
The cerebral cortex is the dominant structure of the
mammalian brain and is responsible for an impres-
sively diverse range of sensory, motor, and cognitive
functions. Anatomically, the cortex is a sheet-like
structure whose surface area greatly exceeds the sur-
face area of a smooth, solid shape containing it. In
large-brained mammals, including humans, the cor-
tex is extensively folded, and the pattern of convolu-
tions varies considerably from one individual to the
next. The irregularity and variability of these convo-
lutions pose major challenges in analyzing and visu-
alizing cortical structure, function, and development.

These problems are particularly acute in view of the
explosion of high-resolution data derived from many
different experimental methods, particularly non-
invasive neuroimaging methods such as structural
and functional magnetic resonance imaging (MRI)
applied to human beings and nonhuman primates. 

Computational cortical cartography represents a pow-
erful general approach to dealing with these problems
by using surface-based visualization and analysis
methods. The essence of the approach is to represent
the cortex by explicit surface reconstructions onto
which various types of experimental information are
mapped. The advantages of surface reconstructions
can be grouped into four main categories:

■ Visualization using multiple configurations. Once gen-
erated, surface reconstructions can be manipulated
in shape to improve visualization. Commonly used
configurations, besides the initial (fiducial) three-
dimensional shape of the cortex, include inflated
(extensively smoothed) surfaces, spherical surfaces
(used for surface-based coordinates, as discussed
below), and flat maps, which allow the entire hemi-
sphere to be viewed with only modest distortions,
albeit at the price of artificial cuts (akin to those
used in maps of the earth’s surface).
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Application of Information Technology ■

An Integrated Software Suite
for Surface-based Analyses 
of Cerebral Cortex

A b s t r a c t The authors describe and illustrate an integrated trio of software programs for
carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit
(Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical
segmentation, volume visualization, surface generation, and the mapping of functional 
neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical
Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis
options as well as capabilities for surface flattening, surface-based deformation, and other surface
manipulations. The third component, SuMS (Surface Management System), is a database and 
associated user interface for surface-related data. It provides for efficient insertion, searching, 
and extraction of surface and volume data from the database. 

■ J Am Med Inform Assoc. 2001;8:443–459.
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■ Localization using surface-based coordinates. It is often
important to be precise about exact locations in the
cortex. Surface-based coordinates (latitude and lon-
gitude on a sphere) provide a concise, precise, and
objective metric that respects the topology of the
cortical surface. In this respect, they offer important
advantages over standard stereotaxic coordinates
or geographically referenced descriptions.

■ Compensation for individual variability. Comparison
of results obtained from different individuals is
inherently challenging because of the combination
of geographic differences (in the pattern of fold-
ing) and functional differences in the size of each
cortical area (which can vary two-fold or more)
and in their shape and location. Surface-based
warping provides a natural and powerful way to
compensate for these differences while respecting
the topology of the cortical sheet. 

■ Consolidation onto surface-based atlases. With the
explosion of information about cortical structure
and function, surface-based atlases will become
increasingly important, just as atlases of the
earth’s surface are invaluable repositories of infor-
mation about countless aspects of geography.
Information from many different individuals can
be brought into a common reference frame. 

The many steps involved in surface-based cortical
analysis can be subdivided into four main stages,
each dealing with distinct types of data and having
different analysis objectives. Historically, the meth-
ods used to carry out each of these processing stages
initially involved manual or other noncomputerized
methods that have only recently been supplanted by
automated or semi-automated methods of computer-
ized neuroanatomy. 

■ Acquisition of structural data. Surface-based analy-
sis starts with a source of structural information
that can be used to infer the shape of the cortical
sheet. Until the 1990s, surface reconstructions
were generally based on postmortem histology,
using photographs of histologic sections. The situ-
ation has changed dramatically with the advent of
noninvasive imaging methods (particularly struc-
tural MRI) that can routinely be used to image the
structure of cerebral cortex in human beings as
well as laboratory animals.

■ Segmentation and surface reconstruction. Generating
accurate surface reconstructions of cerebral cortex
is a challenging problem in general, because the
cortex is highly complex in shape and because the
image data on which reconstructions are based are
typically noisy or contain artifactual irregularities.

The earliest explicit surface representations were
generated by physical models.1,2 A variety of
methods are now available that allow cortical seg-
mentation and surface reconstruction with reason-
able accuracy and robustness (see below).3–6

■ Surface reconfiguration and flattening. The earliest
approaches to reconfiguring cortical shape in-
volved generating cortical flat maps by manual
methods, such as tracing contours with a pencil
and tracing paper.7,8 A variety of methods are now
available for inflating the cortex and for making
computer-generated flat maps using various met-
rics for minimizing distortions.4,9–13

■ Mapping to a surface-based atlas. Early surface-based
atlases were based on manually generated flat
maps to which data were transposed manually, on
the basis of geographic landmarks and approxi-
mate distances.8,14 The emergence of surface-based
deformation algorithms15–17 has allowed an objec-
tive approach to bringing data into register with
an atlas while respecting the topology of the corti-
cal surface.16,18–19 

Although the use of surface reconstructions has
increased rapidly in recent years, enormous potential
remains untapped in terms of ongoing neuroimaging
and systems neuroscience studies that do not yet cap-
italize on the power of surface-based analyses. This is
largely because key elements of the enabling technol-
ogy have only recently become available. 

The contribution of our laboratory to this effort
involves the development of an integrated software
suite for surface-based analyses of cerebral cortex.
Our objective has been to provide software that is
freely available to the neuroscience community, runs
on multiple hardware platforms, and can be used to
carry out the major stages of surface reconstruction
and analysis efficiently and in as automated a man-
ner as possible. 

The integrated system has three main software com-
ponents. The first component, SureFit (Surface
Reconstruction by Filtering and Intensity Trans-
formations), is used primarily for cortical segmenta-
tion, volume visualization, and initial surface genera-
tion. The second component, Caret (Computerized
Anatomical Reconstruction and Editing Tool Kit), pro-
vides a wide range of surface visualization and analy-
sis options as well as capabilities for surface flattening,
surface-based deformation, and a number of other sur-
face manipulations. The third component, SuMS
(Surface Management System), is a database and asso-
ciated user interface for dealing efficiently with the
increasing number of complex data sets associated
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with surface-based analyses. It provides an organized
framework for efficiently inserting, searching, and
extracting surface and volume data from a database.

