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Population genetic models play an important role in human genetic research, connecting empirical observations
about sequence variation with hypotheses about underlying historical and biological causes. More specifically, models
are used to compare empirical measures of sequence variation, linkage disequilibrium (LD), and selection to
expectations under a “null” distribution. In the absence of detailed information about human demographic history,
and about variation in mutation and recombination rates, simulations have of necessity used arbitrary models,
usually simple ones. With the advent of large empirical data sets, it is now possible to calibrate population genetic
models with genome-wide data, permitting for the first time the generation of data that are consistent with empirical
data across a wide range of characteristics. We present here the first such calibrated model and show that, while still
arbitrary, it successfully generates simulated data (for three populations) that closely resemble empirical data in
allele frequency, linkage disequilibrium, and population differentiation. No assertion is made about the accuracy of
the proposed historical and recombination model, but its ability to generate realistic data meets a long-standing need
among geneticists. We anticipate that this model, for which software is publicly available, and others like it will have
numerous applications in empirical studies of human genetics.

The search for inherited influences on human disease and the
effort to understand the history of human populations rely on a
detailed knowledge of human genome sequence variation. Popu-
lation genetic models serve as important tools in this quest. By
simulating variation under neutral evolution, they provide back-
ground expectations about genetic variation, for example, for the
frequency distribution of disease alleles and for patterns of link-
age disequilibrium. They also serve as a tool to evaluate evidence
for evolutionary selection, and to infer the history of popula-
tions.

A primary difficulty in using such models lies in deciding
which ones to employ. Given the complex history of human
populations and the wide variety of plausible model parameters,
as well as considerable uncertainty about how mutation and re-
combination rates vary, it is impossible rigorously to infer from
data a single “correct” model: The problem is badly underdeter-
mined. Until comparatively recently, in fact, genome-scale data
were scarce enough that they provided few constraints on mod-
els. As a result, a common practice in simulating human varia-
tion has been to use a set of simple models that are easy to
implement. The most basic model is the standard Wright-Fisher
neutral model of a freely mixing, constant-sized population, with
uniform rates of recombination and mutation across the ge-
nome. This model has been (and continues to be) widely used, as
have other simple models (e.g., island models).

Simple models have been of enormous utility as heuristics.
In some respects, they have also offered surprisingly good fits to
empirical data (see, e.g., Fig. 1C,D). As empirical data have accu-
mulated, however, disagreements between expectation and ob-

servation have become clear. Perhaps the most obvious discrep-
ancy occurs in predictions of linkage disequilibrium, the nonran-
dom association of nearby alleles (Frisse et al. 2001; Pritchard and
Przeworski 2001; Ardlie et al. 2002). Human heterozygosity
(given measured mutation rates) suggests an effective population
size (Ne) of 10,000 or perhaps 20,000. A simple version of the
standard neutral model with this size population and with mea-
sured recombination rates, however, predicts far less LD than is
observed (Fig. 1A,B) in most populations; the disagreement is
particularly severe for non-African populations. Despite its other
virtues, therefore, the standard neutral model is not a good
model of human LD, and simulations based on that model are
unlikely to have great utility for applications where LD is impor-
tant.

Given the prevailing ignorance about the details of human
demographic history, and because of the evident inconsistencies
between simple models and empirical data, working models of
human genetic variation are increasingly including a range of
additional features (Wakeley et al. 2001; Reich et al. 2002; Sabeti
et al. 2002; Wakeley and Lessard 2003; Wiuf and Posada 2003;
Akey et al. 2004; Anderson and Slatkin 2004; Marth et al. 2004);
the same is also true for studies of other species (Wall et al. 2002;
Tenaillon et al. 2004). Commonly used features include recent
population expansion, past bottlenecks, population structure,
and “hotspots” of recombination.

What have not been published to date, however, are models
that have been calibrated by comparison to many aspects of
large, multilocus empirical data sets. As a result, despite all of the
work done on modeling (much of it quite sophisticated), no tool
currently exists for creating simulated human genetic data that is
a good approximation to real, empirical data. It is to address this
lack that we have carried out the model calibration described
here. We have two goals in doing so: First, to create, for our and
others’ use, a simulation package that can produce realistic ge-
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netic data; and second, to encourage the development of similar
(and better) calibrated models.

