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Joseph Henry Laboratories of Physics, and Lewis–Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544

Communicated by David Mumford, Brown University, Providence, RI, September 9, 2005 (received for review April 8, 2005)

In an age of increasingly large data sets, investigators in many
different disciplines have turned to clustering as a tool for data
analysis and exploration. Existing clustering methods, however,
typically depend on several nontrivial assumptions about the
structure of data. Here, we reformulate the clustering problem
from an information theoretic perspective that avoids many of
these assumptions. In particular, our formulation obviates the need
for defining a cluster ‘‘prototype,’’ does not require an a priori
similarity metric, is invariant to changes in the representation of
the data, and naturally captures nonlinear relations. We apply this
approach to different domains and find that it consistently pro-
duces clusters that are more coherent than those extracted by
existing algorithms. Finally, our approach provides a way of
clustering based on collective notions of similarity rather than the
traditional pairwise measures.

information theory � rate distortion � cluster analysis � gene expression

The idea that complex data can be grouped into clusters or
categories is central to our understanding of the world, and this

structure arises in many diverse contexts (e.g., Table 1). In popular
culture we group films or books into genres; in business we group
companies into sectors of the economy; in biology we group the
molecular components of cells into functional units or pathways,
and so on. Typically, these groupings are first constructed by hand
using specific but qualitative knowledge; e.g., Dell and Apple
belong in the same group because they both make computers. The
challenge of clustering is to ask whether these qualitative groupings
can be derived automatically from objective, quantitative data. Is
our intuition about sectors of the economy derivable, for example,
from the dynamics of stock prices? Are the functional units of the
cell derivable from patterns of gene expression under different
conditions (1, 2)? The literature on clustering, even in the context
of gene expression, is vast (3). Our goal here is not to suggest yet
another clustering algorithm, but rather to focus on questions about
the formulation of the clustering problem. We are led to an
approach, grounded in information theory, that should have wide
applicability.

Our intuition about clustering starts with the obvious notion that
similar elements should fall within the same cluster, whereas
dissimilar ones should not. But clustering also achieves data com-
pression: instead of identifying each data point individually, we can
identify points by the cluster to which they belong, ending up with
a simpler and shorter description of the data. Rate-distortion theory
(4, 5) formulates precisely the tradeoff between these two consid-
erations, searching for assignments to clusters such that the number
of bits used to describe the data are minimized while the average
similarity between each data point and its cluster representative (or
prototype) is maximized. A well known limitation of this formula-
tion (as in most approaches to clustering) is that one needs to
specify the similarity measure in advance, and quite often this
choice is made arbitrarily. Another issue, which attracts less atten-
tion, is that the notion of a representative or ‘‘cluster prototype’’ is
inherent to this formulation, although it is not always obvious how
to define this concept. Our approach provides plausible answers to
both these concerns, with further interesting consequences.

Theory
Theoretical Formulation. Imagine that there are N elements (i � 1,
2, . . . , N) and Nc clusters (C � 1, 2, . . . , Nc) and that we have

assigned elements i to clusters C according to some probabilistic
rules, P(C � i), that serve as the variables in our analysis.† If we reach
into a cluster and pull out elements at random, we would like these
elements to be as similar to one another as possible. Similarity
usually is defined among pairs of elements (e.g., the closeness of
points in some metric space), but as noted below we also can
construct more collective measures of similarity among r � 2
elements; perhaps surprisingly we will see that that this more
general case can be analyzed at no extra cost. Leaving aside for the
moment the question of how to measure similarity, let us assume
that computing the similarity among r elements i1, i2, . . . , ir returns
a similarity measure s(i1, i2, . . . , ir). The average similarity among
elements chosen out of a single cluster is

s�C� � �
i1�1

N �
i2�1

N

· · · �
ir�1

N

P�i1�C�P�i2�C� · · · P�ir�C�s�i1 , i2 , . . . , ir�,

[1]

where P(i�C) is the probability to find element i in cluster C. This
average similarity corresponds to a scenario where one chooses
the elements {i1i1, i2, . . . , ir} at random out of a cluster C,
independently of each other; other formulations also might be
plausible. From Bayes’ rule we have P(i � C) � P(C � i)P(i)�P(C),
where P(C) is the total probability of finding any element in
cluster C, P(C) � ¥i P(C � i)P(i). In many cases the elements i
occur with equal probability so that P(i) � 1�N. We further
consider this case for simplicity, although it is not essential. The
intuition about the ‘‘goodness’’ of the clustering is expressed
through the average similarity over all of the clusters

�s� � �
C�1

Nc

P�C�s�C�. [2]

For the special case of pairwise ‘‘hard’’ clustering, we obtain
�s�h � (1�N)¥C, i, j (1��C�)s(i, j), where �C� is the size of cluster C.
This simpler form was shown in ref. 6 to satisfy basic invariance
and robustness criteria.