Here we provide a general introduction to and
overview of the surface-based analyses that can be
carried out using SureFit, Caret, and SuMS. Key
algorithmic principles underlying the main process-
ing steps are described, and selected examples are
used to illustrate the methods and the utility of the
overall approach. Additional information is avail-
able in the user’s guide to SureFit and Caret (http://
stp.wustl.edu/resources/cortcart.html), in the on-
line help menu for Caret (http://stp.wustl.edu/
caret/html4.3/reference_manual_toc.html), and in
related publications.11,20–22

Overview of Processing Stages in 
Surface-based Analysis

Surface Reconstruction

Some of the key stages of surface-based analyses are
shown in a generic flow chart (Figure 1) and in an
illustrative structural and functional MRI (fMRI) data
set processed in SureFit and Caret (Figure 2). For
each experimental hemisphere under investigation, a
key initial objective is to obtain a fiducial surface
reconstruction—one that represents the shape of the
cortex as accurately as possible. 

The strategy for achieving this objective depends on
the nature of the primary structural data. If structur-
al MRI or cryosection data are available, the pre-
ferred strategy is to use a volume-based method such
as SureFit to carry out automated segmentation and
surface reconstruction (Figure 1, left side) . The seg-
mentation process, applied to structural MRI image
data of the type shown in Figure 2A, results in a seg-
mentation (a binary volume) whose boundary repre-
sents the shape of the cortex, as in the slice shown in
Figure 2B. This segmentation (or “reconstruction
substrate”) is used to automatically generate an
explicit surface representation, i.e., a wire-frame tes-
sellation whose nodes lie on the boundary of the seg-
mentation (typically 50,000 to100,000 nodes for a
human hemisphere) and whose surface topology is
defined by the links between nodes. The initial (raw)
surface has a blocky appearance associated with the
cubical voxels (typically 1 mm3) of the segmentation.
Hence, it is slightly smoothed to generate a satisfac-
tory fiducial surface (Figure 2C).

If only histologic sections are available, surfaces can
be reconstructed by an alternative contour-based

reconstruction strategy, using options available in
Caret (Figure 1, right side). This entails drawing con-
tours along a particular cortical layer (e.g., layer 4) in
individual sections, bringing contours from adjacent
sections into register, and  generating an explicit sur-
face reconstruction using an automated tessellation
method. Although the method for surface recon-
struction is different, the outcome of segmentation-
based vs. contour-based processes is fundamentally
the same, that is, an explicit surface that represents
the shape of the convoluted cortex.

Visualizing Experimental Data

Surface reconstructions are invaluable for visualizing
many types of experimental data, ranging from min-
imally processed representations of primary data to
highly abstracted representations. One particularly
important class of experimental data involves func-
tional activation patterns obtained using fMRI. For
example, Figure 2D shows an fMRI activation focus
in a coronal slice through the intraparietal sulcus
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F i g u r e 1 Processing stages in surface-based analysis.
The upper portion shows the primary stages involved in
generating an initial (“raw”) surface reconstruction from a
primary source of structural data. Entries on the upper left
indicate stages associated with extracting a cortical seg-
mentation from volumetric structural data. Entries on the
upper right indicate analogous stages associated with
extracting and aligning section contours to represent corti-
cal shape. The lower half shows transformations from the
raw cortical surface to various alternative configurations
of the same surface as well as deformations to a surface-
based atlas.



(overlaid on the structural MRI slice), generated in a
behavioral paradigm involving saccadic eye move-
ments.23 These data were then mapped from the vol-
ume onto a surface representation using a SureFit
algorithm that takes local surface orientation into
account when mapping volumetric fMRI data onto
the surface. 

Surface Reconfiguration

Once a fiducial surface has been generated, its shape
can be modified into several alternative configura-
tions that are widely used in surface-based analysis.
Standard surface configurations include inflated
maps (Figure 2F), spherical maps (Figure 2G), and
flat maps (Figure 2H). These exemplar surfaces are
painted with a combination of functional and geo-
graphic data, in which darker shading indicates
buried cortex;  fMRI data are represented in the fig-
ure by white or light gray for surface nodes above a
threshold activation level. 

Each alternative configuration has advantages for
visualization and analysis. The inflated configuration
looks like a lissencephalic hemisphere and gives an

intuitive sense of geographic location. The spherical
configuration (Figure 2G) allows for determination of
spherical coordinates (latitude and longitude), which
constitute a precise and objective localization metric
that respects surface topology. The flat map shows the
entire pattern in a single view (Figure 2H), with dis-
tortions reduced by artificial cuts like those used on
flat maps of the earth’s surface. 

Notice that the polar coordinates, while generated on
the sphere, can be readily viewed and interpreted after
projection to the flat map. All the surface maps, but
particularly the flat map, reveal that the behavioral
task (saccadic eye movements) was associated with
numerous activation foci that are more efficiently and
accurately visualized on a single surface than in a
series of volume slices. 

Surface-based Atlases

The final stage of surface-based analysis illustrated in
Figures 1 and 2 involves mapping data from an indi-
vidual hemisphere to a surface-based atlas. To ensure
a mapping that respects the topology of the cortical
surface, it is desirable to use a surface-based defor-
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F i g u r e 2 Illustrative data set taken
through the processing sequence illus-
trated in Figure 1. A, Coronal slice
through a structural MRI volume of
human left hemisphere. B, Cortical seg-
mentation through the same coronal
slice, generated using the SureFit
method. C, The fiducial surface generat-
ed from this segmentation. D, Fun-
ctional MRI (fMRI) data overlaid on the
same structural MRI data shown in A,
generated in a behavioral paradigm
involving eye movements.23 E, The
fMRI data painted on the cortical sur-
face and displayed in white and light
gray shades. F, The same fMRI data dis-
played on an inflated surface, with cor-
tical geography (sulcal regions) shown
in darker shades. G, Spherical map that
shows fMRI data, cortical geography,
and latitude-longitude isocontours. H,
The same data  shown on a cortical flat
map. I, Spherical map of the Visible
Man atlas, with fMRI data deformed to
the atlas. J,.Flat map of the Visible Man
atlas that includes cortical geography,
deformed fMRI data projected from the
sphere to the flat map, and boundaries
of Brodmann’s architectonic areas as
mapped by Drury et al.20 The data for
the individual case can be downloaded
from SuMS via a hyperlink connection
to http://stp.wustl.edu/sums/sums.
cgi?specfile=Demo.L.full.jamia.Fig2.spec.