Results
In order to carry out our simulations, we implemented a coales-
cent population genetic model (Hudson 1990) in software. Con-
ceptually, the program is similar to Richard Hudson’s widely used
program (Hudson 2002), but with one additional feature: The
recombination rate can vary (to any extent the user cares to
specify) within the locus being simulated. The simulation soft-
ware was validated by comparison with standard predictions of
the Wright-Fisher model. The program generates multimarker
haplotype data for large chromosome segments (500,000 to 1
million base pairs, Mb) and permits a wide range of demographic
histories for multiple populations (population splits, admixture,
changes in size, bottlenecks, and migration); a simple model of
gene conversion is also included. The simulation package can be
obtained from http://www.broad.mit.edu/∼sfs/cosi.

As the basis for calibrating our model, we used a set of em-
pirical observations from numerous genomic loci studied in
population samples from three continental regions: West Africa,
Europe, and East Asia (see Methods for details of the empirical
data sets used). Since our goal was to create simulated data that
simultaneously matches many aspects of empirical data, we com-
pared the results of simulation to a broad set of empirical mea-
sures: (1) the frequency distribution of alleles, (2) the relationship
between the frequency of an allele and the probability that it is
the ancestral allele (estimated for empirical data from the chim-
panzee allele), (3) a measure of the genetic distance between cur-
rent populations (FST), (4 and 5) two measures of the extent of
linkage disequilibrium (r2 and the fraction of marker pairs with
D� = 1), and (6) the total diversity (measured as heterozygosity, or
�). We used data from autosomal loci to tune the model param-

eters, and also compared model pre-
dictions to a second data set of X-
chromosome markers. To our knowl-
edge, no previous study has attempted
simultaneously to match this wide range
of statistics.

Since our simulated data are in-
tended for a variety of applications,
there is no single natural choice of a
metric for assessing how closely the
simulated results match empirical obser-
vations. We therefore adopted a simple
statistical framework that incorporated
all of our statistical measures. For each
measure (e.g., allele frequency, r2), we es-
timated the root-mean-square (RMS) de-
viation between simulated values and
the mean empirical value, calculating it
for each of the distributions shown in
Figure 2 (see Methods). Four of the mea-
sures (minor allele frequency, ancestral/
chimpanzee fraction, and the two LD
measures) contribute three distributions
each, one for each population; treating
each of the pairwise FST values as a sepa-
rate distribution, we have a total of 15
distributions. While the choice of this
particular combination of measures was

arbitrary, the goal of the procedure was to produce a model yield-
ing adequate simulations of all measures, making it useful for a
variety of applications. We compared the statistical uncertainty
(standard error on the mean, see Methods for details) of our train-
ing data set to the distance between the mean values of the pre-
diction and the empirical data. That is, our goal was to achieve an
agreement between the prediction and the data that was compa-
rable to the statistical uncertainty in a large empirical data set
such as ours; for this purpose, we set our threshold for acceptable
performance at 1.5 times the statistical uncertainty. As an overall
composite measure of statistical fit, we calculated the RMS error
(RMSE) for all 15 distributions together, normalizing each by its
empirical statistical uncertainty.

We started our calibrated model from what was essentially a
standard neutral model, modified to incorporate an “Out of Af-
rica” scenario for the origin of our three test populations. In the
base model, each population was a Wright-Fisher population of
effective size 10,000; dates for the splitting of the populations
were set to 3500 generations (before the present) for the separa-
tion between the African and non-African populations, and to
2000 generations for the separation of the two non-African popu-
lations (see Fig. 3). Predictions for this simple model, assuming a
constant recombination rate of 1.3 cM/Mb, matched the empiri-
cal data quite poorly (Fig. 2): the RMSE was 4.7, that is, the dis-
agreement between empirical measures and model prediction
was almost five times larger than the statistical uncertainty in our
empirical data set.

