
Partial Volume Segmentation of Brain Magnetic Resonance
Images Based on Maximum a Posteriori Probability

Xiang Li1,2,§, Lihong Li1,3, Hongbing Lu1,4, and Zhengrong Liang1

1Department of Radiology, State University of New York, Stony Brook, NY, 11794 USA

2Department of Radiation Oncology, Columbia University, New York, NY, 10032, USA

3Department of Engineering Science and Physics, College of Staten Island of the City University of New York,
Staten Island, NY 10314, USA

4Department of Biomedical Engineering/Computer Application, Fourth Military Medical University, Xi’an,
Shaanxi 710032, China

Abstract
Noise, partial volume (PV) effect and image-intensity inhomogeneity render a challenging task for
segmentation of brain magnetic resonance (MR) images. Most of the current MR image segmentation
methods focus on only one or two of the effects listed above. The objective of this paper is to propose
a unified framework, based on the maximum a posteriori probability principle, by taking all these
effects into account simultaneously in order to improve image segmentation performance. Instead
of labeling each image voxel with a unique tissue type, the percentage of each voxel belonging to
different tissues, which we call a mixture, is considered to address the PV effect. A Markov random
field model is used to describe the noise effect by considering the nearby spatial information of the
tissue mixture. The inhomogeneity effect is modeled as a bias field characterized by a zero mean
Gaussian prior probability. The well-known fuzzy C-mean model is extended to define the likelihood
function of the observed image. This framework reduces theoretically, under some assumptions, to
the adaptive fuzzy C-mean (AFCM) algorithm proposed by Pham and Prince. Digital phantom and
real clinical MR images were used to test the proposed framework. Improved performance over the
AFCM algorithm was observed in a clinical environment where the inhomogeneity, noise level and
PV effect are commonly encountered.
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I. Introduction
Magnetic resonance (MR) imaging has several advantages over other medical imaging
modalities, including high contrast among different soft tissues, relatively high spatial
resolution across the entire field of view (FOV) and multi-spectral characteristics. Therefore,
it has been widely used in quantitative brain imaging studies. Quantitative volumetric
measurement and three-dimensional (3D) visualization of brain tissues are helpful for
pathological evolution analyses, where image segmentation plays an important role.
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Incorporating multi-spectral analysis into MR image segmentation was pioneered by Vannier
et al.1 and has been widely adopted by other researchers.

Noise, partial volume (PV) effect and image-intensity inhomogeneity across the FOV render
a challenging task for MR image segmentation. Currently, the majority of brain MR image
segmentation algorithms focus on one or two of the effects listed above. A variety of intensity-
based segmentation methods2–5 has been proposed and achieved notable success in the
absence of inhomogeneity and PV effects. These methods model the image intensity
distribution as a multivariate likelihood function and apply the Markov random field (MRF)
theory to specify the prior probability of the tissue type distribution, resulting in a robust
maximum a posteriori (MAP) probability image segmentation in the presence of noise.
However, these methods belong to the category of hard segmentation, in which each voxel is
classified as a single tissue type. Due to the limited spatial resolution of most imaging devices
and complex anatomical structure of the brain tissues, there are often some voxels in the images
that contain two or more tissue types. In other words, PV effect is rather common. Currently,
there are two popular PV models: the fuzzy C-mean (FCM)6–9 and the Gaussian
distribution10–12 models.

Due to the non-uniformity in the radio-frequency (RF) field during data acquisition13,14, the
inhomogeneity effect usually results in a shading effect across the whole MR image. Current
methods of correcting for this effect can be divided into two categories. The first category is
called the straightforward approach. For example, Dawant et al.15 manually selected some
reference points within the image, and then reconstructed the bias field with a spline surface
fitting technique. Some researchers16–19 have adopted the homomorphic filter to correct for
the inhomogeneity effect. Volurka et al.20 used the local gradient information in the image to
estimate the bias field. Lee and Vannier21 proposed an extended FCM clustering algorithm to
reconstruct the bias field. Chen et al.22 applied the group theory to extract the lowest-frequency
component of the image for the bias field. The second category corrects for the inhomogeneity
effect during image segmentation and is called the simultaneous approach. Wells et al.23
proposed a MAP estimation of the bias field, in which an estimation of the posteriori probability
of voxel labels was produced as a side-effect. Guillemaud and Brady24 further refined this
method by introducing an extra class for the bias field. More studies on the method were
performed subsequently by Held et al.25 and Kapur and Pohl26,27, where a MRF modeling
for noise reduction was added. The approach of Held et al. moved to hard labeling via the
iterated conditional modes (ICM) approach, while Kapur and Pohl remained in the soft labeling
domain by estimating the posteriori probability of voxel labels using the mean-field approach.
Pham et al.6,7 proposed an unsupervised method, called the adaptive fuzzy C-mean (AFCM)
algorithm, which can correct for the inhomogeneity effect and segment directly the tissue
partial volumes (not the posteriori probability of the voxel labels) in each image voxel
simultaneously. It performs very well under low noise conditions. However, its performance
deteriorates quickly as the noise goes up, because it does not incorporate a MRF model to
control the noise.

The objective of this paper is to propose a unified framework to improve brain MR image
segmentation by considering all effects simultaneously using the MAP probability principle.