mation algorithm applied to spherical maps, which
are unaffected by cuts in the surface. In Figure 2, the
source hemisphere (G) was deformed to the target
hemisphere (I) using geographically defined land-
marks in the source and target maps and a differeo-
morphic deformation algorithm developed by
Bakircioglu et al.17 In Figure 2J, the results of the
deformation are shown by projecting the data onto a
flat map of the surface-based atlas. This allows the
data from a single subject to be viewed in relation to
any other data registered with the atlas, such the
boundaries of Brodmann’s architectonic subdivisions
shown on the flat map.20 

Database Entry and Retrieval

Each of the display formats and the ancillary data
shown in Figure 2 are useful for specific visualization
and analysis options. Consequently, it is desirable to
be able to access any or all of the data in an efficient,
organized way, even though the data comprise more
than a dozen files that represent a variety of volume
data, surface geometry data, and ancillary experi-
mental data. This access was achieved by storing the
data in the SuMS database, which provides several
options for searching and retrieving data. Data entry
and retrieval from SuMS as well as data visualization
in SureFit and Caret are greatly facilitated by group-

ing common families of files into organized sets that
are listed in “specification files.” By selecting the
appropriate volume or surface specification file (or
files) of interest, a family of related files can be down-
loaded as a group. An especially easy and direct way
to do this is by direct hyperlink connections to par-
ticular specification files in SuMS, as exemplified by
the hyperlinks specified in the legend to Figure 2. 

We now describe SureFit, Caret, and SuMS each in
greater detail, to illustrate their functionality and the
algorithms on which they are based.

SureFit 

Visualization

SureFit includes general-purpose capabilities for vol-
ume visualization (viewing one or two volumes con-
currently) and surface visualization (viewing up to
three surfaces concurrently). For example, Figure 3A
shows the main SureFit window, with a coronal slice
through a cortical segmentation overlaid on the
structural MRI volume. The overlay option allows
the relationship between the segmentation (solid
shading; red in the actual view) and the intensity
data to be compared directly. Two surface viewing
windows are shown, one with the fiducial surface
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F i g u r e 3 Volume and surface
visualization in SureFit. A, The
main SureFit window, which can
be used as a general volumetric
slice viewer and in connection
with the SureFit segmentation
process. B, Fiducial surface re-
construction displayed in the
SureFit surface viewer. C, In-
flated cortical surface displayed
simultaneously in a second sur-
face viewer.



(Figure 3B) and the other with an inflated surface
(Figure 3C). The spatial relationships among differ-
ent volume and surface representations can be visu-
alized using a “pick” option, which highlights points
in each of the surface views (arrows) that correspond
to the cross-hairs in the slice viewer. 

Segmentation and Surface Reconstruction

The main functionality of SureFit is to generate seg-
mentations and surface reconstructions of cerebral
cortex (like those in Figure 3) from structural MRI or
other grayscale image data. This involves an auto-
mated sequence of image-processing operations and
other functions, with only two stages (volume prepa-
ration and interactive error correction) that entail sig-
nificant user interaction.

Volume Preparation

Prior to launching the automated segmentation
process, several preparatory steps are carried out.
These include:

■ Tagging each data set with appropriate general
information (e.g., case name, region, and specific
comments)

■ Orienting the volume and cropping it to the
desired spatial extent

■ Identifying the anterior commissure (AC) as a key
geographic landmark

■ Setting two parameters (the gray matter and white
matter peaks in the intensity histogram) that are
needed for automatic segmentation.

Automated Segmentation

Automated segmentation in SureFit is based on sev-
eral structural characteristics of cerebral cortex that
are schematized in Figure 4. The cortex is a sheet-like
tissue, approximately constant in thickness, adjoined
on its inner side by subcortical white matter. On its
outer side, the pial surface adjoins cerebrospinal fluid
in gyral regions, but in sulcal regions the cere-
brospinal fluid gap between apposed pial surfaces
may be very narrow. SureFit aims for a segmentation
whose boundary runs approximately midway
through the cortical thickness (i.e., cortical layer 4),
because this represents the associated cortical vol-
ume more accurately than do segmentations running
along either the inner or outer boundary.4 To this
end, SureFit generates probabilistic representations
for both the inner boundary and the outer boundary,
using cues related to image intensity, intensity gradi-
ents, and the spatial relationships between the inner
and outer boundaries. One general strategy is to
postpone deterministic (yes/no) decisions that create
binary volumes as long as possible, until various
probabilistic representations have been generated
and appropriately combined.

Key stages in the SureFit segmentation process are
illustrated in Figure 5 for a slice through lateral tem-
poral cortex of a structural MRI volume (Figure 5A).
This case was chosen because the image data are rela-
tively noisy and low in contrast, making automated
segmentation an inherently challenging process. The
intensity histogram (Figure 5B) for this volume shows
a characteristic pair of intensity peaks, one associated
with white matter and the other with gray matter. 

Along the inner (gray–white) boundary, the image
intensity should be approximately midway between
the peaks for gray matter and white matter. This inten-
sity-based cue is made explicit using a Gaussian inten-
sity transformation, whose peak represents the most
likely inner boundary intensity (inner boundary arrow
in Figure 5B) and whose standard deviation reflects
the noisiness in the image data (see legend for details).
The resultant inner boundary intensity transformation
has local maxima running approximately along the
inner boundary, but there are many irregularities
owing to fluctuations in the image data. Other cues for
the inner boundary are related to the intensity gradi-
ent, whose magnitude is shown in Figure 5D. The gra-
dient along the inner boundary is steeper than in
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F i g u r e  4 Schematic representation of key structural
features of cerebral cortex that are relevant to the SureFit
segmentation algorithm. The cortical sheet is approximate-
ly constant in thickness and adjoins white matter on its
inner boundary. Its outer (pial) boundary adjoins cere-
brospinal fluid in gyral regions and oppositely oriented
cortical sheet in sulcal regions.



neighboring gray matter and white matter, but it is
more shallow than in other regions (e.g., along parts of
the outer boundary). This information, along with
cues related to the direction of the intensity gradient,
is combined with the intensity-based map in Figure 5C
to generate a composite inner boundary map (Figure
5E) that is more reliable than the individual contribut-
ing maps (see legend to Figure 5 for details).

