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In the attempt to understand human variation and the genetic basis of complex disease, a tremendous number of
single nucleotide polymorphisms (SNPs) have been discovered and deposited into NCBI’s dbSNP public database.
More than 2.7 million SNPs in the database have genotype information. This data provides an invaluable resource
for understanding the structure of human variation and the design of genetic association studies. The genotypes
deposited to dbSNP are unphased, and thus, the haplotype information is unknown. We applied the phasing method
HAP to obtain the haplotype information, block partitions, and tag SNPs for all publicly available genotype data and
deposited this information into the dbSNP database. We also deposited the orthologous chimpanzee reference
sequence for each predicted haplotype block computed using the UCSC BLASTZ alignments of human and
chimpanzee. Using dbSNP, researchers can now easily perform analyses using multiple genotype data sets from the
same genomic regions. Dense and sparse genotype data sets from the same region were combined to show that the
number of common haplotypes is significantly underestimated in whole genome data sets, while the predicted
haplotypes over the common SNPs are consistent between studies. To validate the accuracy of the predictions, we
benchmarked HAP’s running time and phasing accuracy against PHASE. Although HAP is slightly less accurate than
PHASE, HAP is over 1000 times faster than PHASE, making it suitable for application to the entire set of genotypes

in dbSNP.

[The sequence data from this study
vs:3:4136.1-vs:3:835194.1, sh:3:142355.1-sh:3:5247813.1]

Many risk factors for human disease are accounted for by varia-
tion in DNA sequence (Carlson et al. 2004). The most common
type of human sequence variation consists of differences in in-
dividual base pairs termed single nucleotide polymorphisms
(SNPs) (Wang et al. 1998; Cargill et al. 1999; Halushka et al.
1999). It has been estimated that there are about 7.1 million
common biallelic SNPs with a minimum minor allele frequency
of 5%. These SNPs appear, on average, once every 450 bp (Krug-
lyak and Nickerson 2001). In recent years, a tremendous number
of single nucleotide polymorphisms (SNPs) have been discovered
and deposited into NCBI's dbSNP public database. Today, dbSNP
contains information for over 10 million human SNPs with over
5 million of them validated. More recently, a significant amount
of genotype data has been deposited as well. More than 2.7 mil-
lion human SNPs in the database have genotype information.
This data resource consists of 286,757,371 genotypes over 3285
individuals split into 417 data sets. The database contains two
whole-genome human variation maps, one deposited by the
HAPMAP project (The International HapMap Consortium 2003)
and the other deposited by Perlegen Sciences (Hinds et al. 2005).
The database also contains a significant amount of sequenced
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have been submitted

to dbSNP under accession nos. phs3.l,

gene data from the Environmental Genome Project (Livingston
et al. 2004) and the SeattleSNPs (Crawford et al. 2004) project in
addition to many other smaller data sets. This data is an invalu-
able resource for understanding the haplotype structure of hu-
man variation and the design of effective genetic association
studies for understanding the genetic basis of complex diseases.
Each data set has different properties in terms of the number of
individuals genotyped, average SNP density, genome coverage,
and types of genomic regions covered. Analysis of multiple data
sets with different properties genotyped over the same region in
the human genome can reduce the bias of any inferences to the
specific properties of a data set.

Alleles of SNPs that are physically located in close proximity
to each other on a chromosome are often correlated (i.e., in
“linkage disequilibrium”) with each other. Thus, within most
short regions, there is limited genetic variability, and only a small
number of allele sequences (haplotypes) exist in a population. In
a typical region or “block of limited diversity,” three or four
common haplotypes often account for at least 80% of the se-
quence variation in a population (Daly et al. 2001; Patil et al.
2001; Gabriel et al. 2002). The haplotype structure of a given
region depends on evolutionary and population genetic factors
such as mutation and recombination rates, selection, and popu-
lation history.