II. Theory
A. PV-MAP framework

Let image intensities Y be a column vector [y1, y2,..., yN]T, where N is the total number of image
voxels in an acquired image. For multi-spectral imaging, yi becomes a vector [yi1, yi2,..., yiL]
T, where L represents the total number of multi-spectral MR images. Let mixture M be a vector
[m1, m2,..., mN]T with the following properties: (1) mi =[mi1, mi2,..., miK ]T, and (2)
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∑k=1
K mik = 1, 0 ≤ mik ≤ 1, where m reflects the fraction of issue type k inside voxel i, which

is called a mixture, and K is the total number of tissue classes in the multi-spectral MR images.
Let bias field B =[β1, β2,...,βN]T be the shading effect across the whole FOV, where βi is a
vector [βi1,βi2,..., βiL]T for multi-spectral imaging. Let Φ be a parameter set, which depends on
the model of the observed images Y.

According to the MAP principle, estimation of the mixture M, bias field B and tissue class
parameter set Φ, given observed images Y, can be performed by maximizing the posterior
distribution:

P(M , B, Φ | Y ) = P(Y | M , B, Φ)P(M , B, Φ)
P(Y ) ∝ P(Y | M , B, Φ)P(M , B, Φ). (1)

Assuming the mixture M, bias field B and parameter Φ are independent, we have:

P(M , B, Φ | Y ) ∝ P(Y | M , B, Φ)P(M | B, Φ)P(B | Φ)P(Φ) = P(Y | M , B, Φ)P(M )P(B)P(Φ). (2)

By logarithmic transformation, equation (2) becomes:

− ln P(M , B, Φ | Y ) ∝ U (Y | M , B, Φ) + U (M ) + U (B) + U (Φ) (3)

where U (Y|M, B,Φ) is the likelihood energy function of the observed images Y, and U(M), U
(B) and U (Φ) are the prior energy functions of the mixture M, the bias field B and the parameter
set Φ, respectively.

The following definition is chosen for the likelihood energy function of the observed images
Y:

U (Y | M , B, Φ) = ∑
j=1

L
∑
i=1

N
∑

k=1

K
mik

2 yij − βij ⋅ υ jk
2 (4)

where υ jk is the centroid of tissue class k in multi-spectral MR image j. Notation || ||2 represents
the Euclidean norm. This cluster model for tissue mixture mik in multi-spectral MR images Y
has been used by other researchers6–8 and our group9. Without the bias field term βij, equation
(4) reduces to the standard FCM model6–8. In this study, Φ is defined as a set {υ jk ;1 ≤ j ≤
L,1 ≤ k ≤ K}.

A MRF model is applied to define the prior distribution of mixture M:

P(M ) = 1
Z exp ( − α ∑

i=1

N
∑

k=1

K
∑

r∈Ni
κr mik − mrk

2) (5)

where Ni denotes the neighborhood of image voxel i, α is a parameter controlling the degree
of the smooth penalty on the mixture M, κr is a scaling factor reflecting the difference among
different orders of neighbors, and Z is the normalization factor for the MRF model. In this
study, only the first-order neighborhood system was considered. Thus, the prior energy
function for the mixture model can be expressed as:

U (M ) = α ∑
i=1

N
∑

k=1

K
∑

r∈Ni
κr mik − mrk

2. (6)

The bias field B is modeled by a zero mean Gaussian prior probability density of:
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P(B) = (2π)
− N

2 | ΣB | −
1
2 exp( − 1

2 BTΣBB). (7)

Usually the covariance matrix ∑B is too large to manipulate. In order to simplify the calculation,
Wells et al.23 proposed that ∑B might be chosen to be a banded matrix, which represents a
low-pass filter. We adopted this strategy in this study. Therefore, the prior energy function of
the bias field B is described by:

U (B) = 1
2 BTΣBB. (8)

The penalty term on the bias field proposed in Pham and Prince’s papers6,7 can be regarded
as a special choice of the covariance matrix ∑B in equation (8). Here, we adopted the definition
of ∑B from Pham and Prince’s papers as:

U (B) = λ1 ∑
j=1

L
∑
i=1

N
∑
l=1

R
(Dl * B j)i

2 + λ2 ∑
j=1

L
∑
i=1

N
∑
l=1

R
∑

h=1

R
(Dl * Dh * B j)i

2 (9)

where R equals to two for 2D situations or three for 3D applications. Bj = [β1j, β2j, Λ βNj]T is
the bias field of MR image j. Notation D is the standard forward finite difference operator along
the corresponding directions. Symbol * denotes the 1D discrete convolution operator. The first-
order regularization term (associated with λ1) penalizes a large variation in the bias field and
the second-order regularization term (associated with λ2) penalizes the discontinuities in the
bias field. Parameters λ1 and λ2 control the degree of smoothness of the bias field.

The parameter set Φ is modeled as a uniform distribution for all tissue classes in this paper,
thus the prior energy function of Φ is a constant. Therefore, according to the above definitions,
we have the posterior energy function:

U = ∑
j=1

L
∑
i=1

N
∑

k=1

K
mik

2 yij − βij ⋅ υ jk
2 + α ∑

i=1

L
∑

k=1

N
∑

r∈Ni
κr mik − mrk

2

+λ1 ∑
j=1

L
∑
i=1

N
∑
l=1

R
(Dl * B j)i

2 + λ2 ∑
j=1

L
∑
i=1

N
∑
l=1

R
∑

h=1

R
(Dl * Dh * B j)i

2

(10)

where * was defined before as the 1D discrete convolution operator.