To this base model we introduced additional parameters and
tuned them until the overall match between simulation and em-
pirical data met our criterion. Where possible, we tried to make
choices that were demographically and biologically plausible.
The resulting parameters, however, represent a mechanism for
producing realistic-looking data, not an inference about the ac-
tual history of human populations or about details of recombi-

Figure 1. Fit of standard neutral model to empirical data. Comparison of simulated data under
standard neutral model to empirical data on autosomes. Error bars represent one standard error. (A,B)
Linkage disequilibrium (measured by r2 and D�) as a function of distance. (Solid line) Standard neutral
model; (squares) West African data; (triangles) European data. (A) r2 as a function of physical distance.
(B) D� as a function of genetic distance. (C,D) Genetic distance (FST) and allele frequency spectrum for
data and standard neutral model. (White) Data; (gray) model. (C) FST between European and West
African populations. (D) European allele frequency spectrum.
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nation rate variation. Since the potential search space among
many parameters is large, we took a stepwise approach: first
choosing a set of parameters to add to the model, optimizing
them by minimizing the RMSE, and then iterating the procedure
by adding further parameters until the model fit was acceptable.
At each step, fitting first used coarse step sizes (e.g., �2000 for
population sizes), and then finer ones, in an effort to avoid local
minima.

Beginning with the base model described above, we first
altered parameters that affect single-locus features of the data,
which are influenced only by demography (not recombination):
specifically, heterozygosity, allele frequency spectrum, fraction
of ancestral/chimpanzee alleles, and FST. Of these, we first fit the

West African allele frequency spectrum, since it is generally ac-
cepted that the human population originated in Africa, finding
that models with a historical population expansion resulted in an
improved fit to the data by increasing the fraction of low-
frequency alleles. Next, we considered the remaining single-locus
measures, and successively added parameters (primarily popula-
tion bottlenecks, but also small amounts of continuing migration
between populations, which served to reduce the genetic dis-
tances between populations) until the RMSE for the single-locus
measures was 1.15. That is, based solely on the characteristics of
single markers, the model fit the data nearly as well as the sam-
pling error within the empirical observations, and much better
than our base, standard neutral, model. Finally, the mutation

Figure 2. Comparison of best-fit model with empirical data, autosomes. Error bars represent one standard error. (A,B,C) Allele frequency spectrum.
(White) Data; (black) model. (A) West African. (B) East Asian. (C) European sample. (D,E,F) Fraction of alleles that are ancestral/chimpanzee, binned by
allele frequency. (White) Data; (black) model. (D) West African. (E) East Asian. (F) European. (G,H,I) Linkage disequilibrium (r2) versus physical distance.
(Points) Data; (line) model. (G) West African. (H) East Asian. (I) European. (J,K,L) Fraction of marker pairs with perfect LD (D� = 1.0) versus genetic
distance. (J) West African. (K) East Asian. (L) European. (M) Genetic distance (FST). (White) Data; (black) model.
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rate in the model was tuned to match the observed heterozygos-
ity (see Methods) (Sachidanandam et al. 2001).

We then turned to the recombination model. In order to
generate the considerable extent of LD seen in empirical data, we
held the demographic parameters fixed and introduced variation
in recombination rates, first by including observed large-scale
variation, as measured in the deCODE genetic map (Kong et al.
2002), and then by adding fine-scale variation, including local-
ized hotspots of recombination. The need for non-uniform re-
combination to obtain sufficient extent of LD is consistent with
a range of observations indicating non-uniform recombination
in the human genome (Jeffreys et al. 2001; Cullen et al. 2002;
May et al. 2002; Reich et al. 2002; Kauppi et al. 2003; Wall and
Pritchard 2003a,b; Crawford et al. 2004; McVean et al. 2004).

In total, approximately 2 billion coalescent trees were gen-
erated in the fitting process. The best-fitting set of parameters
(Table 1; Fig. 2) yielded good agreement with all aspects of the
observed data listed above. Agreement was not perfect: The RMSE
between predicted values and the mean empirical values was on
average 1.35 (that is, the disagreement was 35% larger than what
would be seen solely based on random sampling of the empirical
data). The agreement was, however, far superior to the discrep-
ancy of 4.7 found with the standard neutral model. We explored
the effects of re-estimating the parameters once all had been
added to the model (i.e., iterating the fit); we found further im-
provements of the fit to be negligible. To our knowledge, this is
the first time population genetic simulations have produced data
that agree with multiple aspects of empirical data from multiple
parts of the genome and in more than one population sample.