Obtaining the haplotypes and partitioning the region into
blocks of limited diversity are the first steps for many types of
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analysis of human variation. However, since humans are diploid,
haplotype (or phase) information is not immediately available.
Therefore, the construction of haplotypes from the diploid geno-
type information (i.e., phasing the genotypes) requires statistical
inference or the financially prohibitive collection of extended
pedigrees. Consider, for example, two SNPs lying on the same
chromosome, both with alleles A and G. If both SNPs are ob-
served as heterozygous, it is unclear whether one chromosome
contains allele A at both loci and the other chromosome contains
allele G in both loci, or whether one chromosome contains allele
A at the first locus and allele G at the second locus and the other
chromosome contains alleles G and A, respectively (Fig. 1). In
order to overcome this problem, many computer programs have
been designed to estimate and assign phase from diploid geno-
type data (Stephens et al. 2001; Niu et al. 2002; Halperin and
Eskin 2004). In order to compute the full set of haplotypes for
dbSNP, we used HAP (Halperin and Eskin 2004), a phasing pro-
gram that determines haplotypes by exploiting the correlation
between SNPs in physical proximity due to linkage disequilib-
rium using a genealogy based model (perfect phylogeny) (Hud-
son 1991). HAP is able to process up to 40,000 SNPs at a time,
allowing for phasing and partitioning into blocks the 286 million
genotypes in the dbSNP database in less than 24 h on a 30-CPU
cluster. We benchmark both the accuracy and running time of
HAP using mother-father-child pedigrees from the HAPMAP data
and compare with the PHASE phasing method (Stephens et al.
2001). The error rate of HAP is about 0.81% (estimated for the
CEU population of the HAPMAP), which is slightly less accurate
than PHASE. However, our benchmarks show that PHASE is sev-
eral orders of magnitude slower than HAP, and therefore, it ap-
pears that applying PHASE to the entire database is computation-
ally infeasible.

Since many of the data sets were originally mapped to dif-
ferent human genome builds, reconciling the original data sets
and mapping them to a common genome build is a very time-
consuming task. One of the main contributions of this study is
the organization of the data sets in a way that corrects for errors
in the strand and physical location annotations of the SNPs sub-
mitted to dbSNP. Through dbSNP, researchers can easily access
all public genotype and haplotype data in their regions of inter-
est. For example, researchers interested in the ABO gene can eas-
ily obtain haplotype and genotype data from data sets including
the HAPMAP, Perlegen, and SeattleSNPs. By comparing multiple
data sets, we perform a preliminary analysis to estimate the sig-
nificance of the effect of SNP density on the inferred haplotype
and block structure in a short region. By combining high-density
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Figure 1. A genotype for five SNPs (left) and two possible phasings of
the genotype into pairs of haplotypes (right) demonstrating the inherent
ambiguity of haplotype phasing. Each SNP has possible bases of “A” and
“G"”. “A” and “G” positions in the genotype represent homozygous
genotypes at a particular SNP, and an “H” position represents a hetero-
zygous genotype at a particular SNP. From only the observed data, it is
impossible to determine which haplotype phasing is correct.

data from Seattle SNPs and the Perlegen data sets in the same
individuals, we show how the numbers of haplotypes in the
blocks defined by the Perlegen data set are underestimated by a
factor of 3.6. These differences illustrate the advantage of exam-
ining multiple data sets when inferring human variation struc-
ture.

We also infer the chimpanzee reference sequence corre-
sponding to each human haplotype block by mapping all of the
SNPs typed to the UCSC BLASTZ alignment of the human and
chimpanzee genomes. We use this data to compute how often
the reference sequence matches a common haplotype in the Per-
legen whole-genome data set. These sequences are also available
for download from dbSNP.

The haplotype and genotype data in dbSNP is a valuable
resource for researchers planning to perform genetic association
studies. Using the multiple data sets, the researchers can obtain a
clearer picture of the haplotype structure and make more in-
formed choices on which SNPs to genotype in a planned asso-
ciation study. The haplotypes, block partitions, and tag SNPs
discussed in this study have been deposited into dbSNP (acces-
sion nos. phs3.1, vs:3:4136.1-vs:3:835194.1, sh:3:142355.1-sh:3:
5247813.1) and can be accessed at http://www.ncbi.nlm.nih.
gov/projects/SNP/.

Results

Data description

The human portion of the dbSNP database contains 286,757,371
total genotypes from 3285 individuals over 2.7 million SNPs par-
titioned into 417 data sets. A total of 835 of the individuals have
genotypes from two or more data sets. The CEPH families, for
example, were used in several different genotyping studies.