Given the posterior energy function, our next task is to minimize the function for estimations
of the mixture M, bias field B and parameter set Φ.

B. Segmentation of tissue mixtures
In searching for a solution to minimize the posterior energy function (10) with respect to
mixture M, an ICM-like algorithm was utilized in this study. It is noted that solving the exact
optimization as formulated in (10) is computationally impracticable. In order to achieve
computational efficiency, we adopted the ICM-like approach, which utilizes the iterative local
minimization. Their convergence is guaranteed after only a few iterations. Equivalently, the
solution is determined by maximizing the posterior energy function of

U = ∑
j=1

L
∑
i=1

N
∑

k=1

K
mik

2 yij − βij ⋅ υ jk
2 + α ∑

i=1

N
∑

k=1

K
∑

r∈Ni
κr mik − mrk

2 + ∑
i=1

N
γi(1 − ∑

k=1

K
mik) (11)
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under the condition of ∑k=1
K mik = 1, where γi is the Lagrange multiplier, and the two terms

associated with λ1 and λ2 are omitted because they are parameters of bias filed B and
independent from mixture M.

Taking the partial derivative with respect to the mixture mik and setting it to zero, we have:

mik
(n+1) =

γi + 4α ∑
r∈Ni

κrmrk
(n)

2 ∑
j=1

L
yij − βij ⋅ υ jk

2 + 4α ∑
r∈Ni

κr

. (12)

By the constraint of ∑k=1
K mik = 1 for every i, γi can be calculated by substituting mik into this

constraint and is given by

γi =

1 − ∑
k=1

K
4α ∑

r∈Ni
κrmrk

(n)

∑
j=1

L
yij − βijυ jk

2 + 4α ∑
r∈Ni

κr

∑
k=1

K 1

2 ∑
j=1

L
yij − βijυ jk

2 + 4α ∑
r∈Ni

κr

. (13)

Substituting γi back into equation (12) results in the estimation of mixture mik or segmentation
of tissue mixtures by:

mik
(n+1) =

1 − ∑
l=1

K
4α ∑

r∈Ni
κr(mrl

(n) − mrk
(n))

2 ∑
j=1

L
yij − βijυ jl

2 + 4α ∑
r∈Ni

κr

∑
l=1

K
2 ∑
j=1

L
yij − βij ⋅ υ jk

2 + 4α ∑
r∈Ni

κr

2 ∑
j=1

L
yij − βijυ jl

2 + 4α ∑
r∈Ni

κr

. (14)

Leemput et al.11 suggested that prior constraints on the mixture with
∑k=1

K mik = 1, 0 ≤ mik ≤ 1 is too loose for brain MR image segmentation. They assumed that
there are at most two tissue types inside each voxel: gray matter (GM) and white matter (WM)
or gray matter and cerebrospinal fluid (CSF). In addition, they used a down-sampling process
to model the PV effect so that mixture mik is restricted to be discrete values. Therefore, their
solution set can be defined as follows: (1) miGM +miWM =1 and miCSF =0, or (2) miGM
+miCSF =1 and miWM = 0 ; where mik ∈ {0,1/J, 2/J,Λ, (J −1)/J,1} and J is the number of
subvoxels per image voxel. In this paper, we applied the same prior constraint of
∑k=1

K mik = 1. Since the energy function defined in equation (11) is quadratic with respect to
mik, our MAP approach based on this more restrictive prior knowledge seeks a solution, which
has the smallest distance from the solutions determined by equation (14).
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C. Estimation of bias field
Taking the first partial derivative of the objective function U in equation (10) with respect to
the bias field βij and setting it to zero shall result in the following equation:

− ∑
k=1

K
mik

2 υ jk(yij − βijυ jk) + λ1(H1 * * B j)i
+ λ2(H2 * * B j)i

= 0 (15)

where ** denotes the 2D discrete convolution operator. We have adopted the same matrices
H1 and H2 from Pham’s papers, which are defined as follows for the 2D situation (for the 3D
situation, it becomes more complicated as seen in reference [7]):

H1 =
0 − 1 0
− 1 4 − 1
0 − 1 0

, H2 =

0 0 1 0 0
0 2 − 8 2 0
1 − 8 20 − 8 1
0 2 − 8 2 0
0 0 1 0 0

. (16)

Rearranging this equation, we obtain:

∑
k=1

K
υ jkyijmik

2 = βij ⋅ ∑
k=1

K
υ jk
2 mik

2 + λ1(H1 * * B j)i
+ λ2(H2 * * B j)i

. (17)

It is difficult to calculate the bias field B directly from equation (17). To mitigate this difficulty,
the Jacobi iterative scheme28 was employed to solve this equation. A brief review of the Jacobi
iterative scheme is given below. Equation (17) can be rewritten in terms of matrix:

Q = W Bj + (λ1C1 + λ2C2)B j = (W + C)B j = AB j (18)

where Q is a vector with elements ∑
k=1

K
υ jkyijmik

2 , and W is a diagonal matrix with elements

∑
k=1

K
υ jk

2 mik
2 . C1Bj and C2Bj are matrix expressions of H1 **Bj and H2 **Bj, respectively, and

A = W + C = W + λ1C1 + λ2 C2.

