MUSCLE IN VITRO. 8. ACTIVE TRANSPORT OF SODIUM IN PAPILLARY MUSCLES. J Gen Physiol. 1965 May;48:957–972. doi: 10.1085/jgp.48.5.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Page E., McCallister L. P., Power B. Sterological measurements of cardiac ultrastructures implicated in excitation-contraction coupling. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1465–1466. doi: 10.1073/pnas.68.7.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Prignitz R., Müller U., Hoffmeister G. Uber die Bestimmung des Extracellulärraumes mit 51 Cr-EDTA an der Vorhofsmuskulatur des Meerschweinchens. Experientia. 1973 Apr 15;29(4):431–432. doi: 10.1007/BF01926762. [DOI] [PubMed] [Google Scholar]
  21. SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. I. The resting cell and its alteration by extrinsic factors. Pharmacol Rev. 1958 Mar;10(1):59–164. [PubMed] [Google Scholar]
  22. Sperelakis N. (Na + , K + )-ATPase activity of embryonic chick heart and skeletal muscles as a function of age. Biochim Biophys Acta. 1972 Apr 14;266(1):230–237. doi: 10.1016/0005-2736(72)90137-x. [DOI] [PubMed] [Google Scholar]
  23. Sperelakis N., Shigenobu K. Changes in membrane properties of chick embryonic hearts during development. J Gen Physiol. 1972 Oct;60(4):430–453. doi: 10.1085/jgp.60.4.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Spira A. W. Cell junctions and their role in transmural diffusion in the embryonic chick heart. Z Zellforsch Mikrosk Anat. 1971;120(4):463–487. doi: 10.1007/BF00340585. [DOI] [PubMed] [Google Scholar]
  25. Tosteson D. C., Andreoli T. E., Tieffenberg M., Cook P. The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes. J Gen Physiol. 1968 May;51(5 Suppl):373S+–373S+. [PubMed] [Google Scholar]
  26. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vleugels A., Carmeliet E. Effect of hypoxia on the duration of the action potential in embryonic chick heart. Arch Int Physiol Biochim. 1973 Oct;81(4):775–777. [PubMed] [Google Scholar]
  28. Weibel E. R. A stereological method for estimating volume and surface of sarcoplasmic reticulum. J Microsc. 1972 Apr;95(2):229–242. doi: 10.1111/j.1365-2818.1972.tb03722.x. [DOI] [PubMed] [Google Scholar]
  29. Weibel E. R., Kistler G. S., Scherle W. F. Practical stereological methods for morphometric cytology. J Cell Biol. 1966 Jul;30(1):23–38. doi: 10.1083/jcb.30.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES