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We analyzed 8.55 million LongSAGE tags generated from 72
libraries. Each LongSAGE library was prepared from a different
mouse tissue. Analysis of the data revealed extensive overlap with
existing gene data sets and evidence for the existence of �24,000
previously undescribed genomic loci. The visual cortex, pancreas,
mammary gland, preimplantation embryo, and placenta contain
the largest number of differentially expressed transcripts, 25% of
which are previously undescribed loci.

alternative transcripts � development � serial analysis of gene expression

The laboratory mouse has emerged as a premiere model
system for studies of mammalian development and disease.

A major obstacle to realizing the full potential of the mouse in
these studies is the lack of detailed information on the function
of the majority of mouse genes. Gleaning such information will
occupy biologists for years to come, but significant acceleration
of such efforts can be achieved through systematically identifying
the genes expressed in precisely defined cells and tissues at
numerous developmental stages. To be of broad general use,
these efforts should initially emphasize wild-type animals, be
available to the scientific community in a format that is easily
analyzed and readily distributed, remain applicable as the mouse
genome sequence and its annotation are updated, and have the
potential to contribute to the annotation of the genome se-
quence. To meet these needs, we are using serial analysis of gene
expression (SAGE) [LongSAGE (1); SAGE (2)] to develop
spatially and temporally specific digital gene-expression profiles
throughout development in a total of 200 mouse cells and tissues.
The data are made publicly available as they are generated to
fuel mouse functional genomics and bioinformatic analyses.

This article provides an analysis of 8.55 million 21-bp tags
derived from 72 LongSAGE libraries (see Table 3, which is
published as supporting information on the PNAS web site).

Libraries have been sampled to an average depth of �118,000
tags. This sampling depth yields gene-detection sensitivity ap-
proximately equivalent to that of fluorescence-based microarray
approaches (3) and, thus, is sufficient for detection of abundant
and moderately abundant transcripts but likely insufficient for
reliable detection of rare transcripts. For deeper sampling, we
have retained frozen aliquots of libraries.

Although others have profiled gene-expression levels in the
mouse (4–6), the scale of this project and its strong emphasis on
development are distinguishing features. Unique achievements

of the project include: high-throughput production of SAGE
libraries, creation of protocols for the precise microdissection of
tissues from numerous stages of development, the refinement of
technologies for construction of libraries from nanogram quan-
tities of total RNA, the rapid public release of the data, the
creation of protocols for computational analysis of the data, and
the construction and distribution of software tools, at our
Genome Centre and elsewhere, to facilitate its analysis. For
example, the data reported here have been used to construct
MOUSE SAGEGENIE, a software tool available from the Cancer
Genome Anatomy Project for analysis of mouse LongSAGE tags
(http:��cgap.nci.nih.gov�SAGE�#mouse). We present here an
overview of the data, focusing on data quality, representation
of known genes, and identification of previously undescribed
transcripts.

Materials and Methods
Maintenance of Mice and Tissue Collection. C57BL�6J mice were
provided with Purina mouse food and autoclaved water ad
libitum and maintained at 20°C � 2°C under a light�dark cycle
(light, 5 a.m. to7 p.m. and dark, 7 p.m. to 5 a.m. at the British
Columbia Cancer Agency and light, 7 a.m. to 7 p.m. and dark,
7 p.m. to 7 a.m. at the Centre for Molecular Medicine and
Therapeutics). Stud males were mated overnight with up to three
females; females were inspected for copulation plugs before
10:00 the following morning. Plugged mice were considered to
be 0.5 days postcoitum. Mice were assigned to the appropriate
Theiler stage at the time of tissue collection to ensure uniformity
in the classification of developmental stages.

SAGE Protocol. Mouse tissue samples were collected in either
RNAlater (Ambion) or TRIzol reagent (Invitrogen), or they
were snap-frozen by using liquid nitrogen. LongSAGE (1)
libraries were constructed with at least 5 �g of DNase I-
(Invitrogen) or DNA-free-(Ambion) treated total RNA by using
the Invitrogen I-SAGE Long kit and protocol. Sequencing
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reaction products were purified by ethanol precipitation and
analyzed on model 3700 and 3730xl capillary DNA sequencers
(Applied Biosystems). These template-preparation and sequenc-
ing protocols were described by Yang et al. in ref. 7.