Two whole-genome data sets compose 94.2% of the geno-
types, i.e., the HAPMAP data set that contains 159,862,776 geno-
types taken from four populations consisting of a total of 270
individuals over 954,302 SNPs, and the Perlegen data sets that
consist of 110,385,051 genotypes taken from three populations
consisting of a total of 71 individuals over 1,576,578 SNPs. In
addition to these data sets, there are an additional 16,509,544
genotypes from other data sets. dbSNP contains a significant
amount of genotypes derived from sequenced data, including the
SeattleSNPs (PGA/UW) data and the Environmental Genome
Project (EGP) sequenced genes. The Seattle SNPs consists of
573,194 genotypes of 48 individuals taken from two populations,
in which 15,981 SNPs were genotyped in a total of 177 sequenced
genes. The Environmental Genome Project (EGP) sequenced
genes contains 3,184,170 genotypes over 37,737 SNPs in a total
of 304 sequenced genes in 90 individuals. The 48 individuals in
SeattleSNPs are the same individuals as the ones genotyped for
the Perlegen data. Some of these data sets contain a much larger
number of individuals, such as the SNP Consortium (TSC) Celera
CEPH data set containing 691 individuals and a data set from
Perlegen containing 655 individuals from Mexico City. Others
data sets contain many populations, such as the TSC data set
containing 17 populations. Table 1 summarizes the contents of
the largest 10 data sets contained in dbSNP.

Since many of the original data sets were released at differ-
ent times, the data sets were mapped to different human genome
builds, and the genome positions listed for the SNPs are not
necessarily compatible between different data sets. In dbSNP,
each genotype is mapped to the human genome, consistent with
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Table 1. Summary of genotype data contained in dbSNP
Average SNP
Data set Genotypes SNPs Populations Individuals density Reference
HAPMAP 159,862,776 954,302 4 270 3149 (International HapMap Consortium 2003)
PERLEGEN 110,385,051 1,576,578 3 71 1938 (Hinds et al. 2005)
Affymetrix 6,189,466 125,778 6 116 24,029 (Kennedy et al. 2003)
TSC 4,932,382 19,048 17 1963 312,754 (International SNP Map Working Group 2001)
EGP 3,184,170 37,737 1 90 72,443 (Livingston et al. 2004)
PGA/UW 573,194 15,981 2 47 153,861 (Crawford et al. 2004)
IIPGA 176,162 3801 3 47 430,361 (Innate Immunity PGA, http://innateimmunity.net/)
NIHPDR 159,549 1982 12 448 1,419,125 (Collins et al. 1998)
WICVAR 33,240 1462 1 130 2,011,277
HG_BONN 24,522 320 1 143 5,284,550 (Freudenberg-Hua et al. 2003)

“The NIHPDR data contains a single mixed population.

the latest available build providing a common mapping of SNPs
across data sets. Fach genotype data set in dbSNP contains refer-
ences to the dbSNP identifier for each genotyped SNP. Any strand
or mapping errors corrected for a SNP are propagated to all geno-
type data sets containing that SNP.

Since many of the data sets contain information on the
same SNP for the same individual, we can measure the amount of
discrepancy in the genotype calls between the data sets. In par-
ticular, 996,553 of the recorded SNPs contain information from
two individuals or more, corresponding to a total of 19,719,200
specific SNPs in individuals that have information from at least
two data sets. We consider the set of SNPs in individuals with
information from two or more data sets where at least two of the
genotype calls are not missing. Within this set, 33,076 SNPs have
at least one individual with different genotype calls from differ-
ent data sets. A total of 216,625 (1.1%) specific SNPs in individu-
als contain differing genotype calls.

We applied HAP to all of the genotypes in dbSNP by phasing
each data set separately. Whenever available in dbSNP, we used
the mother-father-child pedigree to increase the accuracy of the
phasing. The haplotypes were partitioned into blocks of limited
diversity so that five haplotypes covered at least 80% of the total
number of haplotypes. A set of tag SNPs was chosen to minimize
the number of SNPs needed to distinguish between the common
haplotypes of each block (Zhang et al. 2002). The full phasing of
dbSNP, partitioning all of the haplotypes in blocks of limited

diversity, and determining a set of tag SNPs took under 24 h on
a 30-CPU cluster. Table 2 summarizes the block partitions and
the number of tag SNPs for each data set.

Within dbSNP, the complete set of genotypes mapped to the
correct positions in the genome are available for download along
with the haplotypes, block partitions, and tag SNPs resulting
from this study. The data is available in multiple formats includ-
ing XML, allowing the data in dbSNP to be easily integrated into
other databases.