If matrix A is decomposed such that A = E − F −G, where E, F, G are the diagonal, lower
triangular and upper triangular matrices, respectively, the bias field B can be solved by the
Jacobi iterative scheme:

B j
(m+1) = (1 − ω)I + ωE −1(F + G) B j

(m) + ωE −1Q (19)

where ω is a weighting parameter and I is the identity matrix.

In general, at least several hundred (the number of image array dimensions) iterations are
needed to achieve convergence, which is very time consuming. The multi-grid strategy27
provides a way to reduce the computing effort and was used in this study. A detailed description
of the multi-grid algorithm can be found in the literature6,7,29.

D. Estimation of centroid for each tissue class
In a similar way, taking the first partial derivative of the objective function U in equation (10)
with respect to the centroid νjk of class k from image j and setting it to zero shall lead to the
following equation:
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∑
i=1

N
mik

2 βij(yij − βij ⋅ υ jk) = 0. (20)

By rearranging equation (20), we have:

υ jk =
∑
i=1

N
mik

2 βijyij

∑
i=1

N
mik

2 βij
2

. (21)

E. Summary of the PV-MAP segmentation/estimation algorithm
The presented brain MR image segmentation algorithm, which simultaneously takes into
account the multi-spectral nature, noise, PV effect and image inhomogeneity, can be
summarized as follows:

1. Set the initial bias field {βij}i=1N  equal to one for all voxels and estimate the initial value

of centroid υ jk for each tissue class and the initial membership mik. Here, we adopted
the self-adaptive vector quantization method30 to automatically set the initial centroid
υ jk and the associated hard segmentation. The hard segmentation result can be easily
transferred into mixture mik by setting it to 1 if k equals the label value of voxel i.
Otherwise, mik shall be zero.

2. Perform PV segmentation for mixture mik using equation (14).

3. Update the bias field using the Jacobi iterative scheme with the multi-grid method by
equation (19).

4. Compute the new centroids υ jk for each tissue class using equation (21).

5. If the iterative process satisfies the termination criterion of equation (22) below, the
updated mixture {mik} and bias field {βij}i=1N  are saved as the final results. Otherwise,

go to step 2.

An empirical, yet commonly used criterion for terminating iterative process is written as:

Max ( | υ jk
(n+1)

υ jk
(n) − 1 | ) ≤ ɛ. (22)

When the difference between the centroid υ jk of each class at the (n+1)-th iteration and at the
n-th iteration is less than the threshold e as specified by the user, the iterative process terminates.
In this study, the threshold e was set to be 0.01.

III. Results
The presented PV-MAP method was tested using both digital phantom and clinical MR images
and compared with the conventional FCM and AFCM algorithms. In the quantitative
comparison, the following measures were used: the true positive fraction (TPF), the false
positive fraction (FPF) and the accurate segmentation ratio (ASR), which are described as:
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TPF =
Volumeseg

+ ∩ Volumetrue
+

Volumetrue
+ × 100 % ,

FPF =
Volumeseg

− ∩ Volumetrue
−

Volumetrue
+ × 100 % ,

ASR =
whole volumeseg

+ ∩ whole volumetrue
+

whole volumetrue
+ × 100 %

(23)

where a + or − sign represents whether a voxel is or is not of a specific tissue type. TPF and
FPF are used to measure the performance of different algorithms for a specific tissue, and ASR
provides the overall evaluation based on the entire image volume. Obviously, a perfect
segmentation has a TPF equal to one, FPF of zero, and ASR of one.

A. Digital phantom studies
The digital brain phantoms obtained from McConnell Brain Imaging Center of the Montreal
Neurological Institute were used to evaluate our method31. For this study, we downloaded the
3D T1 and T2 phantom images with 5% noise and 60% inhomogeneity effect. Figures 1(a) and
1(b) show the single slice T1 and T2 weighted images, respectively.

Figure 1(c) is the ground truth of hard segmentation. The PV segmentation results of different
algorithms were obtained first and then converted into hard segmentations, respectively, for
comparison purpose. The conversion labels a voxel by a tissue type, which has the largest
mixture percentage among all the tissue types in that voxel. Figure 1(d) is the hard segmentation
converted from the FCM segmentation result. Because of the inhomogeneity effect, the WM
is missed at the top region and over-segmented at the bottom area. Figures 1(e) and 1(f) show
the hard segmentation results converted from the AFCM and our PV-MAP segmentations,
respectively. Both methods can correct for the inhomogeneity effect very well. However, there
are many speckles in the AFCM segmentation due to the presence of noise. By visual judgment,
our method has a better performance against noise compared with the AFCM result. For a more
objective comparison among the FCM, AFCM and our method, a quantitative analysis of the
whole 3D image volume was conducted. Table I shows the quantitative results of different
methods based on the TPF, FPF and ASR measures. In the presence of noise and the
inhmonogenity effect, the ASR value of the FCM algorithm is very low (75.16%), which is
not acceptable in the clinic. Because the AFCM algorithm takes into account the inhomogeneity
effect, its ASR value can be improved to 82.60%. An improvement in TPF and FPF is also
noticeable. It is notable that the presented method can achieve an ASR value of 91.49% and
improve TPF and FPF for all tissue types.