Sequence data were collected automatically by using a custom
DNA-sequencing laboratory information-management system
and processed by trimming reads for sequence quality and
removal of nonrecombinant clones and linker-derived tags.
Sufficient clones were sequenced to yield �100,000 LongSAGE
tags per library. On average, 34 LongSAGE tags resulted from
each sequencing read. Samples with limiting (submicrogram)
amounts of total RNA were subject to an amplification step
similar to the SAGELite method (8).

Further methodological details are provided in Supporting
Methods, which is published as supporting information on the
PNAS web site.

LongSAGE Processing Pipeline. After sequencing, f lanking vector
sequences were removed and the tags extracted from each
sequence read. The SAGE protocols generated concatemers in
which the tags were present in pairs (ditags). A sequence quality
factor (QF) was derived for each tag by using the following
formula:

QF � �
S�firstBase

S�lastBase

�1 � 10�S�10�,

where S is the PHRED score (9) for a particular base, and the
value is calculated over all bases in the tag. The quality factor was
used in the calculation of tag-sequence-probability values. Fur-
ther details on the processing of tags and the calculation of
tag-sequence-probability values are provided in Supporting
Methods.

Tag-Sequence Mapping. Tag sequences were mapped to the ge-
nome sequence, Mammalian Gene Collection (MGC) genes
(ftp:��ftp.ncbi.nih.gov�repository�MGC�MGC.sequences),
RefSeq genes (ftp:��ftp.ncbi.nih.gov�refseq�daily), and En-
sembl genes (Ensembl v20). All mappings were transformed to
genomic coordinates (chromosome, position, and strand) on the
mouse sequence (assembly 32) (10), with the aid of the Ensembl
application programming interface PERL API (11). The mapping
of RefSeq genes to genome contigs used data from Ensembl. The
mapping of MGC genes to genome contigs used data from the
University of California, Santa Cruz genome browser site (12).

We counted gene identifiers to calculate the number of gene
loci represented by the data. To avoid double-counting different
identifiers used to name the same gene in different databases,
identifiers found at the same genomic location were assumed to
represent the same gene.

‘‘Known’’ Ensembl genes are those confirmed by full-length
sequences deposited in public sequence databases. ‘‘Novel’’
Ensembl genes are those predicted by computational methods
and confirmed by ESTs.

Tag-Sequence Classification. The Ensembl database and API (ver.
20) were used to determine the genomic location of ESTs,
UniGene clusters, human genome sequence BLAST (13) hits, and
rat genome sequence BLAST hits. Tag sequences that mapped to
MGC, known RefSeq, or known Ensembl genes were classified
as annotating high-quality resources. Tag sequences were clas-
sified as annotated exon or UTR by using the Ensembl defini-
tions of these regions. The classification was inferred from the
annotation of the Ensembl transcript whose 3� end was closest to
the tag’s position. Tag sequences that did not map to a transcript
and hit introns of Ensembl genes were classified as intron tags.

We noted that many genes in Ensembl were either missing

UTRs or had very short UTRs. We assumed that such genes were
not fully annotated and, hence, extended the 5� and 3� ends of
the gene (from the coding start and stop) to compensate. We
determined that 90% of known Ensembl genes had a 5� UTR of
�456 bases and a 3� UTR of �2,039 bases. We extended genes
with shorter UTRs to be equal to these lengths.

Tag sequences that did not correspond to exons, introns, or
UTRs of known or novel genes were classified as intergenic.

RT-PCR Validation. An RT-PCR method was used to confirm the
presence of transcripts corresponding to singleton longSAGE
tags that hit an unannotated genomic sequence. The singleton
tags were filtered by removing those that matched against
RefSeq sequences (standard, X, and GS), MGC sequences,
UniGene sequences, Ensembl EST genes, and Ensembl map-
pings of ESTs onto the genome. PCR primers were designed by
using genomic sequence, Primer3 (14), and custom scripts to
generate amplicons with an average length of 120 bp. Primers
were designed that flank the tag sequence such that the tag
would be included in the amplicon. The amplicons were each
amplified from RNA representing the developmental stage and
tissue in which the singleton tag was observed. Further details
are provided in Supporting Methods.