For the outer (pial) boundary, one cue is based on
image intensity (Figure 5F), using a Gaussian intensi-
ty transformation centered at the outer boundary
arrow in Figure 5B. This intensity-based map has
prominent local maxima along gyral boundaries,
where gray matter adjoins cerebrospinal fluid. In sul-
cal regions the local maxima are less pronounced,
because a prominent cerebrospinal fluid gap is gen-
erally lacking. Instead, evidence for the outer bound-
ary in sulcal regions is collected using a customized
filtering process whose output is high along regions
midway between two oppositely oriented inner
boundaries (Figure 5G). The composite outer bound-
ary map (Figure 5H) reflects a combination of the
cues in Figures 5F and 5G and gradient-based cues
analogous those used for the inner boundary.

In addition to the probabilistic inner and outer bound-
ary maps, a segmented representation of cerebral
white matter is generated (Figure 5I). This entails
thresholding the intensity volume at a level that fills
most of the white matter, disconnecting noncerebral
structures (brainstem, cerebellum, skull, and eye),
transecting midline structures, and removing the
extraneous regions by a flood-filling process. The
brainstem is disconnected using a diagonal transection
applied near the pons (based on its location relative to
the anterior commissure). The eye and skull are dis-
connected by automatically identifying and removing
the high-intensity (fatty) region behind the eyeball. 

In Figure 5J, the maps of inner and outer boundaries
are combined to generate a smooth map of position
along the radial axis (i.e., the axis delineated by
arrows in Figure 4). This involves taking the differ-
ence between blurred versions of the inner and outer
boundary maps (and also assigning maximal intensi-
ty to regions near the core of cerebral white matter).
The resultant radial position map is white in the inte-
rior, black on the exterior, and smoothly graded in
intensity across the cortical thickness. Thresholding
the radial position map at an intermediate intensity
level generates a segmented volume (Figure 5K)
whose boundary tends to run midway through the
cortical thickness, as can best be appreciated by view-
ing the segmentation superimposed over the struc-

tural MRI intensity volume (Figure 5L). The initial
segmentation is used as the substrate for generating
an explicit surface reconstruction.24

Error Detection and Correction

Topological errors (“handles”) in the initial segmen-
tation are typically attributable to noise, large blood
vessels, or regional inhomogeneities in the structural
MRI volume, or a combination of these. Errors are
localized by inflating the initial surface reconstruc-
tion to a highly smoothed ellipsoidal shape and using
the orientation of surface normals to identify “cross-
over” regions where the surface is folded over on
itself. Clusters of surface nodes associated with cross-
overs are mapped from the fiducial surface into cor-
responding voxel clusters in the volume. If the error
is a bridge across opposite banks of a sulcus (an “exo-
handle”), correction entails removing voxels from the
bridge. If, instead, the error is a hole in the white mat-
ter between two sulci, an “endohandle,” correction
entails adding voxels to the hole. The automated
error correction process tests for both exohandles and
endohandles in the vicinity of each location deter-
mined to contain an error. 

The localized patches used for these tests conform to
the shape of temporary segmentations that are based
on different threshold levels for the radial position
map. If the trial patch reduces the number of topo-
logical handles in the segmentation, as determined
from an Euler count applied to the volume,25 it is
accepted as a permanent correction and the process
moves on to the next error patch. The automated
error correction process sometimes fails, especially
for handles that are notably large or irregular.
Residual errors can be removed by interactive edit-
ing, which allows voxels to be added or removed one
at a time or in small clusters using dilation or erosion
steps within small masked regions. 

The processing time needed for automated segmen-
tation in SureFit is less than an hour for the initial
segmentation plus several hours for automated error
correction when run on an SGI Octane. Processing
times can be significantly faster on PC systems run-
ning Linux.

Mapping Geographic and Functional Data

Once a satisfactory segmentation is achieved, regions
of buried cortex are automatically identified. This
entails a combination of dilation, erosion, and vol-
ume subtraction operations to generate a volume that
includes sulcal but not gyral cortex. Nodes of the
reconstructed surface that intersect this sulcus-only
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volume are identified as buried cortex and are shad-
ed to provide a representation of sulcal versus gyral
geography (Figure 2E to J). 

The process of mapping fMRI data onto surface
reconstructions takes advantage of information about
local surface orientation. For each surface node, the
fMRI image volume is convolved with an ellipsoidal
filter centered on that node and oriented parallel to
the local surface tangent. The output values are con-
verted to RGB color values according to a predesig-
nated color look-up table and are stored in an
“RGB_paint” file format for viewing in SureFit or
Caret. In addition, the outputs are stored as scalar
values in a “metric file” format for subsequent visu-
alization and analysis in Caret.

Volume and Surface Specification Files

SureFit generates volume and surface specification
files at the end of the automated segmentation
process. The volume specification file lists the struc-
tural MRI volume, the segmentation files, and sever-
al key intermediate files. The surface specification file
includes both VTK file format (Visualization Tool
Kit26) and the Caret geometry file format (in which
node coordinates and node topology are stored in
separate files) as well as paint files that represent cor-
tical geography. This facilitates data entry into SuMS
as well as visualization and surface-based analyses in
Caret.

Caret

Surface Visualization

Caret includes numerous options for surface visuali-
zation, manipulation, and other surface-based analy-
ses. We illustrate some of these visualization capabil-
ities using a surface-based atlas for the macaque
monkey as an exemplar data set. 

The main Caret screen (Figure 6A) includes a surface
visualization window as well as menu options along
the top and a status display row along the bottom. The
initial step in loading data is to select an appropriate
surface specification file (using the “Open
Specification File” option in the File submenu shown
in Figure 6A). This brings up a dialog box (Figure 6B)
for choosing the subset of data files to be loaded.
Surface geometry is determined by selecting one
topology file and two coordinate files—one as the ref-
erence (REF) configuration and another as an auxiliary
(AUX) configuration. Other available file types are
grouped according to the type of experimental data. 