Having tuned our simulation, we next examined how well it
predicted aspects of the data not used in the tuning process. First,
we used the model to generate predictions for the same measures
as above, but for the X-chromosome instead of the autosomes.
We compared the results to an X-chromosome data set, derived
from the same population samples as the autosomal data. Results

for both our best-fitting model and the standard neutral model
are shown in Figure 4. The statistical power of this data set for
evaluating simulations is limited, but it is sufficient to demon-
strate that the calibrated model does perform visibly better than
the standard neutral model (RMSE = 0.97 for the best-fit model
vs. 1.51 for the standard neutral model). The smaller effective
population size of the X-chromosome (three-quarters that of the
autosomes) makes it a useful test of how well the simulation
models genetic drift, which is dependent on population size: The
effect of the smaller population can be clearly seen in the larger
genetic distances and the high fraction of X-linked markers that
are monomorphic. Second, we looked at how well the calibrated
model simulated haplotype blocks, contiguous stretches of chro-
mosome observed to have very low rates of historical recombi-
nation and low haplotype diversity (Fig. 4L,M). Again the model
performed very well (within the statistical limits of our ability to
measure it), and much better than the standard neutral model
(Phillips et al. 2003).

Finally, we show in Figure 5 an application of our calibrated
model to a study of human genetic variation, a search for evi-
dence of positive selection in a set of ∼100 genes (Walsh et al.
2005). The empirical data consisted of SNPs in and near genes
with a density of 1 per 4 kb, genotyped in samples from three
populations; since the three populations were similar to those
used in calibrating our model, simulation results could be com-
pared directly with data. Several statistics were calculated from
the genotype data as possible indicators for the occurrence of
selective sweeps around the genes; shown are the mean FST and
the mean heterozygosity for each population. While the distri-
butions differ between populations, in all three cases the agree-
ment with simulation is excellent. Since this is a neutral simula-
tion, there appears to be no need to invoke selective explanations
even for the outliers, at least for these statistics.

Discussion
We have described the development of a particular calibrated
model. Since this was not an exhaustive survey, it is certain that

Table 1. Parameters of best-fitting model

Variable parameters Best-fit model

Ne (ancestral) 12,500
Ne (African) 24,000
Ne (non-African) 7700
T (African expansion) (gens) 17,000
OoA bottleneck (F) 0.085
Asian bottleneck (F) 0.067
European bottleneck (F) 0.020
African bottleneck (F) 0.008
Africa ↔ Europe migration rate (per chromosome) 3.2 � 10�5

Africa ↔ Asia migration rate (per chromosome) 0.8 � 10�5

Recombination hotspot spacing (bp) 8500
Hotspot spacing shape parameter 0.35
Fraction of recombination in hotspots 88%
Gene conversion (initiation prob/bp) 4.5 � 10�9

Fixed parameters

Mutation rate (per base pair per generation) 1.5 � 10�8

Ne (post-agriculture) 100,000
T (out of Africa) (gens) 3500
T (Eur/Asia split) (gens) 2000
T (Asian agriculture) (gens) 400
T (European agriculture) (gens) 350
T (African agriculture) (gens) 200

Figure 3. Demographic model. N1: ancestral population size. (N2) Af-
rican population size. (N3) non-African population size. (Texp) Time of
ancestral population expansion (if any). Bottlenecks are indicated by con-
strictions. (Not shown: recurring migration between African and Euro-
pean populations, and between Asian and African populations.)

Calibrating a human coalescent simulation

Genome Research 1579
www.genome.org



better-fitting parameters can be found even within the same
model framework, and it is likely that a broad array of different
models would also perform acceptably. The model parameters,
therefore, do not represent inferences about real-world processes,
but values that happen to generate useful simulations. Neverthe-
less, our experience in developing our model suggests, but does
not prove, that some of its features are likely to recur in any suc-
cessful simulation. In particular, we found that substantially in-
creased coalescence in our non-African lineages was a necessary

component. Thus, our best-fitting model had a probability of
European coalescence of 22% (equivalent to a bottleneck with an
inbreeding coefficient of 0.22 relative to the source population)
(Reich et al. 2001); we were unable to find models in which this
parameter was outside the range of ∼0.20–0.25. More detailed
features of the model (e.g., migration rates, or the attribution of
inbreeding into population size and discrete bottleneck), on the
other hand, are likely to be quite variable between successful
models. Similarly, a substantial non-uniformity in recombina-

