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Abstract
Carbon monoxide (CO) and nitric oxide (NO) can be involved in regulation of cerebral circulation.
Inhibition of production of either one of these gaseous intercellular messengers inhibits newborn pig
cerebral arteriolar dilation to the excitatory amino acid glutamate. Glutamate can increase NO
production. Therefore, the present study tests the hypothesis that NO, which is increased by
glutamate, stimulates the production of CO by cerebral microvessels. Experiments used freshly
isolated cerebral microvessels from piglets that express only heme oxygenase-2 (HO-2). CO
production was measured by gas chromatography-mass spectrometry. Although inhibition of nitric
oxide synthase with L-nitro arginine (LNA) did not alter basal HO-2 catalytic activity or CO
production, LNA blocked glutamate stimulation of HO-2 activity and CO production. Further, the
NO donor sodium nitroprusside mimicked the actions of glutamate on HO-2 and CO production.
The action of NO appears to be via cGMP because 8-br-cGMP mimics and ODQ blocks, glutamate
stimulation of CO production and HO-2 catalytic activity. Inhibitors of neither casein kinase nor PI3
kinase altered HO-2 catalytic activity. Conversely, inhibition of calmodulin with calmidazolium
chloride blocked glutamate stimulation of CO production and reduced HO-2 catalytic activity. These
data suggest that glutamate may activate NOS producing NO that leads to CO synthesis via a cGMP
dependent elevation of HO-2 catalytic activity. These results are consistent with the findings in vivo
that either HO or NOS inhibition blocks cerebrovascular dilation to glutamate in piglets.
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Introduction
Both carbon monoxide (CO) and nitric oxide (NO) are endogenously produced, gaseous,
intercellular messengers that can be involved in regulation of cerebral circulation. In neonatal
pigs, CO regulation and modulation are involved in cerebrovascular circulatory control in
response to neuronal activity, hypoxia, and changing blood pressure (12,18,26,41). While the
contributions of NO to cerebral blood flow regulation increase with age (40,47), NO is
important in the newborn as a permissive factor enabling vascular responses to CO (15). In the
piglet cerebrovascular circulation, glutamate induced pial arteriolar dilation can be blocked by
either inhibiting nitric oxide synthase (NOS) (14,24), that produces NO, or heme oxygenase
(HO)(18,30), that produces CO. One possible explanation for these apparently conflicting data
is that one gaseous messenger is necessary to allow dilation to the other. Indeed, as noted above,
such a permissive contribution of NO to CO-induced dilation has been described. Another
possibility is that glutamate receptor activation increases the production of one of the two gases
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and that gas in turn increases the production of the other, which is the final mediator of the
dilatory response.

CO has been reported to directly affect NO production. In intestinal smooth muscle, CO
increased NO that activated of L-type Ca 2+ channels (19). Conversely, CO dose-dependently
inhibited NO synthesis by rat renal arteries, although low concentrations of CO actually
increased NO by causing release from a preformed pool (38).

Studies to date regarding the effects of NO on CO production have reported both increases and
decreases of CO production caused by NO. Thus, HO-2 expressed in Escherichia coli was
inhibited by NO donors via binding of NO to a heme regulatory motif on HO-2 (5). Also,
Rodriguez et al (31) found that rats treated for two days with the NOS inhibitor, NG-nitro-L-
arginine methyl ester, had increased renal CO production without any change in HO expression.
Conversely, in isolated heart (22) and porcine aortic endothelial cells (25) NO increased CO
production.

Because both inhibition of NOS and HO block glutamate-induced dilation and glutamate has
been reported to increase NO production (6,8), we wondered if NO could stimulate CO
production, adding another form of interaction to the permissive action of NO in CO-mediated
dilation to glutamate. Therefore, the present experiments were designed to test the hypothesis
that NO stimulates CO production by piglet cerebral microvessels. We also examined potential
mechanisms by which NO could stimulate the production of CO.