Figure 2 shows the segmented mixture images of different tissue types obtained using different
segmentation methods. Figures 2(a), 2(b) and 2(c) are the true mixture models of CSF, GM
and WM, respectively. Figures 2(d), 2(e) and 2(f) show the mixture images of CSF, GM and
WM obtained with the FCM algorithm. It is noted that there are severe shading artifacts on the
GM and WM mixtures because the FCM did not correct for the image intensity inhomogeneity.
This shading effect is completely removed by the AFCM and PV-MAP method, as shown in
Figures 2(g)–2(l). However, segmented mixture images obtained via the AFCM method
demonstrate a weak performance against noise. By including the MRF model into the presented
PV-MAP framework, our segmentation scheme overcomes not only the inhomogeneity effect
but also the noise effect.
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The presented PV-MAP method has three parameters, α, λ1 and λ2, to be specified, as shown
in equation (10). For a penalized estimation algorithm, the robustness of these parameters is a
very important issue. In reference [7], the robustness of parameters λ1 and λ2 has been studied.
Based on their work7, λ1 and λ2 were determined to be 40000 and 400000, respectively. The
value of parameter α is empirically defined as follows:

α = ξ
(υT1WM − υT1CSF )2

8 (24)

where υT1WM and υT1CSF are the centroids of WM and CSF in T1-weighted MR images,
respectively. In general, ζ equals one. In order to investigate the influence of the parameter α
on the performance of the presented segmentation method, we have selected ζ to be different
values: 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, 10 and repeated the above segmentation procedure
to obtain the corresponding ASR values. Figure 3 demonstrates the relationship between ζ and
ASR. Over a large range of α values (where ζ value varies from 0.4 to 8), the ASR of the PV-
MAP method is greater than 0.91. For all of these ζ values, the performance of the new method
is better than the AFCM algorithm (which has an ASR value of 0.83).

B. Clinical data studies
MRI sessions were conducted using a 1.5Tesla Phillip Edge whole-body scanner with a body
coil as the transmitter and a birdcage head coil as the receiver. 3D SPGR and 3D EXPRESS
sequences were employed to acquire T1 and T2 weighted axial images covering the whole brain
with 30° flip angle, 1.5 mm slice thickness, 24 cm FOV, and 256×256 matrix size (0.9375 by
0.9375 mm). For the T1 weighted image, TR=50 ms, TE=5 ms. For the T2 weighted image,
TR = 4000 ms, TE = 95 ms.

The self-adaptive vector quantization method30 was used to first remove the skull and scalp
and generate the initial centroids for each class. Next, the whole brain volume was segmented
into three classes: WM, GM and CSF. Figures 4(a) and 4(b) show a slice of the T1 and T2
weighted volume images after the preprocessing above, respectively. Figures 4(c), 4(d) and 4
(e) show the segmentation results of the same slice using the FCM, AFCM and PV-MAP
method, respectively. It is noted that the FCM segmentation result is affected severely by the
noise and inhomogeneity effect. The central WM area contains many small spots. The regions
of interest (ROIs) indicated by the arrows near the FOV edge show the errors, which are mainly
due to the inhomogeneity effect. The AFCM improved upon the results of FCM noticeably
because of its correcting for the inhomogeneity effect. However, like the FCM, the AFCM is
not able to overcome the noise effect, because neither of them includes the MRF model for
noise control. On the other hand, the presented PV-MAP method demonstrates robustness
against noise as shown in Figure 4(e). It also achieves excellent performance in correcting for
the inhomogeneity effect with the corresponding bias field estimation as shown in Figure 4(f).
Unlike the phantom studies, we do not have a gold standard for comparison in clinical studies.
All of the comparisons are based on visual judgment. Most importantly, these experimental
results concur with the theoretical predictions by the PV-MAP framework, which considers
noise, PV effect, image inhomogeneity, and multi-spectral characteristics simultaneously.

IV. Discussion
Our PV-MAP method encompasses the well-known FCM and AFCM algorithms. This can be
shown from the posterior energy function U described in equations (4) and (10). When α is set
to zero, the proposed method reduces to the AFCM algorithm. If the bias field B is further
confined to be a constant value of one, the AFCM further reduces to the FCM. The FCM reflects
only the likelihood energy function in the MAP framework and the AFCM incorporates only
the prior probability of the bias field B into the FCM. Neither FCM nor AFCM algorithms take
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into account the prior information of the mixture M, thus they fail to obtain good segmentation
results for noisy MR images, which is inadequate for analysis of noisy clinic studies.