Figure 4. Comparison of best fit-model with empirical data, X-chromosome. Error bars represent one standard error. (A,B,C) Allele frequency
spectrum. (White) Data; (black) best-fit model; (gray) standard neutral model. (A) West African. (B) East Asian. (C) European sample. (D,E,F) Fraction of
alleles that are ancestral/chimpanzee, binned by allele frequency. (White) Data; (black) best-fit model; (gray) standard neutral model. (D) West African.
(E) East Asian. (F) European. (G,H) Linkage disequilibrium (r2) versus physical distance. (Points) Data; (solid line) best-fit model; (dashed line) standard
neutral model. (G) West African. (H) European. (East Asian omitted because of poor statistics.) (I,J) Fraction of marker pairs with perfect LD (D� = 1.0)
versus genetic distance. (I) West African. (J) European. (Points) Data; (solid line) best-fit model; (dashed line) standard neutral model. (East Asian omitted
because of poor statistics.) (K) Genetic distance (FST). (White) Data; (black) best-fit model; (gray) standard neutral model. (L,M) Fraction of sequence in
haplotype blocks of different sizes. (White) Data; (black) best-fit model; (gray) standard neutral model. (L) West African. (M) non-African (European +
East Asian).
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tion rate was required, but the specifics of how the non-
uniformity was implemented are not likely to be very meaningful.

The justification for this kind of model, therefore, is not that
it enables us to draw conclusions about human history. There
are, instead, two reasons for developing it. First, the ability to
produce realistic-looking data is itself useful, regardless of the
historical accuracy of the underlying model. It is true that there
are many applications for which simple models of human ge-
netic variation serve admirably. For many other applications,
however, it is important to be able to produce simulated data that
bear a close resemblance to empirical data. For example, simu-
lated data sets for comparing haplotype-phasing algorithms, or
for assessing the density of markers needed to provide good cov-
erage for disease studies, are only useful if they accurately reflect
LD patterns in human populations. In these cases, a calibrated
model is greatly preferable to something like the standard neutral
model, and the model presented here is already in use for study-
ing haplotype phasing. We anticipate that it (and similar models,
when they appear) will continue to be used, and will continue to
be refined as additional comparisons with empirical data are
made.

Second, while the model is unlikely to reflect accurately the
details of either demographic history or recombination, it does
represent one of the many models that is consistent with what is
currently known about human genetics. While it would be pref-
erable to have the true model, for many purposes it is better to
have one model that is consistent with data than to have none.
For example, consider the X-chromosome data presented earlier
(Fig. 4). In the absence of any model, or with only the standard
neutral model as guidance, there is no way to interpret the dif-
ferences between the X data and that from the autosomes. Are
the increased monomorphism in non-African populations and
the increased FST values to be expected from the smaller effective
population of the X, or are they suggestive of positive selection

acting on these loci? Given that our model, a randomly selected
instance drawn from the space of consistent neutral models, pre-
dicts such features, there seems little need to invoke selection.
Clearly, for more robust inference, especially in the case that
model and data disagree, a broad range of calibrated models
would be preferable, and we anticipate that such additional mod-
els will be developed in the near future.

Methods

Data sets
The autosomal data set (previously described in Gabriel et al.
2002) contained 3738 markers distributed in 54 regions across
the genome. The X-chromosome set contained 250 markers in 16
roughly equidistant regions; it excluded regions homologous to
the Y pseudoautosomal regions. For both sets, SNPs were selected
from TSC (The SNP Consortium) SNPs in dbSNP, the public SNP
database, without regard to genes or other genomic features. The
autosomal regions averaged 250 kb in length. Two of the X re-
gions were of comparable size, and the remainder were 80 kb in
length; LD measurements for the X sample were therefore con-
fined to distances <80 kb. All SNPs were genotyped in 31 parent–
offspring trios (93 individuals) of European ancestry from the
CEPH pedigrees, 42 unrelated individuals of Japanese and Chi-
nese origin, and 30 parent–offspring trios from Nigeria (Yoruba).
Gender was determined for Asian individuals by genotyping a
Y-linked SNP. Ancestral allele status was taken to be that found
by genotyping one chimpanzee (Pan troglodytes); chimpanzee al-
leles were not available for the X markers. Genotyping for the X
markers was as described in Gabriel et al. (2002).