Haplotype coverage

The combined set of haplotypes in dbSNP provides a significant
amount of coverage of the genome. We measure coverage by two
criteria, i.e., minimum gap length and depth. A region is consid-
ered covered by a data set at a minimum gap length if the inter-
SNP distances are below the minimum gap length. The depth of
a data set is defined as the number of individuals for whom
haplotypes are available in the region. Given a depth value and a
minimum gap value, the coverage is the percentage of the ge-
nome covered by haplotypes with the minimum number of in-
dividuals and with a minimum gap between SNPs.

The coverage of the HAPMAP and Perlegen data as well as
the combined two data sets is shown in Table 3. As can be seen
from the table, the HAPMAP and Perlegen data sets provide ex-
cellent coverage for minimum gap lengths of 10 kb and more, but

Table 2. Summary of block partitions and tag SNPs for the largest six data sets in dbSNP
Number of Number of Number of Number of Number of Avg. block Number tag

Data set Population genotypes SNPs individuals blocks tag SNPs length (kb) SNPs per kb
HAPMAP CEU 84,727,965 954,302 90 73,986 179,351 30.7 0.079
HAPMAP HCB 18,443,054 411,568 45 41,381 94,583 40.2 0.057
HAPMAP JPT 18,030,239 411,627 44 20,671 31,466 41.8 0.054
HAPMAP YRI 38,661,518 431,505 90 67,111 157,287 21.5 0.109
PERLEGEN Afr 35,568,060 1,569,392 23 235,139 569,182 9.1 0.267
PERLEGEN Asi 37,417,872 1,572,384 24 86,636 211,972 26.9 0.090
PERLEGEN Eur 37,399,120 1,570,560 24 109,212 274,153 21.8 0.115
Affymetrix Afr 885,135 125,776 20 24,526 40,050 44.1 0.037
Affymetrix Cau 1,534,726 125,778 20 27,561 47,957 37.2 0.047
Affymetrix Asi 884,091 125,772 20 20,671 31,466 54.5 0.028
Affymetrix CEPH 50 30 3 18,453 26,018 62.9 0.022
Affymetrix PDpanel 2,869,641 125,776 24 35,048 67,154 26.11 0.073
Affymetrix APE 15,823 9027 2 6253 6262 5.9 0.170
TSC ALL 4,932,382 19,048 1963 31,886 46,789 21.8 0.075
EGP ALL 3,184,170 37,737 90 3847 6643 2.9 0.590
PGA/UW Afr 363,643 15,981 24 2833 5375 1.26 1.503
PGA/UW Eur 209,551 9525 23 1086 2378 3.6 0.359
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Table 3. Coverage of whole genome data sets in dbSNP

Minimum gap

Data set 1 kb 5 kb 10 kb 20 kb 50 kb

HAPMAP 3.56% 54.50% 85.13% 89.52% 90.46%
PERLEGEN 10.79% 48.69% 63.06% 78.07% 88.24%
Combined 15.12% 72.70% 87.51% 90.02% 90.84%

The Perlegen data set contains 71 individuals and the HAPMAP contains
270 individuals.

they give poor coverage for minimum gap lengths of 1 and 5
kb—for a minimum gap length of 5 kb, they only cover about
50% of the genome. When the two data sets are combined with
the remaining data sets of dbSNP, the coverage significantly in-
creases for the minimum gap lengths of 1 or 5 kb. In addition, the
remaining data in dbSNP provides higher coverage of the ge-
nome at higher depths, since the Perlegen data set has 71 indi-
viduals and the HAPMAP data has 270 individuals. The coverage
of the haplotypes in dbSNP is summarized in Table 4.