The task then is to choose the assignment rules P(C � i) that
maximize �s�, while, as in rate-distortion theory, simultaneously
compressing our description of the data as much as possible. To
implement this intuition we maximize �s� while constraining the
information carried by the cluster identities (5)

I�C; i� �
1
N �

i�1

N �
C�1

Nc

P�C � i�log� P�C � i�
P�C� � . [3]

Conflict of interest statement: No conflicts declared.

Abbreviations: ESR, environmental stress response; GO, Gene Ontology.

*To whom correspondence should be addressed. E-mail: nslonim@princeton.edu.

†Conventionally, one distinguishes ‘‘hard’’ clustering, in which each element is assigned to
exactly one cluster, and ‘‘soft’’ clustering in which the assignments are probabilistic,
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Thus, our mathematical formulation of the intuitive clustering
problem is to maximize the functional

F � �s� � TI�C; i�, [4]

where the Lagrange multiplier T enforces the constraint on I(C;
i). Notice that, as in other formulations of the clustering prob-
lem, F resembles the free energy in statistical mechanics, where
the temperature T specifies the tradeoff between energy and
entropy like terms.

This formulation is intimately related to conventional rate-
distortion theory. In rate-distortion clustering, one is given a fixed
number of bits with which to describe the data, and the goal is to
use these bits so as to minimize the distortion between the data
elements and some representatives of these data. In practice, the
bits specify membership in a cluster, and the representatives are
prototypical or average patterns in each cluster. Here we see that
we can formulate a similar tradeoff with no need to introduce the
notion of a representative or average; instead, we measure directly
the similarity of elements within each cluster; moreover, we can
consider collective rather than pairwise measures of similarity. A
more rigorous treatment detailing the relation between Eq. 4 and
the conventional rate-distortion functional will be presented else-
where.

Optimal Solution. In general it is not possible to find an explicit
solution for the P(C � i) that maximize F. However, if we assume
that F is differentiable with respect to the variables P(C � i),
equating the derivative to zero yields after some algebra a set of
implicit, self-consistent equations that any optimal solution must
obey:

P�C�i� �
P�C�

Z�i; T�
exp� 1

T
�r s�C ; i� � �r � 1�s�C��� , [5]

where Z(i; T) is a normalization constant and s(C; i) is the
expected similarity between i and r 	 1 members of cluster C

s�C; i� � �
i1�1

N �
i2�1

N

· · · �
ir	1�1

N

P�i1�C�P�i2�C� · · ·

P�ir	1 � C�s�i1, i2, · · · , ir	1, i�. [6]

The derivation of these equations from the optimization of F is
reminiscent of the derivation of the rate-distortion (5) or infor-

mation bottleneck (7) equations. This simple form is valid when
the similarity measure is invariant under permutations of the
arguments. In the more general case we have

P�C � i� �
P�C�

Z�i; T�
exp� 1

T� �
r
�1

r

s�C ; i �r
�� � �r � 1�s�C�� � ,

[7]

where s(C; i(r
)) is the expected similarity between i and r 	 1
members of cluster C when i is the r
 argument of s.

An obvious feature of Eq. 5 is that element i should be assigned
to cluster C with higher probability if it is more similar to the other
elements in the cluster. Less obvious is that this similarity has to be
weighed against the mean similarity among all of the elements in the
cluster. Thus, our approach automatically embodies the intuitive
principle that ‘‘tightly knit’’ groups are more difficult to join. We
emphasize that we did not explicitly impose this property, but rather
it emerges directly from the variational principle of maximizing F;
most other clustering methods do not capture this intuition.

The probability P(C � i) in Eq. 5 has the form of a Boltzmann
distribution, and increasing similarity among elements of a
cluster plays the role of lowering the energy; the temperature T
sets the scale for converting similarity differences into proba-
bilities. As we lower this temperature, there is a sequence of
‘‘phase transitions’’ to solutions with more distinct clusters that
achieve greater mean similarity in each cluster (8). For a fixed
number of clusters, reducing the temperature yields more de-
terministic P(C � i) assignments.