Materials and Methods
Experiments using animals were reviewed and approved by the Animal Care and Use
Committee of the University of Tennessee Health Science Center. Brains were removed from
1–3 day old piglets under ketamine (33 mg/kg) and acepromazine (3.3 mg/kg) anesthesia.

Isolation of cerebral microvessels
Cerebral microvessels were isolated from the brains as described before (15,16). The isolation
was accomplished in cold Krebs solution (mM: 120 NaCl, 5 KCl, 0.62 MgSO4, 1.8 CaCl2, 10
N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES), 6 glucose [pH 7.4]). The dura
mater and attached vessels were removed from the tissue, and the tissue was washed three
times with the isolation solution. The tissue was minced into tiny pieces using two scalpels in
isolation solution and then transferred to a 40-ml Dounce homogenizer and homogenized with
10 strokes of a loose-fitting pestle. The homogenate was passed through a 300-μm, nylon-mesh
screen. The passage was refiltered over a 60-μm, nylonmesh screen. The screen was removed
and placed in a 50-ml centrifuge tube containing Krebs solution. Microvessels that passed
through the 300μm but not 60μm mesh screen were washed off by agitation and scraping and
then centrifuged at 1200 rpm for 5 min. Experimentation began immediately after vessel
isolation (less than 30 min from brain removal) with resuspension of the microvessels in Krebs
solution.

Experimental treatments—Treatments were begun by replacement of Krebs in the vial
with fresh Krebs containing the experimental treatment. Glutamate (10−4 M), Nω-nitro-L-
arginine (LNA)(10−3 M), sodium nitroprusside (SNP) (10−7–10−5 M), 8-bromo-cGMP (10−5

M), TBB (4,5,6,7-tetrabromo-2-azabenzimidazole) (2x10−5 M), LY294002 (2-(4-
morpholinyl)-8-phenyl-4H-1-benzopyran-4-one) (2.5x10−5 M) and calmidizolium Cl (CzCl)
(2x10−5M) were dissolved in Krebs. Heme (5x10−6 M) was prepared as heme-l-lysinate or
hemin in basic Krebs and protected from light. Guanylyl cyclase was inhibited with 1H - [1,2,4]
oxadiazolo [4,3-a] quinoxaline-l-one (ODQ). ODQ (5x10−4 M) was initially dissolved in
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DMSO to a concentration of 4x10−2M, and diluted approximately 100 times with Krebs.
DMSO at double this concentration did not effect CO production or HO-2 catalytic activity.

The concentrations of treatments used were selected based on one or more of three sources.
1.) Where data were available, inhibitor concentrations were those that had been found to be
effective in vivo from topical application to the piglet cerebral cortex using cranial windows
(LNA (17) and ODQ (14)). 2.) Other inhibitor concentrations were selected from literature
sources of use in vitro (TBB (1), LY294002 (7) CzCl (2)). 3.) Agonist concentrations were in
all cases selected from submaximal dilator concentrations in piglet cranial window experiments
(heme (18), glutamate (14), SNP (17), 8-br-cGMP (14)).

The apparent catalytic activity of HO-2 in the intact cerebral microvessels was determined by
providing exogenous substrate so endogenous substrate availability would not affect CO
production. We assume that under the present experimental conditions, treatments used are
unlikely to markedly alter O2 partial pressure or cellular reducing equivalents. Thus, it seems
reasonable to propose that catalytic activity, defined as CO production per mg protein when
substrate concentration is high and constant, includes HO catalytic efficiency and fractional
activation by intracellular relocation.

Measurement of CO production—For measurement of CO production, freshly isolated
microvessels were placed inside amber vials (2.0 ml) containing Krebs solution. All subsequent
assay steps were carried out in the dark to prevent non-enzymatic photo-oxidative production
of CO ex vivo due to the photo-degradation of organic compounds. Krebs buffer in each vial
was replaced with fresh Krebs or fresh Krebs containing the experimental treatment to begin
incubation. The internal standard (see below) was injected into the bottom of the vial and the
vial was immediately sealed with a rubberized Teflon lined cap. Cerebral microvessels were
incubated for 30 min at 37°C. Incubations were terminated by placing the samples in ice water
(0°C) and CO production was determined immediately.