Control experiments (data not shown) demonstrated that
amplicons were RNA-dependent: RNase-A-treated RNA sam-
ples failed to produce amplicons, indicating that amplicons were
derived from RNA and not from genomic DNA potentially
contaminating the RNA.

Representation of Gene Families. Genes in each category were
identified by their Gene Ontology (GO) classification (15). In
addition, transcription factors reported in Messina et al. (16)
were taken directly from that paper. The GO classification of
human genes was used and the mouse orthologue determined by
using the Ensembl database.

Results and Discussion
Data Overview and Quality Filtering. The 8.55 million LongSAGE
tags analyzed for this report represent 924,392 different tag
sequences, each of which is derived from a transcript. Prelimi-
nary inspection of this tag set suggested that experimental
artifacts (sequencing errors, reverse-transcriptase artifacts, etc.)
had inflated the number of different tag sequences. This infla-
tion was particularly apparent in the singleton class, where only
29% mapped to a sequence resource (the genome, MGC,
RefSeq, or Ensembl). We implemented bioinformatics ap-
proaches to recognize erroneous variants of more common tags,
reducing the numbers of tag sequences to 769,608. We also
developed an approach to assign a ‘‘confidence’’ (i.e., probabil-
ity) value to each tag sequence, distinguishing high-quality tags
from low-quality tags. Employing a quality cutoff of P 	 0.2 to
the 8.55-million-tag metalibrary yielded 8.24 million tags rep-
resenting 465,178 different tag sequences, of which the majority
[60% of singletons and 88% of nonsingletons (see Fig. 2, which
is published as supporting information on the PNAS web site)]
could be mapped to at least one mouse-sequence resource. Of
these tags, 261,134 of the LongSAGE tag sequences (3.7 million
tags comprised of 154,173 singletons and 106,961 nonsingletons)
mapped uniquely to the mouse genome. These tags were ana-
lyzed further.

Representation of Known Genes. We assessed the representation of
known genes in our data by comparing the LongSAGE tag
sequences with existing mouse-transcript resources, including
MGC mouse (17–19), RefSeq mouse (NM, NR, and XM (20, 21),
mouse UniGene (22), Riken Fantom (23), and the Ensembl
(24–26) gene sets (Table 1). The tag sequences identified many
of the sequences in the high-quality transcript data sets (e.g.,
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85% and 96% of sequences in RefSeqNM and MGC, respec-
tively). Although these genes are classified as known, our project
provides an association between these transcripts and precisely
defined developing tissues.

The SAGE data also provide experimental evidence for the
existence of a significant fraction of computationally predicted
genes. For example, 57% of sequences in RefSeq XM and 56%
of predicted Ensembl transcripts matched tag sequences.

Representation of Gene Families of Interest. We assessed the rep-
resentation of classes of genes likely to be of particular interest
and for which there were Ensembl-assigned human–mouse
orthologues (16, 27), including kinases, phosphatases, G protein-
coupled receptors (GPCRs) and transcription factors (see Table
4, which is published as supporting information on the PNAS
web site). Most of the genes within each of these classes were
found in our data, with the exception of GPCR genes. Of these,
only 28% (173 of 615) were ‘‘hit’’ in an annotated exon or UTR
by at least one high-quality tag. In contrast, �76% of all kinase
(359 of 454) and phosphatase (89 of 117) genes were detected.
Seventy-seven percent (966 of 1,247) of mouse genes ortholo-
gous to a recently published set of candidate human transcription
factors (16) were likewise detected. Expression of GPCR genes
is known to be, in general, at low levels and constrained to
particular tissues, and this known result appears to be reflected
in the SAGE data (Table 3).