The specification file in Figure 6B lists four classes of
ancillary data—latitude-longitude files, paint files,
border files, and atlas files—that are described more
fully below. To facilitate the selection process, topolo-
gy files are identified as CLOSED, OPEN, or CUT,
and coordinate files are identified by their configura-
tion (FIDUCIAL, INFLATED, SPHERICAL, or FLAT).
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F i g u r e 5 (Opposite) Stages of cortical segmentation in SureFit. A, Coronal slice through occipital cortex in a human struc-
tural MRI volume. B, Intensity histogram for the image volume shown in A. Arrows indicate values for parameters used to
generate intensity-based probabilistic maps of cortical regions or boundaries. C, An intensity-based probabilistic map of the
inner boundary. This is based on a Gaussian intensity transformation: 

G(n) ∝ e
�(I(n) �Ipeak)2/�

2
low for I(n) < Ipeak and G(n) ∝ e

�(I(n) �Ipeak)2/�
2
high for I(n) > Ipeak

where I(n) is the intensity value for the nth voxel, Ipeak is an estimate of the most likely intensity value for the tissue type or
boundary, and the standard deviations �low and �high are related to the noisiness of the image data. D, Map of the magnitude
of the intensity gradient. E, The composite inner boundary map. One component of this composite map is the intensity-based
map of the inner boundary (C). Another component is derived by determining where the intensity gradient is intermediate
in magnitude (made explicitly by a Gaussian intensity transformation analogous to that in C) and pointed opposite to the
gradient of a probabilistic map of gray matter (not shown; also based on a Gaussian intensity transformation). A third com-
ponent selectively emphasizes regions near the crowns of gyri (where the underlying white matter is notably thin) by test-
ing for regions containing two gradient-based inner-boundary domains that are in close proximity but pointed in opposite
directions. F, Intensity-based map of the outer boundary. G, Map of the outer boundary in sulcal regions, based on evidence
for two inner boundaries that are pointed in opposite directions and are each displaced about one cortical thickness (3 mm
for human cortex) from the voxel being tested. H, The composite outer boundary map, derived from the intensity-based
outer boundary map (F), the sulcal outer boundary (G), and gradient-based cues analogous to those used for the inner
boundary. I, Binary map of cerebral white matter, based on thresholding the intensity volume and removing various non-
cerebral structures. J, A map of positions along the radial axis, generated by blurring both the inner and outer boundary
maps, normalizing the output by dividing the difference by the sum at each voxel, and assigning a maximal value to con-
tained in the interior of cerebral white matter (i.e., in an eroded version of the image shown in I). K, The initial segmented
volume obtained by thresholding the radial position map. L, The initial segmented volume superimposed on the original
intensity volume.



Additional information can be obtained by pressing
the query (“?”) button, which brings up information
in the file header, and by pressing the “List” button
for paint and border files, which shows the different
labels or categories contained in the file.

Once the selected data files are loaded, numerous
menu options are available for changing the surface
configuration, the viewing perspective, and the infor-
mation displayed on the surface or in relation to it. In
Figure 6A, the flat map configuration has been select-
ed (using the “AUX” toggle button), surface nodes
were painted to show cortical geography using the
“G” (geography) toggle button, surface tiles were
filled using the “Tile” toggle button, and latitude and
longitude isocontours were displayed using the “B”
(borders) toggle button.

The ancillary data shown in Figure 6A were generat-
ed using several of the data analysis options available
in Caret. The latitude and longitude isocontours were
generated by a process that requires a spherical map
to be loaded in the AUX configuration. The contour

points were then converted from the initial configu-
ration-specific three-dimensional coordinates to a
“border projection” file format. This allows contours
to be viewed in relation to any surface configuration
(e.g., the flat map in Figure 6A) by expressing con-
tour point locations in relation to the nearest tile (i.e.,
in “barycentric” coordinates27).

To generate the map of cortical geography shown in
Figure 6A, the sulcal pattern was initially represent-
ed by a map of folding (mean curvature) computed
for the fiducial surface but displayed on the flat map.
Border contours were drawn around the perimeter of
each sulcus as visualized on a flat map. Nodes
enclosed by one or another closed sulcal boundary
were automatically identified, and the assignments
were stored in a paint file that contains up to five sep-
arate categorical types of information for each node. 

Figure 7 illustrates several additional Caret visualiza-
tion options that facilitate comparisons between dif-
ferent surface configurations and different partition-
ing schemes. On the left (Figure 7,A and B) is the
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F i g u r e 6 A, The main Caret screen, showing a cortical flat map from the macaque surface-based atlas. The tear-off menu
on the upper left shows options available in the File menu. B, The File Selection dialog after a specification file for the macaque
surface-based atlas has been selected. Files listed in the specification file are displayed in appropriate categories. Default file
sections in each category are indicated by depressed buttons on the left. The currently loaded border file or border projection
file can be toggled on and off using the “B” (Borders) toggle button. Selection of the geography (“G”) toggle button colors
nodes according to the node identities and the color assignments contained in the currently loaded “area color file.”



Felleman and Van Essen14 areal partitioning scheme
for visual areas; on the right (Figure 7C and D) is a
probabilistic atlas based on the Lewis and Van Essen
areal partitioning scheme,18,28 with a few specific
areas identified (V2, V4, TE1–3). A blending option
allows the visual areas and the geography map to be
viewed concurrently. The probabilistic atlas was gen-
erated from architectonic maps of visual areas in five
macaque hemispheres by deforming them to the
macaque atlas (discussed below). In this grayscale
figure, brightness reflects the fraction of cases that
have the same areal identity at a given location; on
the Caret screen, different hues are used to discrimi-
nate the individual areas. 

An option for identifying nodes using the mouse cur-
sor (enabled using the “IDN” toggle button) provides
a useful way to assess relationships between different
configurations and to extract textual information
about each node. Selecting a node in one configura-
tion (e.g., the flat map) highlights that node when the
view is switched to other configurations or to a dif-
ferent node coloring scheme (white squares and
arrows in Figure 7A to D). In addition, the pop-up
Status Message window (Figure 7E) shows many
types of information about the selected node. This
includes the node identity plus its spatial location in
three different coordinate systems—three-dimen-
sional stereotaxic coordinates (if the fiducial configu-
ration is loaded in the REF configuration), Cartesian
map coordinates (if a standard flat map is loaded in
the AUX configuration), and latitude and longitude
(if a latitude-longitude file is loaded). Additional
information includes node attributes contained in the
currently loaded paint file (in this example, assign-
ments of cortical geography, lobe, functional area,
and modality) and atlas file (in this case, the areal
identity for each hemisphere contributing to the
probabilistic atlas).