There are many ways to deal with the noise in the MR images. Edge-preserving noise filtering
by an anisotropic diffusion filter (ADF) is one of many choices32,33. By this approach,
segmenting a noisy brain MR image is performed by first smoothing the image with the ADF
and then applying a previously developed segmentation method (such as the FCM or AFCM
or others34,35) to the smoothed image. If the noise can be effectively filtered, i.e., the noise-
free image can be estimated from the noisy one, most of the previous segmentation methods
shall work well. To the best of our knowledge, most edge-preserving filters are suitable for the
piecewise images. When there exist strong inhomogeneity or partial volume effects, the noisy
images are not piecewise images anymore. The drawback of this noise-filtering and then image-
segmentation approach is that a possible inconsistence of the segmented result with the original
image data may occur36. To realize this, we performed another study. The 3D MR images with
5% noise level and different inhomogeneity effects were used. The FCM or AFCM algorithm
was applied to the filtered image by the ADF. Table II shows the quantitative assessment results
without inhomogeneity effect and Table III shows the results with 60% inhomogeneity effect.
From these experimental results, we found that without inhomogeneity effect, FCM plus ADF
approach can achieve a similar performance for noise reduction as the PV-MAP method. In
the presence of inhomogeneity effect, AFCM plus ADF also showed improvement. As shown
in Table I, compared with the result of AFCM algorithm, the approach of ADF filtering plus
AFCM segmentation improves the ASR accuracy from 82.60% to 86.07%. However, its
performance degrades in the presence of imhomogeneity effect compared with our proposed
method. Therefore, the advantage of the proposed method is that it models all the effects,
aiming to obtain an unbiased estimate of the noise-free signal consistent with the measured
noisy data36.

In our PV-MAP framework, the definitions of the prior probabilities of mixture M of equation
(5), and bias field B of equation (7) are not unique. For example, alternate mixture prior models
for equation (5) were reported in references [10–12]. Comparing these prior models would be
an interesting research topic and is under progress. For the bias field model of equation (7),
many linear filter H can be used to model the banded covariance matrix ∑B in equation (7).
Furthermore instead of using the Jacobian iterative scheme, the estimation of the bias field in
equation (18) could be implemented by the following scheme23,24:

βi =
f (Q) i
f (A) i

(25)

where f represents the low-pass filter, which corresponds to the prior model of bias field B,
and Q and A were defined in equation (18). The Jacobian iterative scheme with multi-grid
strategy was employed due to its improved computational efficiency. For 3D digital MR
phantom data with 181×217×181 size, the total calculation time was about 10 minutes on a 2.4
GHz Pentium IV PC with 1Gbyte memory. It is noted that equation (17) appears to be close
to a discrete Poisson equation. There are highly developed analytic solutions37 which will
dramatically increase the computational efficiency for solving such equation. We will
investigate the analytic solutions for an efficiency estimation of the bias field in our future
work.

In this paper, the extended FCM equation was used to model the likelihood energy function
U (Y M, B,Φ) of equation (4). An alternative likelihood energy function could be the PV
Gaussian mixture model10–12. One reason for choosing the extended FCM model in this paper
is that the estimation of parameter Φ can be easily obtained by directly maximizing the posterior
energy function as defined in equation (10). If the Gaussian mixture model10–12 is considered,
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there are two problems that need to be solved. First, the extended Gaussian mixture model with
correction of the inhomogeneity effect would need to be developed. Second, the estimation of
parameter Φ for the Gaussian mixture model is not trivial and can be very difficult as compared
to a conventional hard segmentation method (e.g., the MRF-EM framework2,38). Research on
these two problems is currently under investigation by our group12,39.

In the work of Leemput et al11, the PV effect was modeled by a down-sampling process, which
means that PV effect comes from insufficient special resolution of the imaging devices and
remains only in the boundary region between different tissues, and Monte-Carlo method was
used to label the sub-voxels in each of the original image voxel. Their method has shown good
performance of solving the PV effect. However, their method may not solve the case, in which
the GM and WM are truly mixed without interfaces, as mentioned in their paper. This
phenomenon occurs more often inside the tissues, which may have a pathological change, and
is a very important feature for patient diagnosis. We call such segmentation as mixture
segmentation, which is a more general concept than the PV segmentation. Therefore, the
solution for mixture segmentation should be preformed in the continuous spaces. Accurate
prior information on the mixture M is required, especially for images with more tissue types.
Further investigation on this topic is one of our future research interests12,39.

Finally, it should be pointed out that our PV-MAP method has some limitations. The choice
of weighting parameters α, λ1 and λ2 is empirical. In addition, the minimization algorithm used
in this paper is one type of conjugate gradient method and cannot promise to converge to the
global minimum, although a lot of experiments have demonstrated that it always converges to
a satisfactory result. Further theoretical research is needed. The simulated annealing method
or genetic algorithm may be the solution25.

V. Conclusion
A PV-MAP framework for brain MR image segmentation was proposed. The presented
approach has taken into account the inherent effects of brain MR imaging including: noise, PV
effect, image-intensity inhomogeneity and multi-spectral characteristics simultaneously. This
framework has theoretically summarized the current FCM-based segmentation methods.
Digital phantom and clinical patient data studies demonstrate that this framework can improve
segmentation performance than the AFCM algorithm in the presence of noise, PV effect and
intensity inhomogeneity, which are commonly encountered in clinic studies.

Acknowledgements

This work was supported in part by the National Institutes of Health (grant #CA82402 and grant #HL51466). Dr. H.
Lu was supported by the National Nature Science Foundation of China under Grant 30170278. The authors are grateful
to Ms. Jennifer A. Segui for editing this paper.