Number of Genes Identified. We derived an estimate of the total
number of genes represented in the LongSAGE metalibrary for
the set of 261,134 uniquely mapping LongSAGE tag sequences
identified above. We found that 106,847 LongSAGE tag se-
quences mapped to 17,890 high-quality annotated genes (from
RefSeq NM, MGC, and known Ensembl gene definitions), and
an additional 13,939 LongSAGE tag sequences mapped to 4,073
lower-quality predicted genes (from RefSeq XM and predicted
Ensembl gene definitions). The total number of observed genes
was reduced to 19,865 by the removal of loci redundant between
these two sets. This number agreed with previous analyses of the
mouse and human genome sequences that yielded estimates of
20,000–30,000 mammalian genes (10, 28). However, there re-

mained 140,348 uniquely mapping tag sequences unaccounted
for. Of these, 23,516 tag sequences mapped to a nonredundant
set of 12,244 loci predicted from ESTs (UniGene and Ensembl
EST genes), leaving 116,622 tag sequences unaccounted for.
Some fraction of these may be artifacts in the data, but we believe
that many of these tag sequences represent novel transcripts
because they map to the genome. We note that 52,255 (36%) of
the unaccounted tag sequences map antisense to annotated
genes and may have some function related to the regulation of
the gene on the opposite strand (29–31). Our interpretation is
that the unaccounted tag sequences observed support the exis-
tence of many novel, transcribed loci in the C57BLJ�6 genome.

Location of Tag Hits on Genes. We explored the utility of the
LongSAGE data for the identification of transcribed features,
including the identification of novel transcripts of known genes
by using the set of 261,134 of the LongSAGE tag sequences
identified above. We assessed whether the tag sequences
mapped to exons, to introns, to candidate (putative) UTR
regions, or to regions we classified as ‘‘intergenic’’ (Table 2;
Materials and Methods). We observed that 21.3% (55,962) of the
tag sequences matched annotated exons and UTRs [MGC,
RefSeq (NM, NR, and XM), or Ensembl (known and novel
genes)], and 22.2% (58,029) mapped to annotated introns or to
regions we identified as candidate UTRs, suggesting that they
were derived from unannotated exons or UTRs for these genes.
The proportion of tag sequences that mapped to either anno-
tated exons or UTRs was higher for more abundant transcripts
(increasing from 21.3% for all transcripts to 94.8% for the most
abundant transcripts; Table 2), possibly reflecting better anno-
tation accuracy for more abundantly expressed genes.

Alternative Transcripts. During our analyses, we found that many
annotated genes were identified by several tag sequences. We
examined in detail 13,068 known Ensembl genes hit by at least
one uniquely mapping tag sequence and found that 64% (8,338)
were hit by multiple tag sequences. We inferred that each of
these multiple tag sequences was derived from a different
transcript from the same locus, produced by alternative splicing
(32) or alternative polyadenylation (33). The percentage of genes

Table 1. Coverage of existing sequence resources by the Mouse Atlas data set

Sequence resource
Resource

subset
Sequences in

resource*
No. of sequences

hit (unique)†

Percentage of
sequences hit

(unique)

Number of
sequences
hit (all)‡

Percentage of
sequences hit

(all)

RefSeq§ All 26,520 15,399 58 19,897 75
NM 17,057 12,445 73 14,523 85
NR 23 6 26 9 39
XM 9,440 2,948 31 5,365 57

MGC All 13,174 10,240 78 12,631 96
Ensembl transcripts All 32,281 18,382 57 23,241 72

Known 26,004 16,909 65 19,734 76
Novel 6,277 1,473 23 3,507 56

UniGene clusters¶ All 29,111 16,752 58 18,970 65
Riken 3� 691,524 24,301 4 291,410 42

5� 431,560 16,223 4 226,242 52

*This is the number of sequences present in the sequence resource. For example, the version of RefSeq used contained 9,440 XM
sequences.

†This column provides the number of sequences to which a tag sequence maps, with the requirement that the tag sequence map to only
one sequence in the resource. The Riken sequence databases contain many redundant sequences, and, therefore, the number of tag
sequences that map uniquely to a single Riken sequence is small.

‡This column provides the number of sequences to which a tag sequence maps. Unlike †, the same tag sequence can be used to confirm
multiple resource sequences.

§Refseq NM sequences represent mature RNA (mRNA) protein-coding transcripts. RefSeq XM sequences are model mRNAs defined
during genome annotation. RefSeq NR sequences are noncoding transcripts, including structural RNAs and transcribed pseudogenes.