Haplotype structure and genotype density

We observe that the number of blocks and tag SNPs in the high-
density sequence data is much higher than in the corresponding
HAPMAP or Perlegen data sets. This shows that there is a consid-
erable amount of information loss when the data is sampled
every 5 kb, such as in the HAPMAP data set. We examined 41
blocks in the Perlegen data set that overlapped with SNPs typed
in the Seattle data set. Figure 2 shows an example of such a
region. There are 91 common haplotypes over the Seattle indi-
viduals on these SNPs. We then added in the additional Seattle
SNPs typed on the blocks and re-examined the haplotypes for
each individual. From the 91 original common haplotypes, 369
haplotypes were found with 72 common ones. On average, 1.2
common haplotypes were created for every original common
haplotype, and 30 of the original haplotypes were split into only
rare haplotypes. One may hypothesize that this is due to the rare
SNPs in the Seattle data. However, we performed the same analy-
sis using only Seattle SNPs with a minor allele frequency of 10%
or greater. The 91 original haplotypes were split into 330 haplo-
types with 73 common ones. On average, each original common
haplotype was split into 1.16 new common haplotypes, and 28
common haplotypes were split into only rare haplotypes when
the Seattle SNPs were added. The haplotype blocks and common
haplotypes found by examining only the Perlegen data are sig-
nificantly different from those found over the same individuals
in the Seattle data. This type of analysis allows us to measure how
much common variation is missed in the whole-genome data
sets and demonstrates the utility of the analysis of multiple geno-
type data sets.

Chimpanzee reference alleles

We used the BLASTZ alignments of the human and chimpanzee
genomes from the UCSC Genome Browser to determine the
chimpanzee reference allele corresponding to each human SNP.
For each human haplotype block found, we examined the chim-
panzee allele corresponding to each SNP in the human haplotype
block. These chimpanzee reference allele sequences can serve as
outgroups or starting points in determining human haplotype
phylogeny. We examine the relation between the common hap-
lotypes and the chimpanzee reference alleles. For each block in

the Perlegen data, we compare each common haplotype with the
chimpanzee reference alleles. We observe that in 73.4% of the
blocks, the chimpanzee reference allele matches a haplotype
from the Perlegen data set with frequency >5%.

Haplotype accuracy benchmarks

Since the haplotypes are obtained by statistical inference, a natu-
ral concern is that the results of analysis of this data may be
biased due to errors in the inference. The accuracy of HAP has
previously been tested on various regions of the genome (Eskin et
al. 2003; Halperin and Eskin 2004) and it has proven to phase
correctly 97% of the heterozygous SNPs, which is comparable in
accuracy to other established methods. We performed a large-
scale benchmarking of HAP over data collected in the HAPMAP
project to obtain an estimate of the error rate for phasing unre-
lated individuals. The error rate for phasing related individuals
has been shown to be very low in a recent benchmarking study
performed by the HAPMAP analysis group (J. Marchini, D. Cutler,
N. Patterson, M. Stephens, E. Eskin, E. Halperin, S. Lin, S. Qin, G.
Abecassis, H. Munro, et al., in prep.). We use mother-father-child
pedigree information to measure the inference of haplotypes
over the parents treating them as unrelated and then compare
these predictions to what can be inferred from the pedigrees. The
error rate of HAP for unrelated individuals is only 0.81% in the
CEU population from the HAPMAP project, which is on the order
of the amount of missing genotypes in the region. In addition,
the haplotypes inferred from the whole-genome variation data
sets are consistent with the haplotypes inferred from the high-
density data sets obtained from resequencing studies. The accu-
racy and consistency of the haplotypes appear to minimize this
concern.

HAP error estimation

In order to benchmark the accuracy of the predicted phase, we
considered 5000 SNPs obtained from the HAPMAP CEPH data.
This set consisted of 50 randomly chosen regions containing 100
SNPs. The data set contains 30 mother-father-child trios from
families in Utah with European ancestry. We used the trios to
resolve haplotypes for heterozygous SNPs whenever Mendelian
genetics determines the phase. We then phased only the 60 par-
ents, excluding the children from each of the trios, thus resulting
in a set of 60 unrelated individuals. Among 300,000 genotypes in
the parents, 82,314 (27.4%) are heterozygous and 65,463 (21.8%)
can be resolved into haplotypes using the trio information. The
predictions for the parents’ genotypes treating them as unrelated
are then compared with the haplotypes resolved using trios.
We evaluated the benchmark on both HAP and the widely
used phasing algorithm PHASE (Stephens et al. 2001). We also