References
1. Vannier M, Butterfield R, Jordon D, Murphy W, Levitt RG, Gado M. “Multi-spectral analysis of

magnetic resonance images,”. Radiology 1985;154:221–224. [PubMed: 3964938]
2. Liang Z, MacFall JR, Harrington DP. “Parameter estimation and tissue segmentation from multispectral

MR images,”. IEEE Trans Medical Imaging 1994;13:441–449.
3. Rajapakse JC, Giedd JN, Rapoport JL. “Statistical approach to segmentation of single channel cerebral

MR images,”. IEEE Trans Medical Imaging 1997;16:176–186.
4. Zhang Y, Brady M, Smith S. “Segmentation of brain MR images through a hidden Markov random

field model and expectation-maximization algorithm,”. IEEE Trans Medical Imaging 2001;20:45–57.
5. Leemput KV, Maes F, Vandermeulen D, Colchester A, Suetens P. “Automatic segmentation of multiple

sclerosis lesion by model outlier detection,”. IEEE Trans Medical Imaging 2001;20:677–688.

Li et al. Page 11

Med Phys. Author manuscript; available in PMC 2005 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6. Pham DL, Prince JL. “An adaptive fuzzy C-means algorithm for image segmentation in the presence
of intensity inhomogeneities,”. Pattern Recognition Letters 1999;20:57–68.

7. Pham DL, Prince JL. “Adaptive fuzzy segmentation of magnetic resonance images,”. IEEE Trans
Medical Imaging 1999;18:737–752.

8. Ahmed MN, Yamany SM, Mohamed N, Farag AA. “A modified fuzzy C-mean algorithm for bias field
estimation and segmentation of MRI data,”. IEEE Trans Medical Imaging 2002;21:193–199.

9. Li X, Li L, Lu H, Chen D, Liang Z. “Inhomogeneity correction for magnetic resonance images with
fuzzy C-mean algorithm,”. Proceedings of SPIE Medical Imaging 2003;5032:995–1005.

10. Choi HS, Haynor DR, Kim Y. “Partial volume tissue classification of multi-channel magnetic
resonance images- A mixel model,”. IEEE Trans Medical Imaging 1991;10:395–407.

11. Van Leemput K, Maes F, Vandermeulen D, Suetens P. “A unifying framework for partial volume
segmentation of brain MR images,”. IEEE Trans Medical Imaging 2003;22:105–119.

12. X. Li, D. Eremina, L. Li, and Z. Liang, “Partial volume segmentation of medical images,” Conference
Record of IEEE NSS-MIC, in CD-ROM, 2003.

13. Axel L, Costantini J, Listerud J. “Intensity correction in surface coil MR imaging,”. American Journal
of Roentgenology 1987;148:418–420. [PubMed: 3492123]

14. Foo TKF, Hayes CE, Kang YW. “Reduction of RF penetration effects in high field imaging,”.
Magnetic Resonance in Medicine 1992;23:287–301. [PubMed: 1549043]

15. Dawant BM, Zijidenbos AP, Margolin RA. “Correction of intensity variation in MR images for
computer-aided tissue classification,”. IEEE Trans Medical Imaging 1993;12:770–781.

16. Lim KO, Pfefferbaum A. “Segmentation of MR brain images into cerebrospinal fluid and white and
gray matter,”. J Comput Assisted Tomography 1989;13:588–593.

17. Johnstion B, Atkins MS, Mackiewich B, Anderson M. “Segmentation of multiple sclerosis lesions
in intensity corrected multi-spectral MRI,”. IEEE Trans Medical Imaging 1996;15:154–169.

18. Liang Z, Wang D, Ye J, Li H, Roque C, Harrington D. “Correction of RF Inhomogeneity for Automatic
Segmentation from Multi-spectral MR Images,”. Proceedings of International Society of Magnetic
Resonance in Medicine 1997;3:p.2042.

19. Brinkman BH, Manduca A, Robb RA. “Optimized homomorphic unsharp masking for MR grayscale
inhomogeneity correction,”. IEEE Trans Medical Imaging 1998;17:161–171.

20. Vokurka EA, Thacker NA, Jackson A. “A fast model independent method for automatic correction
of intensity non-uniformity in MRI data,”. J Magnetic Resonance Imaging 1999;10:550–562.

21. Lee SK, Vannier MW. “Post-acquisition correction of MR inhomogeneity,”. Magnetic Resonance in
Medicine 1996;36:275–286. [PubMed: 8843382]

22. Chen D, Li L, Yoon D, Lee J, Liang Z. “A renormalization method for inhomogeneity correction of
MR images,”. Proceeding of SPIE Medical Imaging 2001;4322:939–942.

23. Wells WM, Grimson WEL, Kikinis R, Jolesz FA. “Adaptive segmentation of MRI data,”. IEEE Trans
Medical Imaging 1996;15:429–442.

24. Guillemaud R, Brady M. “Estimating the bias field of MR images,”. IEEE Trans Medical Imaging
1998;16:238–251.

25. Held K, Kops ER, Krause BJ, Wells WM, Kikinis R, Müller-Gärtner HW. “Markov random field
segmentation of brain MR images,”. IEEE Trans Medical Imaging 1997;16:878–886.

26. T. Kapur, W.E.L. Grimson, R. Kikinis and W.M. Wells, “Enhanced spatial priors for segmentation
of magnetic resonance imaging,” in Lecture Notes in Computer Science. Proceedings of Medical
Image Computing and Computer-Assisted Intervention-MICCAI’98, p.457–468, 1998.