A saturated solution of the isotopically labeled CO (13C16O) (isotopic purity >99%) was used
as an internal standard for quantitative measurements by gas chromatography/mass
spectrometry (GC/MS) (15,16).

GC/MS analysis of the headspace gas was performed using a Hewlett-Packard 5970 mass-
selective ion detector interfaced to a Hewlett Packard 5890A gas chromatograph. The
separation of CO from other gases was carried out on a Varian-5A mole sieve capillary column
(30 m; 0.32 mm ID) with a linear temperature gradient from 35°C to 65°C at 5° per minute.
Helium was the carrier gas at a column head pressure of 4.0 psi. Aliquots (100μl) of the
headspace gas were injected using a gas-tight syringe into the splitless injector having a
temperature of 120°C. Ions at m/z 28 and 29 corresponding to 12C16O and 13C16O, respectively,
were recorded via selective ion monitoring. The amount of CO in samples was calculated from
the ratio of peak areas of m/z 28 and m/z 29. The results are expressed as pmol of CO released
into the headspace gas per 100 μg protein in 30 min. Protein was measured by the Bradford
method.

Statistical analysis—Values are presented as means ± SEM. The results were subjected to
analysis of variance (ANOVA) for repeated measures with Tukey post hoc to isolate
differences between groups. A level of P < 0.05 was considered significant.

Results
Acute NOS inhibition did not affect either basal CO production or HO-2 catalytic activity.
Thus, 30–60 min following treatment, cerebral microvessels produced 19±3 pmol CO/100
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μg.30min without and 24±4 pmol CO/10 μg.30min with LNA treatment (n=4 separate
microvessel preparations). Furthermore, HO-2 catalytic activity, detected as heme stimulated
CO production, was 51±11 pmol CO/100 μg.30min before and 51±8 pmol CO/100 μg.30min
after LNA treatment (n=4).

In contrast, NOS inhibition markedly attenuated glutamate stimulation of CO production (Fig.
1). Furthermore, augmentation of HO-2 catalytic activity by glutamate was attenuated when
microvessels were treated with LNA (Fig. 1). Thus, in LNA treated microvessels, exogenous
heme-stimulated CO production was no different whether or not glutamate was applied (Fig.
1, last two bars). These data suggest that NO may be involved in the mechanism by which
glutamate stimulates CO production.

Because the data above suggest that NO may increase CO production, we addressed this
hypothesis directly using the NO donor, SNP. SNP strongly stimulated CO production (Fig.
2). In addition, similarly to glutamate, SNP augmented HO-2 catalytic activity (Fig. 2). These
data are consistent with the hypothesis that glutamate increases NO that increases CO
production by elevating HO-2 catalytic activity.

As NO is a strong activator of guanylyl cyclase, we addressed the hypothesis that the
mechanism by which NO increases HO-2 activity and thus CO production is by increasing
cGMP. Initially, guanylyl cyclase was blocked with ODQ (14). As anticipated, ODQ decreased
CO production by cerebral microvessels and strongly attenuated the increase CO caused by
exogenous heme (catalytic activity)(Fig. 3). Furthermore, as would be expected if glutamate
increases NO that elevates cGMP that then augments CO production, ODQ blocked glutamate
induced CO production (Fig. 4) and glutamate-induced stimulation of HO-2 activity (93 versus
40 pmol CO/10 μg.30min without and with ODQ, respectively). In addition, the stable cGMP
analog, 8-br-cGMP, stimulated CO production (Fig. 5). In the presence of sufficient 8-br-
cGMP to increase CO production similarly to glutamate, glutamate did not increase and LNA
did not decrease CO production (Fig. 5). These data suggest glutamate may increase CO
production by stimulating NO production by the microvessels. NO activates guanylyl cyclase
producing cGMP that increases the catalytic activity of HO-2. Data in figures 2 and 5 suggest
60–70 pmol CO/100μg protein.30min is approximately maximal CO production without
provision of additional substrate (as in Fig. 1,3). The fact that glutamate did not further increase
CO production when co-administered with 10−5 M 8-br-cGMP suggests glutamate may not
increase cellular heme.