Caret includes several data formats for visualizing
and analyzing fMRI and other spatially complex pat-
terns of neuroimaging or neuroanatomic data (cf.
Figure 2). Data types that can be assigned to nodes
and used to color the surface include RGB_paint and
metric files, which are generated by SureFit when it
maps fMRI data from an initial volume representa-
tion onto a surface. A file type that is particularly use-
ful for surface-based deformations is the “activation
file,” which is generated by applying an adjustable
threshold to the data in a metric file. Cell files repre-
sent data related to the spatial distribution of labeled
neurons or other discrete data. Cell files can be con-
verted to representations of cell density to facilitate
quantitative analyses of connectivity patterns. Foci
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F i g u r e 7 Visualization and identification of multiple
data types simultaneously loaded into Caret. A, The fidu-
cial configuration of the macaque surface-based atlas,
showing visual areas in the Felleman and Van Essen14 par-
titioning scheme. B, Flat map showing the same set of
visual areas. C, Probabilistic map of visual areas in the
Lewis and Van Essen28 partitioning scheme, shown on the
fiducial configuration. Brighter shading indicates a higher
fraction of cases associated with the same visual area
(which appear in color on the Caret screen). D, Flat map
showing the Lewis and Van Essen areas. In A through D,
a node in one of the temporal lobe areas was highlighted
(white square, which appears green on the Caret screen). E, The
pop-up Caret status message window, displaying infor-
mation about the highlighted node. The three-dimension-
al position represents the coordinates of the nodes in the
REF configuration (here, the fiducial surface). The two-
dimensional position represents the coordinates in the
AUX configuration (here, the flat map in Cartesian stan-
dard coordinates with the origin at the ventral tip of the
central sulcus). The latitude (�20.5 ) and longitude
(�101.9 ) represent values in the currently loaded latitude-
longitude file, which was previously generated using a
spherical map with areal distortions minimized and ori-
ented to the spherical standard coordinate frame (ventral
tip of the central sulcus at the lateral pole). The fourth row
displays information from the currently loaded paint file
(LOBE.TEMP signifying the temporal lobe; “???” signify-
ing no entry for that column of the five-column paint file).
The last row displays information from the currently
loaded atlas file. This contains five entries, only three of
which are shown here, indicating that the selected node is
an architectonic area TE1-3 in some but not all cases from
the atlas file data set.28 The data sets illustrated here can be
downloaded for viewing in Caret from http://stp.
w u s t l . e d u / s u m s / s u m s . c g i ? s p e c f i l e = 2 0 0 1 - 0 3 -
02.79O.R.LEWIS_VE_ON_ATLAS.spec.



files represent an alternative type of data related to
the centers of PET or other neuroimaging data. Data
points in foci files can be represented with associated
uncertainty limits reflecting individual variability
and spatial uncertainty in mapping data based on
stereotaxic coordinates.29

Caret also contains options for generating, visualiz-
ing, and saving various types of information about
surface geometry. These include representations of
mean curvature (folding), intrinsic (Gaussian) curva-
ture, distortion (AUX surface compared with REF
surface), and geometric cross-overs (creases or topo-
logical handles in the surface).

Modifying Surface Geometry

Caret includes numerous options for modifying sur-
face configuration (shape) or topology, or both, many
of which were used in generating the data shown in
Figures 2, 5, 6, and 7. These are grouped into six gen-
eral classes—smoothing, geometric projections or
transformations, contour-based reconstruction, auto-
mated flattening and distortion reduction, interactive
surface editing, and surface-based deformation.

■ Smoothing. Smoothing operations include conven-
tional smoothing (iteratively moving each node to
the average of its neighbors), targeted smoothing
(preferentially smoothing nodes that are highly
distorted relative to the reference surface), and
surface inflation (smoothing coupled with prefer-
ential expansion of nodes close to the center of
gravity, to accelerate the smoothing of highly con-
voluted surfaces). 

■ Geometric transformations and projections. Options
for geometric projection or transformation of sur-
faces include translation, scaling, rotation, and
mirror-reflection; projection of a surface radially
outward to a sphere or ellipsoid; and projection of
a sphere to a plane (by a topology-preserving
transformation if the sphere has a hole oriented
along the positive z direction). 

■ Surface reconstruction. Contour-based surface
reconstruction is used when the input data are a
series of section contours rather than pre-existing
surfaces generated by SureFit or other automated
volume segmentation and surface reconstruction
methods. Caret includes options for aligning indi-
vidual section contours and generating surface
reconstructions from the stack of aligned contours,
using the Nuages algorithm.30

■ Flattening. Automated flattening and distortion
reduction involves two main stages of processing.

In the first stage, the fiducial surface is reconfig-
ured by smoothing or geometric projection steps
to attain a spherical or flattened shape, depending
on the desired geometry. Multi-resolution morph-
ing is then applied to generate a minimally dis-
torted flat map or spherical map. In both cases, the
underlying algorithm10,11 involves resampling,
downsampling, and morphing (iterative applica-
tion of forces to each node to reduce distortions
relative to the fiducial configuration). Surface
resampling represents the initial reference and
auxiliary configurations with a hexagonal array of
nodes that are uniformly spaced in the auxiliary
configuration. Once resampled, a surface can be
downsampled (by deleting alternate nodes) to
generate progressively coarser representations of
the original shape. Multi-resolution morphing
starts at the coarsest level of resampling, and is
then reapplied after successive stages of upsam-
pling to a finer resolution. The cycle is repeated
until the overall distortions have reached an
acceptably low level. When Caret is run on an SGI
Octane, this takes several hours for a complete
human hemisphere.

■ Interactive editing. Interactive editing of surface
geometry includes a number of options—drawing
and applying cuts to the surface, deleting regions
that have been disconnected by cuts, repositioning
individual nodes, connecting or disconnecting
selected node pairs, and processing the modified
topology file to identify edge nodes and establish
a consistent orientation of surface normals.

■ Surface-based deformation. Options for surface-based
deformation in Caret allow the map (the source) to
be deformed to another (the target) while con-
strained by explicitly designated landmarks. The
algorithm for deforming flat maps was developed
by Joshi and Miller.15,21 Landmarks are drawn
along what the user judges to be corresponding
locations on the source and target maps. The land-
mark contours are resampled to establish corre-
sponding numbers of landmark points on each
source and target landmark contour. The land-
marks are then used as constraints for a two-dimen-
sional differeomorphic deformation algorithm. This
algorithm computes solutions to a transport equa-
tion in which the landmark matching is constructed
to minimize a running smoothness energy on the
velocity field. Additional data (as a coordinate file,
border file, or activation file) are carried passively
with the deformation. 

Spherical maps can be deformed using an algo-
rithm developed by Bakircioglu et al.17 The basic
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strategy is similar to that for flat deformations, but
it entails using Laplacian differential operators
constrained to the tangent space of the sphere and
basis functions that are expressed as spherical har-
monics. We have recently developed an improved
method that is based on landmark-constrained
smoothing and morphing of coordinates. As a
practical matter, landmarks can be drawn on flat
maps of the source and target hemisphere, where
visualization is easiest, then projected to the corre-
sponding spherical maps. Conversely, once defor-
mations have been applied to the spherical maps, it
is generally preferable to view the results on flat
maps (cf. Figure 2I and J).  