¶The UniGene clusters utilized for this article were taken from the Ensembl database.
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for which these transcript variants were detected in the metali-
brary was 64% for all genes, increasing to 88% for the most
abundantly expressed genes (see Table 5, which is published as
supporting information on the PNAS web site). These values
compare favorably with the 35–60% range reported by others for
the percentage of alternatively spliced genes (32, 34). Consistent
with our expectation, and in agreement with Zavolan et al. (34),
our analysis supports the observation that more highly expressed
genes have more detected variants. Over all, we detected an
average of 3.3 variants per locus for the 8,338 loci studied. This
value increased to 5.0 variants per locus for the most highly
expressed loci (Table 5). These numbers are likely an underes-
timate, because our analysis is restricted to uniquely mapping
tags, and our method of detection is able to detect only variants
that result in a change of the most distal NlaIII site in the
transcripts. Many of the variants appeared to be spatially or
temporally regulated; of the 8,338 loci, 4,781 were identified by
at least one tag sequence that exhibited a significant change in
expression between at least one pair of libraries (with a signif-
icance level of P 	 0.01 and a change in expression level of at
least 2-fold, P value not corrected for multiple tests) (35).
Overall, 5,220 (63%) of the 8,338 loci were hit by tag sequences
that mapped to different portions of the protein-coding region,
leading us to believe that the transcripts may encode different
proteins. For 827 of the 5,220 loci, at least one of the tag
sequences demonstrated a significant change in expression be-
tween at least one pair of libraries, whereas at least one other tag
sequence mapping to the same locus did not demonstrate a
significant change in expression between the same pair of
libraries. For each of an additional 222 loci, at least one pair of
tag sequences exhibited significant changes in expression levels
in opposite directions between at least one pair of libraries. For
18% of identified loci in the first category and 12% in the second
(152 of 827 loci and 27 of 222 loci, respectively), the tag
sequences identifying the transcripts mapped to different loca-
tions within the coding region of the gene. These results are
consistent with the existence of multiple transcripts produced
from each of many loci and consistent with the existence of
multiple, independently regulated transcripts derived from a
single locus, possibly encoding protein isoforms.

Number of Novel Genes. Many tag sequences were intergenic with
respect to annotated genes (Table 2). The proportion of tag
sequences mapped to intergenic regions decreased with increasing
transcript abundance. Some fraction of these ‘‘intergenic tag se-
quences’’ may represent novel, low-abundance transcripts. Of the
147,143 intergenic tag sequences (56.3% of the 261,134 uniquely
mapping tag sequences) in Table 2, 40% (58,762) mapped to
regions of the genome containing EST and UniGene matches.
Another 40% (58,573) mapped to regions of the mouse genome
sequence that were unremarkable, except that they exhibited se-
quence similarity to either the human or rat genome sequence
(highly conserved regions, as specified by Ensembl ComparaDB;
parameters described at www.ensembl.org�Multi�helpview?se �
1&kw � multicontigview#WholeGenomeSimilarityMatches), pro-
viding evidence that these evolutionarily conserved regions are
transcribed. Twenty percent (29,808) of the tag sequences mapped
to genome regions that, in addition to lacking annotation, also
lacked a strong similarity to either the human or rat genome
sequence. This latter category may represent transcripts specific to
mouse. Approximately 78% of the 88,381 transcripts in the latter
two categories were identified by only a high-quality singleton and
are likely to be infrequently expressed.

We sought to estimate the number of transcribed loci repre-
sented by the 147,143 tag sequences mapping to intergenic
regions. This result was achieved by grouping sequences into
clusters by using tag proximity in the genome to define group
members. To derive clustering parameters, we first considered
16,937 relatively well annotated Ensembl genes for which tags
were detected. We used these genes to explore the effect of
varying the size of the genomic region used to produce clusters.
We specifically asked, for increasing size of the genomic interval,
whether tags belonging to single genes were contained within a
single cluster (desirable) or split across clusters (undesirable,
indicating insufficiently large intervals) or whether a cluster
contained more than a single gene (also undesirable, indicating
intervals that are too large). Selection of an interval size that was
too large or too small would have the effect of under- or
overestimating, respectively, the number of potential new loci
detected by the intergenic tag sequences.