The present results and past data from others and us (see discussion) have shown
phosphorylation can increase HO-2 catalytic activity. Therefore, we examined the possibility
that two kinases that have been shown to alter HO-2 catalytic activity in other tissues of rats
might do the same in piglet cerebral microvessels. The casein kinase inhibitor TBB (20μM)
did not change HO-2 catalytic activity detected by conversion of exogenous heme (10−6 M)
to CO (106±29 and 104±25 pmol/100μg protein.30min without and with TBB, respectively
(n=8)) and glutamate (1mM) still increased HO-2 catalytic activity (160±31 and 220±45,
without and with TBB, respectively (n=8)). Similarly, the PI3 kinase inhibitor LY294002
(25μM) did not alter catalytic activity in piglet microvessels (at 10−4 M heme: 76±21 and 90
±26 pmol/100μg protein.30min without and with LY294002, respectively (n=8)).

Since glutamate may increase cytosolic Ca2+ (37) and Ca2+/calmodulin-dependent eNOS
increases NO in endothelial cells in response to increased cytosolic Ca2+ (20,32), we examined
the effect of calmodulin inhibition with calmidazolium chloride (CzCl) on glutamate-induced
CO production (Fig. 6). While CzCl had no effect on basal CO production, it completely
blocked glutamate stimulation of CO production. Furthermore, CzCl reduced HO-2 catalytic
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activity (CO production from exogenous heme (10−5 M)) from 53±7 to 36±5 pmol CO/100
μg protein.30min (p<0.05, n=4).

Discussion
The new findings on newborn pig cerebral microvessels are: 1. Basal NO production does not
appear to be involved in either controlling HO-2 catalytic activity or basal CO production. 2.
Increasing NO and cGMP elevates HO-2 catalytic activity and stimulates CO production. 3.
Glutamate elevates NO and, thereby, cGMP, that enhances HO-2 catalytic activity, causing
CO production to increase. 4. Calmodulin is required for glutamate-induced stimulation of
HO-2 activity and CO production.

Cellular CO production results from metabolism of heme by HO. In freshly isolated cerebral
microvessels from newborn pigs, as in the intact brain, in vivo, of the two known, highly
catalytically active isoforms of HO, only HO-2 expression is detectable (28). HO-2 is
constitutively expressed and induced by few stimuli (21), so expression of HO in the present
experiments can be considered invariant.

Therefore, CO production can be regulated by delivery of substrate (heme) and catalytic
activity of HO-2. HO-2 catalytic activity may be altered by co-factor availability, cellular
localization, and/or post-translational modifications of the enzyme. Under the experimental
conditions used it is unlikely that oxygen, NADPH, or NADPH-cytochrome c reductase would
be limiting. The rate-limiting step in heme synthesis is the production in mitochondria of delta-
aminolevulinic acid from succinyl CoA and glycine catalyzed by the tightly regulated enzyme
delta-aminolevulinic acid synthase (ALAS)(13,23). However, we did not find evidence of
alteration of heme provision contributing to either glutamate- or NO- induced CO production.
This conclusion is particularly supported by the finding that glutamate did not increase CO
production when catalytic activity of HO-2 was already increased by 8-br-cGMP. If glutamate
increased heme delivery, one would expect augmented CO production in the context of elevated
HO-2 activity rather than no change. Therefore, it appears that glutamate, NO, and cGMP
stimulate CO production by increasing HO-2 catalytic activity. Indeed, glutamate and SNP
increased conversion of exogenous heme to CO.