Table 4. Coverage of combined data sets in dbSNP

Minimum gap

Depth 1kb 5kb 10 kb 20 kb 50 kb
1 15.62%  73.02%  87.60%  90.09%  90.89%
10 15.61%  73.01%  87.60%  90.08%  90.88%
50 15.48%  72.68%  87.22%  89.70%  90.48%
100 4.73%  28.84%  36.49%  37.49%  37.73%
200 3.23%  20.75%  26.67%  27.37%  27.51%
300 1.36% 8.51%  10.53%  10.72%  10.75%
350 0.62% 4.11% 5.14% 5.23% 5.26%
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SEATTLESNPS AND PERLEGEN PGA | PERLEGEN
HAPLOTYPES COUNTS| COUNTS
A|c|c|al|a|T|I|T|G|CG|G| 27 37
A|c|c|a|Dp|T|I|T|G|CG|G| 7 37
Alc|c|alalg|I|T|G|G|G]| ! 37
A|lc|c|alalT|I|T|G|A|G| ! 37
A|c|c|a|Dp|T|D|T|G|G|G| ! 37
G|(c|c|a|a|T|I|T|G|G|G| 5 9
g|c|c|c|la|T|I|Cc|T|G|a| 4 9
Alc|T|Aa|D|T|I|T|CG|G|Aa]| ! 1
Gg|T|c|c|Aa|T|I|Cc|T|G|G]| ! 1

Figure 2. A region of chromosome 6 from position 161122860-
161124861 showing the comparison of the Perlegen whole-genome
data set with the SeattleSNPs data set in build 123 of dbSNP containing
SNPs rs783145, rs4252128, rs4252129, rs4252130, rs4252131,
rs4252132, rs4252133, rs4252134, rs4252135, rs4252136, and
rs4252137. The first, second and eleventh SNPs are contained in the
Perlegen data and are in bold. The Perlegen haplotypes over these SNPs
that occur in the population are ACG, GCG, ACA, and GTG. When SNPs
contained in the SeattleSNPs data set are added to the Perlegen SNPs,
many more haplotypes emerge. For example, the first Perlegen haplotype
gets split into two common haplotypes and three rare haplotypes in the
SeattleSNPs data set. “I” and “D” represent insertion and deletion poly-
morphisms in the SeattleSNPs data set.

measured the discrepancies between the predictions of PHASE
and HAP. We used PHASE 2.1.0 with its default option, and the
default parameters of HAP.

Our results show that PHASE and HAP give identical results
in 98.6% of the genotypes and 95.0% of heterozygous SNPs. We
measured the accuracy of the results using the switch error rate.
The switch error rate measures the proportion of heterozygous
positions for which the phase is erroneously inferred relative to
the previous heterozygous position. In terms of switch error rate,
PHASE and HAP show 2.38% and 3.70% of switch error rates,
respectively. When compared with the total number of geno-
types, these switch errors occur in only 0.52% and 0.81% of
genotypes, respectively, and these are comparable to the rate of
missing SNPs in these regions, which is 1.14%. We performed
the same benchmark for the African (YRI) population in the

HAPMAP data and observed overall error rates of 2.22% and
1.37% for HAP and PHASE, respectively. This increase in error
rate in African populations relative to European populations is
consistent with the benchmark performed by the HAPMAP
analysis group (J. Marchini, D. Cutler, N. Patterson, M. Stephens,
E. Eskin, E. Halperin, S. Lin, S. Qin, G. Abecassis, H. Munro, et al.,
in prep.).

As opposed to the accuracy of the phase prediction, the
running time of HAP and PHASE differs considerably. In Table 5
we provide the summary of the running times of HAP and PHASE
on 10 randomly selected regions in chromosome 19 with differ-
ent numbers of SNPs. From these experiments it is not clear how
long it would take for PHASE to predict the haplotypes for the
database, because of the high variance in running time and the
fact that it does not appear that PHASE scales linearly with the
number of SNPs. As can be seen from Table 5, the running time
of HAP is several orders of magnitude faster than PHASE in most
cases. Extrapolating from these results, by assuming that the
PHASE algorithm is run with 100 SNPs sequentially on a single
CPU, it would take PHASE at least 75,000 h to phase the whole
dbSNP database. In the benchmark performed by the HAPMAP
analysis group, HAP was able to phase unrelated individuals over
1000 times faster than PHASE (J. Marchini, D. Cutler, N. Patter-
son, M. Stephens, E. Eskin, E. Halperin, S. Lin, S. Qin, G. Abecas-
sis, H. Munro, et al., in prep.).