Algorithm. Although Eq. 5 is an implicit set of equations, we can
turn this self-consistency condition into an iterative algorithm
that finds an explicit numerical solution for P(C � i) that corre-
sponds to a (perhaps local) maximum of F. In Fig. 5, which is
published as supporting information on the PNAS web site, we
present pseudocode for the algorithm in the case r � 2. Extend-
ing the algorithm for the general case of more than pairwise
relations (r � 2) is straightforward. In principle we repeat this
procedure for different initializations and choose the solution
that maximizes F � �s� 	 TI(C; i). We emphasize that we use this
algorithm mainly because it emerges directly out of the theo-
retical analysis. Other procedures that aim to optimize the same
target functional are certainly plausible, and we expect future
research to elucidate the potential (dis)advantages of the dif-
ferent alternatives.

Table 1. Examples of clusters in three different data sets

Cluster Members Description

Genes
C18 RPS10A, RPS10B, RPS11A, RPS11B, RPS12 Proteins of the small ribosomal subunit
C15 FRS1, KRS1, SES1, TYS1, VAS1 Enzymes that attach amino acids to tRNA
C4 PGM2, UGP1, TSL1, TPS1, TPS2 Enzymes involved in the trehalose anabolism

pathway
Stocks

C17 Wal-Mart, Target, Home Depot, Best Buy, Staples
C12 Microsoft, Apple Comp., Dell, HP, Motorola
C2 NY Times, Tribune Co., Meredith Corp., Dow Jones & Co.,

Knight-Ridder Inc.
Movies

C12 Snow White, Cinderella, Dumbo, Pinocchio, Aladdin
C1 Psycho, Apocalypse Now, The Godfather, Taxi Driver,

Pulp Fiction
C7 Star Wars, Return of the Jedi, The Terminator, Alien,

Apollo 13

For each cluster, a sample of five typical items is presented. All clusters were found through the same automatic procedure.
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Information as a Similarity Measure. In formulating the clustering
problem as the optimization of F, we have used, as in rate-distortion
theory, the generality of information theory to provide a natural
measure for the cost of dividing the data into more clusters, but the
similarity measure remains arbitrary and commonly is believed to
be problem specific. Is it possible to use information theory to
address this issue as well? To be concrete, consider the case where
the elements i are genes and we are trying to measure the relation
between gene expression patterns across a variety of conditions � �
1, 2, . . . , M; gene i has expression level ei(�) under condition �. We
imagine that there is some real distribution of conditions that cells
encounter during their lifetime, and an experiment with a finite set
of conditions provides samples out of this distribution. Then, for
each gene we can define the probability density of expression levels

Pi�e� �
1
M �

��1

M

��e � ei����, [8]

which should become smooth as M3 �. Similarly we can define
the joint probability density for the expression levels of r genes
i1, i2, . . . , ir

Pi1i2· · ·ir
�e1 , e2 , . . . , er�

�
1
M �

��1

M

��e1 � ei1
������e2 � ei2

���� · · · ��er � eir
����. [9]

Fig. 1. ESR data and information relations. (A) Expression profiles of the
�900 genes in the yeast ESR module across the 173 microarray stress experi-
ments (12). (B) Mutual information relations (in bits) among the ESR genes. In
both A and B the genes are sorted according to the solution with 20 clusters
and a relatively saturated �s�. Inside each cluster, genes are sorted according
to their average mutual information relation with other cluster members.

Fig. 2. Tradeoff curves in all three applications. Each curve describes the
solutions obtained for a particular number of clusters. Different points along
each curve correspond to different local maxima of F at different T values. (A)
Tradeoff curves for the ESR data with 1�T � {5, 10, 15, 20, 25}. In Fig. 4, we
explore the possible hierarchical relations between the four saturated solu-
tions at 1�T � 25. (B) Tradeoff curves for the Standard & Poor’s 500 data with
1�T �{15, 20, 25, 30, 35}. (C) Tradeoff curves for the EachMovie data with 1�T �
{20, 25, 30, 35, 40}.
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Given the joint distributions of expression levels, information
theory provides natural measures of the relations among genes.
For r � 2, we can identify the relatedness of genes i and j with
the mutual information between the expression levels

s�i, j� � Ii, j � �de1�de2Pij�e1 , e2�log2� Pij�e1 , e2�

Pi�e1�Pj�e2�
� bits.