SuMS

The architecture of SuMS (Surface Management
System) comprises four main components:

■ A Java-based database structure designed specifi-
cally for cortical surface representations

■ A high-capacity, secure data cache capable of stor-
ing large amounts of data

■ A database manager (Sybase SQL Server) for coor-
dinating the file cache and database access

■ Search and retrieval capabilities using either a web
browser (WebSuMS) or the downloadable SuMS
Client software (a downloadable graphical user
interface that runs on Java-compatible platforms). 

For data entry it is currently necessary to use the
SuMS Client. For most purposes WebSuMS is the eas-
ier to use, but it does not yet include all the capabili-
ties of the SuMS Client.

Data Entry

Data entry in SuMS is a simple process in which the
names of the volume or surface specification files
intended for insertion are entered into the appropri-
ate dialog box in the SuMS Client. For successful data
entry, all files must be present in the directory loca-
tions listed in the specification file and the requisite
metadata must be included in the appropriate file
headers. Files generated using SureFit and Caret
(v4.3 or higher) automatically include this informa-
tion in the individual files or in the specification files.
At the outset of the data entry process, the metadata
for all files are checked for completeness, and
prompts are given if required information is missing.
A cross-checking process avoids duplicate insertion
of files and ensures that only new data sets are added
to SuMS. 

Data Search and Retrieval

WebSuMS provides several convenient ways to iden-
tify and download files of interest, starting from the
SuMS search page (http://stp.wustl.edu/sums/
sums.cgi), shown in Figure 8A). One option is to
enter the name of a particular volume specification
file or surface specification file into the appropriate
dialog box, if the name (or portion of the name) is
known. Another is to search for particular files using
one or more search criteria shown in the bottom half
of the window. 

A third option is to select View Atlases near the top
of the window. This brings up a list of four standard
specification files for the macaque and human atlases
(Figure 8B). Selection of the MACAQUE_ATLAS.
spec brings up the list of files shown in Figure 8C.
These can be downloaded as a group, then viewed in
Caret after the files are uncompressed. 

An even simpler and faster way to retrieve files is to
make a direct hyperlink connection to a particular
specification file in the database, starting from a sep-
arate application such as an online journal article,
PDF file, or e-mail message. For example, the data for
the individual hemisphere illustrated in Figure 2 can
be immediately accessed by a hyperlink connection
to the appropriate specification file (http://stp.wustl.
edu/sums/sums.cgi?specfile=Demo.L.full.jamia.Fig
2.spec). This directly links to a specification file con-
taining the relevant data files. Selecting the
“Download All” option downloads these files to the
desired directory in a single step. 

The search process in the SuMS Client is similar, but
is more flexible because it includes an intermediate
repository. The first stage is to choose a combination
of search criteria for identifying files of potential
interest and to initiate the search process. The second
stage is to view the results of the initial search and to
select any or all of these files for placement in a
search repository. The search repository is a listing of
files provisionally targeted for downloading. The
contents of the repository (akin to a “shopping cart”)
can be expanded by repeating the search process
using a different set of criteria. The third stage is to
select the final set of files from the search repository
and then to initiate the download process. 

Access Control

SuMS uses a security model based on the designation
of owners, readers, and writers for each file in the
database. This ensures that private data are protect-
ed, public data are freely available, and any data can
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be made available to some investigators (e.g., collab-
orators) but not others. This security scheme is flexi-
ble enough for any owner to allow access to restrict-
ed data sets on an individual-user or group basis. 

Discussion

Surface-based analyses have tremendous potential
for enhancing progress in understanding cortical
structure, function, and development in health and
disease. If widely adopted, the software tools
described here for computational cortical cartogra-

phy, along with related tools developed in other lab-
oratories, will aid in capitalizing on this potential.
The ultimate measures of progress will, of course, be
based on the actual scientific and medical discoveries
that benefit from surface-based analyses. 

In addition, several more proximate measures will be
of interest to monitor over the next several years.
These include the pace with which the neuroscience
community adopts cortical surface reconstructions as
a standard way to analyze and display experimental
results from individual subjects; adopts surface-
based atlases and probabilistic representations as
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F i g u r e  8 Screen displays using WebSuMS to access the SuMS database. A, The WebSuMS search page (http://stp.
wustl.edu/sums/sums.cgi) can be used to identify specification files in the SuMS database that meet whatever search crite-
ria are entered by the user. This can be a partial or complete name of a particular volume or surface specification file (top
rows) or a particular case from the currently selected species (macaque in this example) plus the option of adding criteria such
as key words in the comment section of any data file or in the data fields of paint files, border files, and cell files contained
in SuMS. B, The current listing of surface-based atlas specification files obtained by selecting the “View Atlases” menu but-
ton. C, The specification file obtained by selecting one of the macaque atlases (LEWIS_VE_ON_ATLAS.spec). The entire set
of files can be downloaded as a group, then viewed in Caret after being uncompressed. For WebSuMS, the user interfaces
with the SuMS Web Server via HTTP (HyperText Transfer Protocol) using standard HTML forms and scripts based on CGI
(Common Gateway Interface). For the SuMS Client, Remote Method Invocation (developed by Sun Microsystems) is used as
the interface with a JDBC (Java Database Connectivity) driver. One Java application or applet (the SuMS client in this con-
text) can call the methods of another Java application (the SuMS server) running on a different host machine.



general strategies for bringing experimental data into
register on a common substrate; adopts surface-
based coordinates as a concise and objective primary
metric for describing locations on the cortical surface,
to complement the use of Talairach stereotaxic coor-
dinates; and uses surface visualization software and
databases of surface representations as a supplemen-
tary option for assessing and visualizing experimen-
tal data associated with published studies. 

SureFit, Caret, and SuMS have been under develop-
ment in our laboratory for a number of years. How-
ever, they have only recently reached a state of matu-
rity that allows semi-automated execution of a com-
plete processing sequence, proceeding from primary
structural and functional data to data sets that are rep-
resented on cortical flat maps, transformed to surface-
based atlases, and stored in a database. Some of the
functionality of the SureFit/Caret/SuMS suite is cur-
rently unique, but most of its capabilities are shared by
one or more other brain-mapping software packages.
These include FreeSurfer,4,13 Brain Voyager,5,31 and
mrGray.6 It is useful to discuss briefly the key issues
involved in evaluating any of these packages,
although detailed analysis and comparison are outside
the scope of this discussion.