Haplotype consistency analysis

We measure the robustness of the haplotype inference by com-
paring the haplotypes inferred over the same SNPs in the same
individuals from different data sets. We considered regions where
resequenced genes are available from the SeattleSNPs (Crawford
et al. 2004) and compared the haplotypes and blocks inferred
from these data sets with the haplotypes and blocks inferred from
the HAPMAP and Perlegen data. The European population was
used for comparison because there is a corresponding population
in each data set and there are overlapping individuals in the data
sets. The HAPMAP data contain genotypes for 1545 SNPs that are

Table 5. Comparison of running time in seconds between HAP and PHASE

Mean Standard deviation Minimum Maximum
Number of
SNPs HAP PHASE HAP PHASE HAP PHASE HAP PHASE
10 0.06 19.12 0.03 8.88 0.03 12.08 0.10 37.74
20 0.56 109.71 0.30 68.78 0.23 46.24 1.08 237.78
30 1.10 327.55 0.55 257.59 0.54 99.76 2.24 887.82
40 1.53 833.99 0.61 831.93 0.80 165.57 2.58 2906.84
50 1.99 1643.49 0.75 1454.08 1.02 581.80 3.32 5013.80
60 2.45 3719.40 0.83 4352.68 1.19 915.95 3.74 14554.47
70 3.02 5931.03 0.91 5680.70 1.56 1212.59 4.48 18593.30
80 3.43 8071.75 1.00 7495.58 1.74 1774.35 5.12 26016.98
90 3.82 10585.10 1.10 9307.13 1.90 2167.37 5.72 32363.89
100 4.42 13409.43 1.25 12113.96 2.16 2634.38 6.53 40183.36
110 4.86 16082.93 1.21 12598.09 2.66 6127.91 6.83 44603.33
120 5.25 20283.20 1.20 14935.60 3.31 7756.14 7.14 54431.03
130 5.70 25249.62 1.35 18740.87 3.73 9636.97 8.09 63775.21
140 6.16 30643.41 1.39 18292.52 4.19 12226.41 8.53 69463.15
150 6.63 35768.83 1.46 20482.31 4.79 14280.62 9.05 74459.95
160 7.05 42161.60 1.49 23714.27 5.29 19106.80 9.73 91346.27
170 7.53 51597.25 1.59 30670.41 5.44 20676.32 10.4 113281.51
180 8.09 63743.02 1.72 37621.29 5.72 31889.18 11.08 138096.67

The running time is measured by running both methods from 10 different positions in chromosome 19, with different length
of genotypes. Intel Xeon 3.20 GHz CPU is used in the measurement.
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present in the SeattleSNPs data. The Perlegen data contains 2426
such SNPs. The predicted haplotypes over the HAPMAP data and
the SeattleSNPs (PGA) data differ by 679 switches and the Perle-
gen data and PGA data differ by 11,071 switches. These differ-
ences correspond to switch differences of 0.4% and 2.4%, respec-
tively. These switch distances are comparable to the amount of
genotype calls that differ between these data sets. Between the
HAPMAP and the PGA data, there are 17,424 (3.5%) genotype
calls in 602 SNPs that differ in the two data sets. Between the
Perlegen and PGA data, there are 179,906 (3.8%) genotype calls
in 6758 SNPs that differ.

Discussion

Understanding the structure of common variation is an impor-
tant step that will give insights into designing effective strategies
for genetic association analysis. Our analyses show that the use of
a combination of the various data sets of dbSNP increases the
coverage of the genome considerably for high-density markers.
Furthermore, we show that when the density of the sampled
SNPs increases, the block partition and the set of tag SNPs
changes considerably, providing evidence that multiple data sets
can provide a more accurate picture of the structure of human
variation in a region. These findings suggest that the design of
genetic association studies in these regions can benefit from
analysis of multiple data sets.

However, several methodological challenges remain regard-
ing how to most effectively use multiple data sets to understand
the structure of human variation and design genetic association
studies. dbSNP allows researchers to easily access multiple data
sets for a genomic region and provide an invaluable resource for
researchers to both address these methodological challenges as
well as design effective genetic association studies.

The haplotype resource of dbSNP will provide immediate
access to the haplotypes, block partitions, and tag SNPs for all of
the publicly available data sets. In addition, as the amount of
data in dbSNP grows, new haplotypes will be computed with
every dbSNP build, which will provide haplotype information for
newly deposited data shortly after it is deposited. dbSNP can be
accessed at http://www.ncbi.nlm.nih.gov/projects/SNP/.

Methods

HAP phasing of genome-wide data

We used the HAP algorithm in order to phase the dbSNP data
sets. HAP was run on a 30-CPU cluster consisting of 15 2GB RAM
Nodes dual Intel Xeon 3.96 GHz processors.