HO-2 catalytic activity control mechanisms may be cell type and tissue specific. In neurons
HO-2 activity can be stimulated by CK2 catalyzed phosphorylation of serine 79 (1).
Glutamatergic activation of HO-2 results from metabotropic glutamate receptor-induced
Ca2+ release, activation of protein kinase C (PKC), and CK2 phosphorylation (3). Conversely,
in freshly isolated piglet cerebral microvessels and microvascular endothelial cells in culture,
CO production is increased by ionotropic, but not metabotropic, glutamate receptor stimulation
(27). In addition, protein tyrosine kinase inhibition decreased and tyrosine phosphatase
inhibition increased basal CO production and glutamate stimulated CO production (15).
Neither treatment of the cerebral microvessels with phorbol ester to activate PKC, H-7 to inhibit
PKC, nor TBB to inhibit CK2 increased HO-2 catalytic activity (16, present study).

In contrast to the present study, in preparations of HO-2 expressed in E. coli, NO donors
inhibited HO-2 (5), possibly suggesting that NO can have a direct inhibitory effect on HO-2
that is masked in the intact system by cGMP-induced stimulation. Such a direct inhibitory
effect of NO has been reported in HO-1 rich aortic endothelial cell microsomes where
nitrosylation of heme prevented catabolism by HO (11). Interestingly, in contrast to the present
studies of the effects of acute exposure (minutes) to NO, chronic exposure to NO consistently
inhibits HO (11,31).

CzCl, that inhibits calmodulin, decreased HO-2 catalytic activity and blocked glutamate
stimulation of CO production. Also, Boehning (2) showed Ca2+/CaM regulation of HO-2
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catalytic activity. Similarly to the present experiments in piglet microvessels, glutamate
increased HO-2 activity and that increase was blocked by CzCl in rat cortical neurons. These
results were surprising to us because we had found previously that the Ca ionophore,
ionomycin, in Ca2+ replete media increased CO production, but did not increase HO-2 catalytic
activity (15). Furthermore, ionomycin and Ca2+ free media to deplete cellular Ca2+ did not
decrease basal CO production nor prevent glutamate-induced stimulation of CO production.
Thus, the results of our earlier study that elevations of cytosolic Ca2+ increased CO production
but did not detectably increase HO-2 catalytic activity appear inconsistent with the present
findings and those of Boehning et al. However, In our previous study we either flooded the
cell with Ca2+ with Ca2+ ionophore or eliminated extracellular Ca2+ and attempted to empty
intracellular stores. In the present study, Ca2+ was not manipulated but instead Ca2+/CaM
signaling was eliminated by blocking CaM. Interestingly, Ca2+-independent CaM-dependent
regulation of enzyme activity has been described (9,35,42), but not for HO-2. However, in rat
cortical neurons ionomycin did increase bilirubin production from exogenous heme (2).
Explanations for the difference between rat cortical neurons and newborn pig microvascular
endothelium in the effects of ionomycin on HO-2 catalytic activity are not immediately
apparent.

Although both microvascular smooth muscle and endothelial cells are stimulated to generate
CO by glutamate, CO production and the response to glutamate are more pronounced in
endothelial cells (15). Piglet cerebrovascular endothelial cells express ionotropic and, to a
lesser extent, metabotropic glutamate receptors, as well as glutamate transporters. Ionotropic
receptor stimulation causes increased CO production (27). Ionotropic glutamate receptor
stimulation can increase reactive oxygen species in endothelial cells (33). However, reactive
oxygen species would be expected to decrease NO (10) and thus work against stimulation of
CO production. Glutamate increases cytosolic Ca2+ via metabotropic and ionotropic receptor
mechanisms in neurons (44) and glia (34,36). Glutamate-induced elevations in Ca2+ also occur
in endothelial cells (29). Since eNOS (see below) activity can be regulated by Ca 2+/CaM and
elevation of CO production by glutamate was blocked by CzCl, ionotropic glutamate receptor
-induced elevation of cytosolic Ca2+ could be involved in glutamate-induced CO production.