We plotted the relationship between increasing genomic interval
size and the proportion of known genes split across intervals. We

Table 2. Distribution of uniquely mapping tag sequences to gene features

Location Gene evidence*
All transcripts

(A � 0)†

All transcripts
expressed at

A � 1†

All transcripts
expressed at

A � 10†

All transcripts
expressed at

A � 60†

All transcripts
expressed at
A � 1000†

No. of unique locations — 261,134 106,961 25,829 8,855 424
Annotated exon,‡ % Known 12.1 17.9 23.8 28.3 34.7

Novel 0.9 1.2 1.2 1.1 0.7
Annotated UTR,‡ % Known 8.0 14.6 30.9 46.0 58.0

Novel 0.3 0.5 1.0 1.2 1.4
Annotated exon or UTR, % Known or Novel 21.3 34.2 56.9 61.4 94.8
Intron,% Known 20.0 14.3 4.4 1.8 1.2

Novel 1.5 1.1 0.4 0.2 0
Putative UTR,‡ % Known 0.5 0.7 0.8 0.5 0.5

Novel 0.2 0.2 0.2 0.2 0
Intergenic,‡ % — 56.3 49.5 37.4 20.8 3.5

All percentages are specified to 1 decimal place and, hence, may not add up to 100%.
*The known gene category encompasses MGC, RefSeq (NM, NR) and Ensembl ‘‘known‘‘ genes. The novel gene category encompasses
RefSeq (XM) and Ensembl ‘‘novel’’ genes.

†The abundance (A) is the number of times the tag sequence is observed in the metalibrary. The columns to the right limit the data to
the most highly expressed transcripts.

‡Annotated exons and UTRs represent regions of genes annotated as part of the transcript in sequence resources. Ensembl’s definitions
of the coding regions were used to delineate the exon�UTR boundaries. Transcripts with short or absent UTRs were extended, giving
rise to the putative UTR category. Tag sequences falling outside of the boundaries of genes were classified as intergenic.
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also plotted the relationship between genomic interval size and the
proportion of intervals that contained multiple genes (see Fig. 3,
which is published as supporting information on the PNAS web
site). At the intersection of these curves, at an interval size of �21
kb, �20% of the intervals contain multiple known genes, and 20%
of the known genes are split across an interval. Conversely, by using
this interval size, �80% of the intervals contain only a single gene,
and 80% of the known genes are within a single interval. Hence, use
of a 21-kb interval size seems to produce a reasonable compromise
between the possibilities of over- or underestimating the number of
possible new loci.

Use of the 21-kb interval size in clustering yielded an estimate
of 34,409 clusters containing only novel intergenic tag sequences.
This number represents an estimate of the number of previously
undescribed loci detected by the intergenic tag sequences, and
13,888 of these clusters contain two or more tag sequences. The
remaining clusters contain only a single tag sequence. Of these
remaining clusters, 10,442 are identified by lower-quality single-
tons (P � 0.05). Excluding these clusters reduces the number of
previously untranscribed loci to 23,967. This relatively large
number of unannotated previously undescribed loci points to an
ongoing need to apply whole-genome unbiased approaches to
gene discovery. Our results show that this approach is clearly
needed in even apparently well characterized genomes. Such
data will be required to generate more comprehensively anno-
tated genome sequences, which, in turn, will be essential to
approach an understanding of genome function.

Validation of Singleton Tags. Using RT-PCR, we sought to validate
a set of the potentially novel transcripts that were identified by
high-quality singletons that mapped to a set of unannotated,
unique genomic coordinates. A total of 173 tag sequences were