The HAP algorithm assumes that a perfect phylogeny tree
can describe the ancestral history of the haplotypes. A perfect
phylogeny tree is a genealogy tree with no recombinations and
no recurrent mutations (see Fig. 3). HAP considers all phases that
result in a set of haplotypes that are almost consistent with a
perfect phylogeny. HAP then efficiently enumerates over all such
phases, and gives a score to each phase according to the likeli-
hood of the solution under the assumption that the haplotypes
were randomly picked from the population. HAP then chooses
the phase with the highest score. In order to phase a long region,
HAP applies the perfect phylogeny model in a sliding window to
short overlapping regions. These overlapping predictions are
then combined using a dynamic programming-based tiling algo-
rithm that chooses the optimal phase for the long region that is
most consistent with the overlapping predictions of phase in the

Figure 3. A perfect phylogeny model consists of a tree where each
vertex corresponds to a haplotype and each edge corresponds to a mu-
tation in one of the positions of the haplotype. An edge is labeled with the
position of the mutation. The tree fits the perfect phylogeny model if
there are no recurrent mutations and no obligate recombination events.
A set of haplotypes fits the perfect phylogeny model if it satisfies the four
gamete test, that is, at most three allele combinations are observed for
any pair of marker positions.

short regions. We considered all tiles of length 10-12 when con-
structing the haplotypes.

HAP is capable of phasing data sets up to 40,000 SNPs. The
computational bottleneck is the size of the data structure neces-
sary to perform the tiling. Since we only phased one chromo-
some at a time, the vast majority of the data in dbSNP was smaller
than this limit. For some of the chromosomes in the HAPMAP
and Perlegen data, we had to split the data set into two to four
regions in order to perform phasing. We partitioned the data sets
within a gap of at least 50 kb between SNPs. Similarly, when
computing block partitions, we only considered blocks that do
not span a gap in SNPs >50 kb.

Partition into blocks of limited diversity

We applied the dynamic programming-based algorithm as de-
scribed in Zhang et al. (2002) to partition the inferred haplotypes
into blocks of limited diversity. Their algorithm is based on the
minimization of the number of tag SNPs so that the common
haplotypes of each block could be distinguished by the tag SNPs.
We consider as possible blocks regions where the common hap-
lotypes (>5% frequency) account for >80% of the variation in a
population. We only consider SNPs with a minor allele frequency
>5%. We partitioned the haplotypes into candidate blocks,
where the partition minimizes the total number of SNPs that are
necessary to distinguish between the common haplotypes in the
blocks. HAP implements the Zhang et al. (2002) approach in a
very efficient manner that can allow for partitioning of whole-
genome data sets. In order to compute the number of represen-
tative SNPs in a block, we apply a branch and bound algorithm
that significantly reduces the computational time compared with
the traditional exhaustive approach.

Extension of HAP to trios

We extended the phasing algorithm HAP (Halperin and Eskin
2004) in order to allow it to cope with genotypes typed from
mother-father-child trios. Within a short region, the extension of
HAP to trios must take into account the fact that the haplotypes
of the children are copies of the haplotypes of the parents. We
assume that there are no recombinations or mutations between
the parents and the children in the trios. This allows us to first
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unambiguously resolve the phase of the trios in many of the
positions. For the remaining positions we use HAP in order to
enumerate overall possible phases. This results in a set of haplo-
types that are almost consistent with a perfect phylogeny. In that
enumeration we exclude the solutions that contradict Mendelian
heredity within a trio. For each such solution we give the likeli-
hood score, which is the probability to observe the parents’ hap-
lotypes in our sample. We pick the solution with maximum like-
lihood as a candidate solution. In order to further improve the
solution, we use a local search algorithm. The local search algo-
rithm starts from the solution given by HAP, and it repeatedly
changes the phase of one of the trios to a different possible phase
and checks whether the likelihood function has increased. If it
has increased, we use the new solution as the candidate solution
and repeat this procedure. If no local change can be applied in
order to increase the likelihood, we stop and use the solution as
a putative solution for this region. The resulting algorithm is very
efficient and running times are comparable to the running time
of HAP over unrelated individuals (J. Marchini, D. Cutler, N.
Patterson, M. Stephens, E. Eskin, E. Halperin, S. Lin, S. Qin, G.
Abecassis, H. Munro, et al., in prep.).
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