[10]

This measure is naturally extended to the multiinformation
among multiple variables (9), or genes

Ii1,i2, · · · , ir

�r� � � dre Pi1i2 · · · ir
�e1 , e2 , . . . , er�

� log2� Pi1i2· · ·ir
�e1 , e2 , . . . , er�

Pi1
�e1�Pi2

�e2� · · · Pir
�er�

� bits. [11]

We recall that the mutual information is the unique measure of
relatedness between a pair of variables that obeys several simple and
desirable requirements independent of assumptions about the form
of the underlying probability distributions (4). In particular, the
mutual (and multi-) information is independent of invertible trans-
formations on the individual variables. For example, the mutual
information between the expression levels of two genes is identical
to the mutual information between the log of the expression levels:
there is no need to find the ‘‘right’’ variables with which to represent
the data. The absolute scale of the information measure also has a
clear meaning. For example, if two genes share more than one bit
of information, then the underlying biological mechanisms must be
more subtle than just turning expression on and off. In addition, the
mutual information reflects any type of dependence among vari-
ables, whereas ordinary correlation measures typically ignore non-
linear dependences.

Although these theoretical advantages are well known, in prac-
tice information theoretic quantities are notoriously difficult to
estimate from finite data. For example, although the distributions
in Eqs. 8 and 9 become smooth in the limit of many samples (M3
�), with a finite amount of data one needs to regularize or discretize
the distributions, and this process could introduce artifacts. Al-

though there is no completely general solution to these problems,
we have found that in practice the difficulties are not as serious as
one might have expected. By using an adaptation of the ‘‘direct’’
estimation method originally developed in the analysis of neural
coding (10), we have found that one can obtain reliable estimates
of mutual (and sometimes multi-) information values for a variety
of data types, including gene expression data (11). In particular,
experiments which explore gene expression levels under �100
conditions are sufficient to estimate the mutual information be-
tween pairs of genes with an accuracy of �0.1 bits.‡

To summarize, we have suggested a purely information-theoretic
approach to clustering and categorization: relatedness among ele-
ments is defined by the mutual (or multi-) information, and optimal
clustering is defined as the best tradeoff between maximizing this
average relatedness within clusters and minimizing the number of
bits required to describe the data. The result is a formulation of
clustering that trades bits of similarity against bits of descriptive
power, with no further assumptions. A freely available web imple-
mentation of the clustering algorithm and the mutual information
estimation procedure is available from the web site of the Lewis–
Sigler Institute for Integrative Genomics.

Results
Gene Expression. As a first test case we consider experiments on the
response of gene expression levels in yeast to various forms of
environmental stress (12). Previous analysis identified a group of
�300 stress-induced and �600 stress-repressed genes with ‘‘nearly
identical but opposite patterns of expression in response to the
environmental shifts’’ (13), and these genes were termed the
environmental stress response (ESR) module. In fact, based on this
observation, these genes were excluded from recent further analysis
of the entire yeast genome (14). Nonetheless, as we shall see next,
our approach automatically reveals further rich and meaningful
substructure in these data.

As seen in Fig. 1A, differences in expression profiles within the

‡It should be noted that in applications where there is a natural similarity measure it might
be advantageous to use this measure directly. Furthermore, in situations where the
number of observations is not sufficient for nonparametric estimates of the information
relations, other heuristic similarity measures should be employed, or one could use
parametric models for the underlying distributions. Notice, though, that these alternative
measures can be incorporated into the algorithm in Fig. 5.

Fig. 3. Comparison of coherence results
of our approach (yellow) with conventional
clustering algorithms (17). Green, K-means;
blue, K-medians; red, hierarchical. For the
hierarchical algorithms, four different vari-
ants are tried as follows: (from left to right)
complete, average, centroid, and single
linkage. For every algorithm, three differ-
ent similarity measures are applied as fol-
lows: Pearson correlation (left), absolute
value of Pearson correlation (middle), and
Euclidean distance (right). The white bars in
the ESR data correspond to applying the
algorithm to the log2 transformation of the
expression ratios. In all cases, the results are
averaged over all the different numbers of
clusters that we tried, Nc � 5, 10, 15, 20. For
the ESR data, coherence is measured with
respect to each of the three GOs, and the
results are averaged.
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ESR module indeed are relatively subtle. However, when consid-
ering the mutual information relations (Fig. 1B), a relatively clear
structure emerges. We have solved our clustering problem for r �
2 and various numbers of clusters and temperatures. The resulting
concave tradeoff curves between �s� and I(C; i) are shown in Fig. 2A.
We emphasize that we generate not a single solution, but a whole
family of solutions describing structure at different levels of com-
plexity. With the number of clusters fixed, �s� gradually saturates as
the temperature is lowered and the constraint on I(C; i) is relaxed.
For the sake of brevity, we focused our analysis on the four solutions
for which the saturation of �s� is relatively clear (1�T � 25). At this
temperature, �85% of the genes have nearly deterministic assign-
ments to one of the clusters [P(C � i) � 0.9 for a particular C]. As
an illustration, 3 of the 20 clusters found at this temperature are in
fact the clusters presented in Table 1.