Samples and genotyping for the genes shown in Figure 5 are
described in Walsh et al. (2005), as are the genes studied. Long
genes were broken into ∼120-kb regions, and the regions were
treated as independent; regions with <10 working SNPs were
dropped. The remaining set consisted of 52 regions in 40 genes.

Figure 5. Comparison of best-fit model with data: 52 gene regions. Here 40 genes are genotyped in three populations; long genes were subdivided
into smaller regions. The mean FST and heterozygosity are shown (black), and compared to the same measures for simulated data (gray); simulated
regions were 120 kb long with 30 � 10 SNPs per region. (A) Yoruba sample. (B) Chinese sample. (C) CEPH sample.
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Simulated regions were 120 kb in length and contained 30 � 10
markers.

Empirical measures
Allele frequencies and the fraction of ancestral/chimpanzee
markers were calculated only for markers for which both alleles
appeared somewhere in the three data samples. LD measures (D�

and r2) were calculated only for markers with a minor allele fre-
quency (MAF) >0.20. Statistical uncertainty for all autosomal
measures were estimated by bootstrap (random sampling of the
available regions, with replacement). Because two of the X re-
gions had a disproportionate number of markers, where possible
(allele frequencies and FST), X-based measures were calculated
separately for each region, and then means and variances were
calculated over the set of regions; for measures with too little data
in each region (ancestral/chimpanzee fraction and LD), bootstrap
estimates were used.

Simulation software
The simulation program implements a coalescent model, loosely
based on Hudson’s program (Hudson 1990), written in C. It gen-
erates an ancestral tree for a hypothetical data sample and ran-
domly places mutation on the branches. The coalescent simula-
tion was validated by comparison with standard predictions for a
constant-sized, neutral population (distribution of times to the
most recent common ancestor, allele frequency distribution, ra-
tio of external to total branch length). Two versions of the simu-
lation were written. A fast, two-locus version was used to opti-
mize model parameters, and the full-sequence version was used
for studying haplotype blocks and simulating gene loci; the latter
is being made publicly available. The demographic model for the
coalescent simulator is defined at run time via a parameter file;
any number of populations can be simulated, and any combina-
tion of population size, bottlenecks, splits or extinctions, admix-
ture, continuing migration between populations, and instanta-
neous or exponential changes in population size can be specified
by parameters. The local recombination map is defined in an
input file; our recombination model is implemented in a second
program, which is also driven by a parameter file.

Demographic model
All models were based on an ancestral population that split to
form a modern West African population and a Eurasian popula-
tion, which subsequently split into European and East Asian
populations. Dates of the splits were left fixed. All non-African
populations were given the same effective population size. Popu-
lation bottlenecks and changes in size were treated as instanta-
neous. Late expansion to a large size, roughly coincident with the
advent of agriculture, was included for the sampled populations
in all calibrated models, but had little effect on results; see Table
1 for the parameters used. X-chromosome simulations used the
same parameter values as autosomal simulations, except for pa-
rameters that are intrinsically different on the X-chromosome:
Population sizes, bottleneck intensities, and migration rates were
scaled for the smaller effective population size of the X-
chromosome, while regional recombination rates were drawn
from an X-based distribution, and were corrected for the lack of
recombination in males.

Recombination model
The recombination model was hierarchical. First, a regional rate
was chosen from the observed distribution of rates for these re-
gions, based on the deCODE genetic map (Kong et al. 2002). A
variable fraction of this recombination rate was distributed uni-
formly (the background fraction listed in Table 1); the rest was

clustered into hotspots. A local rate was drawn randomly from a
gamma distribution with a fixed shape parameter of 0.3, with a
mean equal to the regional rate; this additional variation is in-
cluded to model changes in recombination rate at scales of hun-
dreds of kilobases, which are smoothed out by the ∼2-Mb reso-
lution of the genetic map. The local rate was then used to create
individual hotspots. These had random spacing (gamma distri-
bution with shape and mean as variable parameters, listed in
Table 1) and random intensity (gamma distribution with fixed
shape parameter of 0.3 and with mean determined by the local
rate). Note that, in this model, most “hotspots” are weak and
closely spaced; only the high end of the distribution corresponds
to reported hotspots observed in human data. Gene conversion
was treated as a double recombinant, with a tract length of 0.5
kb, parameterized by a (uniform) probability of initiation.