27. K.M. Pohl, W.M. Wells, A. Guimond, K. Kasai, M.E. Shenton, R. Kikinis, W.E.L. Grimson and S.K.
Warfield. “Incorporating non-rigid registration into expectation maximization algorithm to segment
MR images,” in Lecture Notes in Computer Science. Proceedings of Medical Image Computing and
Computer-Assisted Intervention-MICCAI’02, p.457–468, 2002.

28. P. Wesseling, An Introduction to Multigrid Mthods, Wiley, New York, pp. 42, 1992.
29. Unser M. “Multigrid adaptive image processing,”. Proceedings of IEEE Conference on Image

Processing 1995;I:49–52.
30. Chen D, Li L, Liang Z. “A self-adaptive vector quantization algorithm for MR image segmentation,”.

Proceedings of International Society of Magnetic Resonance in Medicine 1999;1:p.122.

Li et al. Page 12

Med Phys. Author manuscript; available in PMC 2005 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



31. Cocosco CA, Kollokian V, Kwan RKS, Evans AC. “BrainWeb: Online interface to a 3D MRI
simulated brain database,”. NeuroImage 1997;5(4):S425.http://www.bic.mni.mcgill.ca/brainweb/.

32. Gerig G, Kübler O, Kikinis R, Jolesz F. “Nonlinear anisotropic filtering of MRI data,”. IEEE Trans
Medical Imaging 1992;11:221–232.

33. Winkler G, Aurich V, Hahn K, et al. “Noise reduction in images: Some recent edge-preserving
methods,”. Pattern Recognition and Image Analysis 1999;9(4):749–766.

34. Zeng X, Staib LH, Schultz RT, Duncan JS. “Segmentation and measurement of the cortex from 3-D
MR images using coupled- surfaces propagation,”. IEEE Trans Medical Imaging 1999;18:927–937.

35. Grau V, Mewes AUJ, Alcayiz M, Kikinis R, Warfield SK. “Improved watershed transform for medical
image segmentation using prior information,”. IEEE Trans Medical Imaging 2004;23:447–458.

36. Wang J, Lu H, Li T, Liang Z. “Sinogram noise reduction for low-dose CT by statistics-based nonlinear
filters”. Proceedings of SPIE Medical Imaging 2005;5747to appear

37. Hu GY, Ryu JY, O’Conell RF. “Analytical solution of the generalized discrete poisson equation,”. J
Phys A: MathGen 1998;31:9279–9282.

38. Dempster A, Laird N, Rubin D. “Maximum likelihood from incomplete data via the EM algorithm,”.
J R Stat Soc 1977;39B:1–38.

39. Liang Z, Li X, Eremina D, Li L. “An EM framework for segmentation of tissue mixtures from medical
images”. Proceedings of International Conference of IEEE Engineering in Medicine and Biology,
Concun, Mexico 2003:682–685.

Li et al. Page 13

Med Phys. Author manuscript; available in PMC 2005 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Digital phantom studies. (a) T1 weighted image. (b) T2 weighted image. (c) The ground truth
of hard segmentation. (d) The FCM segmentation. (e) The AFCM segmentation. (f) The
presented PV-MAP segmentation.
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Figure 2.
Comparison on segmented mixture images. (a) The true model of CSF mixture. (b) The true
model of GM mixture. (c) The true model of WM mixture. (d) The segmented CSF mixture
by FCM. (e) The segmented GM mixture by FCM. (f) The segmented WM mixture by FCM.
(g) The CSF mixture by AFCM. (h) The GM mixture by AFCM. (i) The WM mixture by
AFCM. (j) The CSF mixture of PV-MAP. (k) The GM mixture of PV-MAP. (l) The WM
mixture of PV-MAP.
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Figure 3.
Robustness study of the parameter α.
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Figure 4.
Clinical study. (a) T1 weighted image. (b) T2 weighted image. (c) The FCM segmentation. (d)
The AFCM segmentation. (e) The PV-MAP segmentation. (f) The bias field estimated by the
PV-MAP segmentation method.
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TABLE I
QUANTITATIVE COMPARISON OF FCM, AFCM AND PV-MAP METHODS (%).

FCM AFCM PV-MAP

WM GM CSF WM GM CSF WM GM CSF
TPF 74.57 73.60 80.69 76.58 85.80 93.26 91.96 90.27 93.96
FPF 21.42 31.66 15.63 7.58 31.08 12.95 6.94 9.08 10.92
ASR 75.16 82.60 91.49
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TABLE II
QUANTITATIVE ASSESSMENT OF ADF FILTERING ON NOISY IMAGE WITHOUT
INHOMOGENEITY EFFECT (%)

FCM PV-MAP FCM+ADF

WM GM CSF WM GM CSF WM GM CSF
TPF 96.03 91.18 95.12 96.87 93.94 94.21 96.63 93.43 93.95
FPF 9.25 4.98 4.63 5.89 4.72 4.02 6.26 5.01 4.58
ASR 93.60 95.01 94.64
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TABLE III
QUANTITATIVE ASSESSMENT OF ADF FILTERING ON NOISY IMAGE WITHOUT
INHOMOGENEITY EFFECT (%)

ADF+AFCM

WM GM CSF
TPF 97.15 78.67 89.16
FPF 25.53 6.59 5.50
ASR 86.07
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