We have assessed the biological significance of our results by
considering the distribution of gene annotations across the clusters
and estimating the corresponding clusters’ coherence§ with respect
to all three Gene Ontologies (GOs) (16). Almost all of our clusters
were significantly enriched in particular annotations. We compared
our performance with 18 different conventional clustering algo-
rithms that are routinely applied to this data type (17). We used the
clustering software available at http:��bonsai.ims.u-tokyo.ac.jp�
mdehoon�software�cluster to implement the conventional algo-
rithms. In Fig. 3 we see that our clusters obtained the highest
average coherence, typically by a significant margin. Moreover,
even when the competing algorithms cluster the log2 of expression
(ratio) profiles, a common regularization used in this application
with no formal justification, our results are comparable with or
superior to all of the alternatives.

Instead of imposing a hierarchical structure on the data, as done
in many popular clustering algorithms, here we directly examine the

relations between solutions at different numbers of clusters that
were found independently.¶ In Fig. 4, we see that an approximate
hierarchy emerges as a result rather than as an implicit assumption,
where some functional modules (e.g., the ‘‘ribosome cluster’’, C18)
are better preserved than others.

Our attention is drawn also to the cluster C7, which is found
repeatedly at different numbers of clusters. Specifically, at the
solution with 20 clusters, among the 114 repressed genes in C7, 69
have an uncharacterized molecular function; this level of concen-
tration has a probability of �10	15 to have arisen by chance. One
might have suspected that almost every process in the cell has a few
components that have not been identified and, hence, that as these
processes are regulated there would be a handful of unknown genes
that are regulated in concert with many genes of known function.
At least for this cluster, our results indicate a different scenario
where a significant portion of tightly coexpressed genes remain
uncharacterized to date.

Stock Prices. To emphasize the generality of our approach we
consider a very different data set, the day-to-day fractional changes
in price of the stocks in the Standard & Poor’s 500 list (available at
www.standardandpoors.com), during the trading days of 2003. We
cluster these data exactly as in our analysis of gene expression data.
The resulting tradeoff curves are shown in Fig. 2B, and again we
focus on the four solutions where �s� already saturates.

To determine the coherence of the ensuing clusters we used the
Global Industry Classification Standard (available at http:��wrds.
wharton.upenn.edu), which classifies companies at four different
levels: sector, industry group, industry, and subindustry. Thus, each
company is assigned four annotations, which are organized in a
hierarchical tree, somewhat similar to the GO hierarchical anno-
tation (16).

As before, our average coherence performance is comparable

§Specifically, the coherence of a cluster (14) is defined as the percentage of elements in this
cluster that are annotated by an annotation that was found to be significantly enriched
in this cluster (P � 0.05, with the Bonferroni correction for multiple hypotheses). See the
technical report (15) for a detailed discussion regarding the statistical validation of our
results.

¶In standard agglomerative or hierarchical clustering one starts with the most detailed
partition of singleton clusters and obtains new solutions through merging of clusters.
Consequently, one must end up with a tree-like hierarchy of clustering partitions, regard-
less of whether the data structure actually supports this description.

Fig. 4. Relations between the optimal
solutions with Nc � {5, 10, 15, 20} at 1�T � 25
for the ESR data. Every cluster is connected
to the cluster in the next, less detailed,
partition that absorbs its most significant
portion. The edge type indicates the level
of inclusion. The independent solutions
form an approximated hierarchical struc-
ture. At the upper level the clusters are
sorted as in Fig. 1. The number above every
cluster indicates the number of genes in it,
and the text title corresponds to the most
enriched GO biological–process annotation
in this cluster. The titles of the five clusters
at the lower level are their most enriched
GO cellular-component annotation. Most
clusters were enriched with more than one
annotation; hence, the short titles some-
times are too concise. Red and green clus-
ters represent clusters with a clear majority
of stress-induced or stress-repressed genes,
respectively.
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with or superior to all of the other 18 clustering algorithms we
examined (Fig. 3). Almost all our clusters, at various levels of Nc,
exhibit a surprisingly high degree of coherence with respect to the
‘‘functional labels’’ that correspond to the different (sub-) sectors of
the economy. The four independent solutions, at Nc � {5, 10, 15,
20} and 1�T � 35, naturally form an approximate hierarchy (15).