SNP ascertainment
When simulating genotype data, accurate modeling of the ascer-
tainment process for the markers is essential. The SNPs in our
data sets (all from TSC) were ascertained (Sachidanandam et al.
2001) by two methods, alignment of whole-genome shotgun
(WGS) reads and alignment of reduced-representation (RRS)
reads, both with the public genome sequence; in each case reads
were drawn from an ethnically mixed pool of 48 chromosomes
(Collins et al. 1998). WGS ascertainment (60% of all SNPs) was
modeled as the comparison of a single pair of chromosomes,
while RRS ascertainment (40%), which involved multiple over-
lapping reads at the same locus, was modeled by comparison of
four chromosomes to a single reference chromosome. In practice,
the only difference created by the two ascertainment schemes
was a modest shift toward lower allele frequency for the RRS set.
A pool of ascertainment chromosomes was included in the coa-
lescent simulation, but withheld from the simulated output data.
Ascertainment chromosomes were selected at random from the
sampled populations, with the probability of selection based on
the ethnic composition of the discovery resources (known in the
case of the NIH panel, estimated based on allele frequencies in
the case of the public genome); the fraction of chromosomes
identified by the NIH as Native American was treated for this
purpose as Asian (the effect of this approximation was tested by
explicitly modeling a Native American population, and was
found to be negligible). Different ascertainment chromosomes
were selected every 500 bp (the approximate length of a TSC
sequence read) for one chromosome and every 150,000 bp (the
approximate length of a Human Genome Project clone insert).
All sites that differed between the ascertainment chromosomes
were defined to be identified polymorphisms. These comparisons
also provided a measurement of heterozygosity, which was used
to set the overall mutation rate in the model; the rate was set so
that the simulated heterozygosity matched that measured by the
TSC project using the same methodology (Sachidanandam et al.
2001). When simulating our empirical data sets, markers were
randomly dropped from the simulation to match the mean
marker density and the distribution of marker spacing in the
empirical data.

Sensitivity to details of ascertainment modeling was tested
by (1) varying the source-population composition of the public
genome model by �20% for each population, and (2) carrying
out the simulation with only 1� or only 4� coverage. Variation
in the source population, and keeping all model parameters
fixed, resulted in RMS deviations of 1.36–1.40 (vs. 1.35 for the
original model), and incorrectly specifying the coverage resulted
in deviations of 1.39 and 1.45. Such modest changes—all results
met our threshold requirement for acceptable results—suggest
that details of the ascertainment model are not of great importance.
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Parameter fitting
Model parameters were optimized by grid searches over two to
four parameters at a time. Goodness of fit was evaluated by cal-
culating the total RMS discrepancy, �tot, between predicted val-
ues and the empirical means:

�tot =� 1
15 �

i=1

15

�i
2

where �i is the RMSE for one of the 15 distributions (1 per popu-
lation for r2, D�, allele frequency spectrum, and fraction ances-
tral/chimpanzee; and 1 for each of the three genetic distances). �i

is defined as

�i =�1
n �

j=1

n
�Xij − Xij�

2

� Xij

2

where Xij is the model’s predicted value for the j-th bin of the i-th
distribution, Xij is the empirical mean for the same value, �2

Xij
is

the standard error on the empirical mean, and the sum runs over
the n bins in the distribution i. Note that, with these definitions,
�tot calculated from a random resampling (rather than from
model predictions) of the empirical data is 1.0.

Not all parameters were of equal importance in the model.
Setting the three least important parameters (the migration rates
and the African bottleneck) to zero yielded agreement only
slightly worse than our threshold value (1.55 times the standard
error). In contrast, eliminating bottlenecks in the non-African
lineages (whether supplied by an explicit bottleneck or by a small
population size) produced discrepancies at least a factor of 2
larger than those seen in the full model. In the recombination
model, eliminating either the regional variation or the discrete
hotspots produced roughly the same loss of performance (dis-
crepancy ∼2.7).
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