Segmentation and Surface Reconstruction

Two primary sets of issues are involved in evaluating
different surface reconstruction methods:

■ How robust, easy to use, and accessible is the soft-
ware for generating surfaces and mapping data
onto surfaces? 

■ How accurate are the surface representations and
how accurately are experimental data mapped
onto the surfaces? 

Structural image data obtained in neuroimaging and
neuroanatomic studies vary widely in overall quality.
This is attributable to differences in image contrast,
noise, and regional inhomogeneities arising from the
particular methods or devices used for image acquisi-
tion and from the individual subjects under study.
Accordingly, each method of segmentation should be
tested for its robustness and accuracy, using data sets
that span a wide range in quality. This has yet to be
done systematically, because of the newness of the
methods, the inherent complexity of the data, and the
lack of generally accepted standards for evaluation. 

One important metric is whether the segmenta-
tion/surface is topologically correct. Topological
errors (handles) are particularly deleterious for flat-
tening and subsequent processing stages, unless they

are small and outside the main region of experimen-
tal interest. Another important metric is spatial accu-
racy, i.e., how close the surface runs to the desired
target boundary. This is especially important if the
objectives of the experimental analysis are sensitive
to modest but systematic biases or to less frequent
but larger deviations from the desired trajectory.
However, assessment of spatial accuracy is inherent-
ly problematic, because a “ground truth” or “gold
standard” that precisely represents the target layer is
generally not available for structural MRI or cryo-
sectional image data. 

A reasonable alternative strategy is for one or more
expert anatomists to draw contours along the target
layer in a number of selected regions in which the tra-
jectory can be confidently estimated. The distance
from each point on the target contour to the nearest
point on a fiducial surface reconstruction can then be
determined and displayed as a histogram, and the dis-
tribution of errors can be expressed by measures such
as the error and standard deviation. If those who draw
the target contours are unaware of the results of any
particular segmentation, this approach can serve as an
objective basis for evaluating and comparing the per-
formance of different segmentation methods. 

Surface Manipulation: 
Flattening and Deformations

A number of methods are currently available for
generating cortical flat maps and spherical maps
from fiducial surface representations. Given that the
fiducial surface contains a complex pattern of intrin-
sic (Gaussian) curvature,29 significant areal distor-
tions are inevitable on any flat map or spherical map
representation. Nonetheless, it is desirable to mini-
mize these distortions and to quantify the magnitude
and distribution of residual distortions. 

Residual distortions can affect surface-based analy-
ses in two major ways. First, they affect visual
impressions about the relative sizes of different
regions and intracortical distances between regions.
This is analogous to how distortions on earth maps
affect impressions about the relative sizes of different
continents (e.g., Greenland vs. South America).
Fortunately, compensation for such perceptual biases
can be largely made by analyzing and reporting sur-
face areas and geodesic distances determined on the
fiducial reconstruction. 

Another problem is that surface-based warping from
one hemisphere to another can be affected by distor-
tions, especially if the pattern of distortions differs on
the source and target maps. This puts a premium on
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minimizing distortions on whichever surface configu-
ration (sphere or flat map) is used as the substrate for
surface-based deformations. Histograms of areal dis-
tortion for different surface nodes provide an objective
basis for comparing different flattening algorithms.

An inherent advantage of surface-based deforma-
tions is that the process respects the topology of the
cortical sheet in compensating for individual vari-
ability. For this reason, surface-based deformations
should in principle achieve substantially better regis-
tration than volume-based deformations, even if the
volumetric approach uses a very high-dimensional
parameter space to constrain the deformation. This
prediction is supported by initial comparisons of sur-
face-based vs. volume-based approaches to the regis-
tration problem.16,20 However, the issue is of suffi-
cient general importance that more extensive quanti-
tative comparisons are strongly warranted. 

As progressively more data are mapped to surface-
based atlases, it will be feasible to generate an
increasingly diverse and rich set of probabilistic rep-
resentations. One type of representation, relatively
close to the primary data, involves probabilistic maps
of fMRI activation patterns from multiple subjects
carrying out similar or identical behavioral tasks16

(see Figure 2 above). Given the enormous diversity of
behavioral tasks that have been or will be used on
multiple subjects in fMRI studies, the number of such
probabilistic maps is effectively open-ended.

Another type of representation, involving greater
abstraction from the data, involves probabilistic maps
of cortical areas whose boundaries are estimated from
functional, architectonic, or other types of experimental
data (cf. Van Essen et al.18). To the extent that most or
all cerebral cortex is in fact divisible into genuine, well-
defined subdivisions, it might be hoped that proba-
bilistic maps of cortical areas would converge toward a
single, consensual representation. However, a more
likely scenario is that numerous alternative partition-
ing schemes will remain in widespread use. This will
lead to a multiplicity of probabilistic maps based on
different schemes, different criteria used to deform
individual data sets to a surface-based atlas, or differ-
ent substrates used as the target surface-based atlas. 

Conclusion

These considerations emphasize the pressing need
for continued progress in several aspects of comput-
erized cortical cartography. One need is to develop
improved methods for evaluating the quality of reg-

istration of individual data sets to an atlas, on the
basis of objective measures that can be applied to a
diversity of data types. Another need is to improve
the methods for surface-based deformation. For
example, it is desirable to have hybrid methods that
combine aspects of the landmark-based approach
described here with approaches based on a continu-
ous valued representation as used by Fischl et al.16 A
third need is to enhance interoperability, so that sur-
face-based analyses for any given data set can easily
migrate from one software suite to another. This will
facilitate comparisons among data sets obtained in
different laboratories and will allow a more extensive
sets of analyses to be carried out on data sets of par-
ticularly broad interest. 

A fourth need is for ongoing enhancements in the
database infrastructure, for coping with the flood of
surface-related data. We believe that the SuMS data-
base described here has considerable promise as an
initial effort in this direction. If the concept is indeed
successful, however, it will need to be scaled up by
several orders of magnitude to cope with the esti-
mated 100,000 cortical surface reconstructions per
year that may emerge in this decade from brain-map-
ping efforts in basic and clinical laboratories around
the world.22 The advantages of bringing these data
under the umbrella of one or more databases will
become increasingly evident, just as it has in such
other scientific arenas as genomics and protein struc-
ture.32–34 This will impose substantial pressures for
increased data capacity, network speeds, and a rich-
er array of search capabilities.

The authors thank the many beta testers at Washington University
and elsewhere whose bug reports and constructive suggestions
have greatly helped to improve Caret, SureFit, and SuMS.
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