We have analyzed in detail the results for Nc � 20 and 1�T � 35
where selections from three of the derived clusters are shown in
Table 1. Eight of the clusters are found to be perfectly (100%)
coherent, capturing subtle differences between industrial sectors.
For example, two of the perfectly coherent clusters segregate
companies into either investment banking and asset management
(e.g., Merrill Lynch) or commercial regional banks (e.g., PNC).
Even in clusters with less than perfect coherence, we are able to
observe and explain relationships between intracluster companies
above and beyond what the annotations may suggest. For example,
one cluster is enriched with ‘‘Hotel Resorts and Cruise Line’’
companies at a coherence level of 30%. Nonetheless, the remaining
companies in this cluster also seem to be tied with the tourism
industry, like the Walt Disney Co., banks that specialize in credit
card issuing, and so on.

Movie Ratings. Finally, we consider a third test case of yet another
different nature: movie ratings provided by �70,000 viewers (the
EachMovie database, www.research.digital.com�SRC�each-
movie). Unlike the previous cases, the data here is already naturally
quantized because only six possible ratings were permitted.

We proceed as before to cluster the 500 movies that received the
maximal number of votes. The resulting tradeoff curves are pre-
sented in Fig. 2C. Few clusters are preserved among the solutions
at different numbers of Nc, suggesting that a hierarchical structure
may not be a natural representation of the data. Cluster coherence
was determined with respect to the genre labels provided in the
database: action, animation, art-foreign, classic, comedy, drama,
family, horror, romance, and thriller. Fig. 3 demonstrates that our
results are superior to all of the other 18 standard clustering
algorithms.

We have analyzed in detail the results for Nc � 20 and 1�T � 40
where, once again, selections from three of the derived clusters are
shown in Table 1. The clusters indeed reflect the various genres but
also seem to capture subtle distinctions between sets of movies
belonging to the same genre. For example, two of the clusters are
both enriched in the action genre, but one group consists mainly of
science-fiction movies and the other consists of movies in contem-
porary settings.

Details of all three applications are given in a separate
technical report (15).

Discussion
Measuring the coherence of clusters corresponds to asking whether
the automatic, objective procedure embodied in our optimization
principle does indeed recover the intuitive labeling constructed by
human hands. Our success in recovering functional categories in
different systems using exactly the same principle and practical
algorithm is encouraging. It should be emphasized that our ap-
proach is not a model of each system and that there is no need for
making data-dependent decisions in the representation of the data
or in the definition of similarity.

Most clustering algorithms embody, perhaps implicitly, different
models of the underlying statistical structure.	 In principle, more
accurate models should lead to more meaningful clusters. However,
the question of how to construct an accurate model obviously is
quite involved, raising further issues that often are addressed
arbitrarily before the cluster analysis begins. Moreover, as is clear
from Fig. 3, an algorithm or model that is successful in one data type
might fail completely in a different domain; even in the context of
gene expression, successful analysis of data taken under one set
of conditions does not necessarily imply success in a different set of
conditions, even for the same organism. Our use of information
theory allows us to capture the relatedness of different patterns
independent of assumptions about the nature of this relatedness.
Correspondingly, we have a single approach that achieves high
performance across different domains.

Finally, our approach can succeed where other methods would
fail qualitatively. Conventional algorithms search for linear or
approximately linear relations among the different variables,
whereas our information-theoretic approach is responsive to any
type of dependencies, including strongly nonlinear structures. In
addition, although the cluster analysis literature has focused thus far
on pairwise relations and similarity measures, our approach sets a
sound theoretical framework for analyzing complex data based on
higher-order relations. Indeed, it was recently demonstrated, both
in principle (18) and in practice (19), that in some situations the data
structure is obscured at the pairwise level but clearly manifests itself
only at higher levels. The question of how common such data are,
as well as the associated computational difficulties in analyzing such
higher-order relations, is yet to be explored.

	For example, the K-means algorithm corresponds to maximizing the likelihood of the data
on the assumption that these are generated through a mixture of spherical Gaussians.
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