selected for validation. Of these, 96 tag sequences were observed
only once in an individual library yet multiple times in other
libraries (‘‘library singletons’’), and 77 tag sequences were
observed only once in the entire metalibrary of 8.55 million tags
(‘‘metalibrary singletons’’). All of the selected tags were at least
30-kb 3� and 12-kb 5� of the nearest annotated Ensembl gene.
Some of the singleton tags matched sequences in dbEST.
Metalibrary singletons were limited to those assigned probability
values 	0.05, indicating that they were of the highest quality
possible. Library singletons were limited to those with a library
probability value 	0.05 and a metalibrary probability value
	0.00001. Based on these criteria and the availability of RNA
remaining after construction of LongSAGE libraries, eight
libraries were selected, each providing both metalibrary and
library singletons. The genome sequences surrounding the tags
were used to design oligonucleotide primers, which were used in
RT-PCR assays using individual RNA preparations as the
amplification template (see Fig. 4 and Table 6, which are
published as supporting information on the PNAS web site).
Analysis of the PCR products on agarose gels, followed by
comparison of the sizes obtained with the sizes expected based
on the genome sequence, revealed that 122 (85%) of the PCR
products were within 15% of their expected size. These exper-
iments support the expression of 77% of the metalibrary sin-
gletons and 86% of the library singletons. We concluded from
this finding that most high-quality singletons, even those map-
ping only to the genome, appear to represent bona fide tran-
scripts.

Noncoding RNAs. We explored the overlap between the SAGE
data and databases of noncoding RNAs, including the portion of
the Fantom database containing a reported 15,814 noncoding

Fig. 1. Differential expression of tag sequences among tissue groups. Shown is a graph of tag sequences at least 5-fold (red and yellow bars) and at least 10-fold
(green and black bars) differentially expressed (P 	 0.05 and P 	 0.01, respectively) among tissue groups and all other libraries in all other tissue groups. The
yellow and black bars depict the number of differentially expressed tag sequences that hit only unannotated regions of the genome sequence. The blue line
indicates the number of libraries in each tissue group. From this data it is evident that the visual cortex, pancreas, mammary gland, preimplantation embryo,
and placenta tissue groups contain the largest number of differentially expressed tag sequences, many of which hit unannotated regions of the genome. In
contrast, virtually all of the differentially expressed tag sequences in stomach, spleen, and kidney hit annotated regions of the genome. SVZ�VZ, subventricular
zones�ventricular zones; Post-I, post implantation; Pre-I, pre implantation; UGS, urogenital sinus.
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sequence entries (23). We found SAGE tags in our data for 9,810
(62%) of these sequences. A different data set of �4,000
sense–antisense transcripts compiled by Kiyasawa et al. (36),
with estimated coding and noncoding status, was also analyzed.
Seventy-eight percent (2,111 of 2,717) of the coding members of
the data set were matched by our mouse SAGE tags. Sixty-nine
percent (808 of 1,174) of the noncoding members of the data set
were matched by mouse SAGE tags. The reduced level of
overlap between our SAGE data and the coding and noncoding
subsets of the Kiyosawa et al. data may be due to the higher
incidence of noncoding transcripts which lack a poly(A) tail
compared with coding transcripts. Noncoding transcripts lacking
a polyA tail are expected to be underrepresented in the SAGE
data, because tags are derived from oligo(dT)-primed cDNA.

Summary
The multitude of developmental time points analyzed and the
precise dissection of tissues allowed us to construct a detailed
view of changes in gene expression levels (Table 3; Fig. 1; and see
Fig. 5, which is published as supporting information on the PNAS
web site). We have shown that the LongSAGE data provide good
coverage of important gene families (Table 4) and insight into
novel transcribed loci associated with specific developmental
stages and tissues. These characteristics of the data will be
exploited to gain insight into how expression changes trigger
gross changes in the morphology and function of differentiating
tissues.

The Mouse Atlas LongSAGE data are a rich source of novel
transcripts and represent the majority of previously identified

genes. The data were generated from RNAs purified from tissue
samples harvested with an unprecedented level of precision,
representing a range of tissues and time points, with an emphasis
on early development. The association of expressed genes with
such carefully collected tissue samples greatly enhances the
potential for functional characterization of the genes and should
be useful for studies aimed at bioinformatic and biochemical
characterization of gene-expression regulation. The data, among
the most comprehensive currently available for mouse develop-
ment, represent a significant addition to available mouse
genomic resources. All data, tag-to-gene mappings, and software
tools for data analysis are available at www.mouseatlas.org. The
data and other software tools, including MOUSE SAGE GENIE, are
available from http:��cgap.nci.nih. gov�SAGE.
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