The present data suggest NO is an intermediary signal between glutamate receptor stimulation
and CO production in cerebral microvessels. The cell types included in the microvessel
preparation are primarily endothelial cells and microvascular smooth muscle, with adhering
pericytes, astrocytes, and perivascular nerve endings. Because the vessels are used immediately
upon collection, iNOS could not be induced. The predominant NOS is probably eNOS, but the
potential inclusion of nNOS cannot be excluded. Because eNOS can be activated to produce
NO by an elevation of cytosolic Ca2+ (20,32,39,46), glutamate may increase endothelial cell
Ca2+ that would activate eNOS. Conversely, eNOS activity can be increased by elevations of
eNOS sensitivity to CaM (reviewed in 43) so glutamate could increase NO without increasing
cytosolic Ca2+ concentration.

These data on isolated vessels and those from intact cerebrovascular circulation in vivo are not
entirely consistent, suggesting potential additional sources of CO in vivo may contribute to
pial arteriolar dilation to glutamate. Thus, in the present study LNA totally abolished glutamate
–induced CO production. However, in vivo, while LNA blocked glutamate-induced dilation,
a constant, background amount of SNP completely restored dilation to glutamate (13). If CO
causes dilation to glutamate and NO causes the increase in CO, how could glutamate cause
dilation if NO is held constant? In vivo cerebral microvessels are accompanied by astrocytes
and neurons, in particular, that also have glutamate receptors, HO-2, and nNOS. In fact,
involvement of nNOS in glutamate-induced cerebrovascular dilation in mouse cerebellum has
been demonstrated (45). Furthermore, the inclusion of HO-2 and glutamate receptors in
astrocytes and neurons provide the possibility of glutamate-induced stimulation of CO
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independent of NO in either of these cell types. Because the vascular smooth muscle appears
to require a permissive level of cGMP that can be provided by eNOS derived NO (15), a
constant level of NO, or cGMP, could allow arteriolar dilation to occur in response to increases
CO from neurons and/or glia.

cGMP is the predominant mechanism by which NO increases CO production in microvessels.
Inhibition of guanylyl cyclase completely blocked the CO increases caused by glutamate and
SNP and reduced HO-2 catalytic activity. 8-br-cGMP mimicked the stimulatory effects of
glutamate and SNP. Therefore, the present data are consistent with the hypothesis that NO
increases HO-2 catalytic activity and glutamate-induced CO production by increasing cGMP.
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Figure 1.
Effect of glutamate (10−4 M) on CO production by piglet cerebral microvessels from
endogenous and exogenous heme (5x10−6 M) in the absence and presence of LNA (10−3 M).
means±SEM. *P<0.05 compared to preceding bar. N=4.
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Figure 2.
Effect of sodium nitroprusside (SNP) on CO production and HO-2 catalytic activity (exogenous
heme, 5x10−6 M) by piglet cerebral microvessels. means±SEM. *P<0.05 compared to no SNP.
+P<0.05 compared to exogenous heme with no SNP. N=4.
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Figure 3.
Effect of ODQ (5x10−4M) on CO production from endogenous and exogenous heme
(5x10−6 M) by piglet cerebral microvessels. means±SEM. *P<0.05 compared to control.
+P<0.05 compared to heme without ODQ. N=6.
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Figure 4.
Effect of ODQ (5x10−4M) on glutamate (10−4 M) stimulation of CO production by piglet
cerebral microvessels. means±SEM. *P<0.05 compared to control. +P<0.05 compared to ODQ
without glutamate. N=6.
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Figure 5.
Effect of 8 br-cGMP (10−5 M) on CO production by piglet cerebral microvessels without and
with glutamate (10−4 M) and/or LNA (10−3M). means±SEM. *P<0.05 compared to LNA alone.
N=8.
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Figure 6.
Effect of calmidizolium Cl (CzCl) (2x10−5M) on glutamate (10−4M) stimulation of CO
production by piglet cerebral microvessels. means±SEM. *P<0.05 compared to control. N=7.
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