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A series of experiments, using cell culture models or in vitro assays,
has shown that the RNA-binding protein HuR increases the half-life
of some messenger RNAs that contain adenylate/uridylate-rich
decay elements. However, its function in an integrated system has
not yet been investigated. Here, using a mouse model, we report
that misregulation of HuR, due to expression of an HuR transgene,
prevents the production of fully functional gametes. This work pro-
vides the first evidence for a physiological function of HuR, and
highlights its involvement in spermatogenesis.
EMBO reports 4, 394–399 (2003)

doi:10.1038/sj.embor.embor803

INTRODUCTION
Regulation of the half-lives of certain messenger RNAs has impor-
tant consequences for growth and development. In eukaryotes, cell
proliferation and differentiation are mainly controlled by the
expression of early response genes (ERGs), which encode proto-
oncogene products (for example, c-Myc, c-Fos and c-Jun),
cytokines and growth factors. Of the short-lived mRNAs transcribed
from these genes, many contain cis-acting elements, which are
known as adenylate- and uridylate-rich elements (AREs), in their 3′
untranslated regions. These AREs are partly responsible for the rapid
degradation of the mRNAs that contain them (Chen & Shyu, 1995;
Wilson & Brewer, 1999). The occurrence of AREs in mRNAs encod-
ing a wide range of proteins (Bakheet et al., 2001) suggests that they
have regulatory functions in a variety of biological processes. A
large group of proteins, known as AU-binding proteins (AUBPs),
regulate the cellular half-lives of many mRNAs by interacting
directly with their AREs (Chen & Shyu, 1995; Wilson & Brewer,

1999). One of these proteins, HuR, is a ubiquitously expressed
member of the embryonic-lethal abnormal vision (ELAV) family of
RNA-binding proteins (Good, 1995), and is known to stabilize ARE-
containing mRNAs (Fan & Steitz, 1998a; Peng et al., 1998; Wang et
al., 2000a,b). Although it is mainly localized to the nucleus, HuR
can be transported to the cytoplasm (Fan & Steitz, 1998a,b; Keene,
1999). The fact that HuR can shuttle between the nucleus and the
cytoplasm suggests that, in addition to its function in the stabiliza-
tion of ERG mRNAs, HuR might function as one of the main export
adaptors for this important class of mRNAs (Gallouzi & Steitz,
2001). Moreover, this two-way traffic might be involved in regulat-
ing cell growth and differentiation (Wang et al., 2000a). These data
show the importance of cellular localization for HuR function, and
therefore suggest that this protein may be regulated differently in
response to various developmental or environmental conditions, it
might have several functions in mRNA metabolism.

To analyse the role of HuR in physiological situations, in which
all the signals involved in modulating its activity are functioning, we
produced β-actin–HuR transgenic mice, and showed that HuR over-
expression during gametogenesis is correlated with a low rate of
transgene transmission. Our results suggest that regulated HuR
expression is required for proper spermatogenesis.

RESULTS AND DISCUSSION
We designed a β-actin–HuR construct (BA–HuR), in which a
sequence encoding a c-Myc-tagged HuR protein was placed under
the control of the ubiquitously expressed β-actin promoter (see 
Fig. 1A, and Methods). We derived six founders, and analysed trans-
gene expression by western blot analysis using a specific antibody
against the c-Myc tag, 9E10 (see Methods). Unexpectedly, the trans-
gene was not detected in any of the somatic tissues analysed, which
were brain, gastrointestinal tract, heart, liver, kidney, lung, spleen,
thymus and skin (Fig. 2A, and data not shown). However, it was
expressed at high levels in germ cells (Fig. 2A; Gouble, 2001). These
data differ from the results we obtained using the β-actin–Auf1 mice,
which ubiquitously expressed the Auf1–hnRNPD transgene (Gouble
et al., 2002). Because mice from all of the BA–HuR lines showed the
same restricted pattern of HuR expression, we concluded that this
was a result of the sequence of the BA–HuR transgene itself, and not
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of the sites of transgene integration into the mouse genome. In addi-
tion, Southern blot analysis showed that the CpG island in the β-actin
promoter was methylated to a greater extent in the DNA from BA–
HuR mice compared with that from β-actin–Auf1 mice, suggesting
that this methylation contributes to gene silencing (Fig. 2B).

Surprisingly, although fertile, the founders did not transmit the
transgene to their offspring, or only did so at a low rate (5–18%;
Table 1). This could be explained by either 100% mosaicism, due
to late transgene integration, leading to a low percentage of trans-
genic primordial germ cells, or by a reduction in the number of
functional transgenic gametes, due to the presence, or expression,
of the transgene during gametogenesis.

To test the latter possibility, we used the Cre–LoxP system to
conditionally express HuR. We made a β-actin–LoxP–GFP–
LoxP–HuR construct (BA–GH) (Fig. 1B), obtained three founders
and made transgenic lines. As seen previously in BA–HuR mice,
transgene expression, analysed by green fluorescent protein (GFP)
detection, was restricted to the testes in mice from the three
BA–GH lines. In addition, because of the presence of the
upstream GFP cassette, transgenic HuR protein was not detected
(Fig. 2C, and data not shown). However, the pattern of transmis-
sion of the transgene to subsequent generations was compatible
with that of a Mendelian trait, except in the case of founder 27,
which showed characteristics of germline mosaicism (Table 2).
These results show that when the HuR transgene is silent, neither
the expression of GFP, nor the presence of the transgene, alters
transgene transmission in the various BA–GH lines.

To analyse the effects of HuR transgene expression, the GFP cas-
sette was deleted in vivo by crossing F1 (or N2) BA–GH males with
pgk–Cre transgenic females, which express Cre recombinase during
oogenesis (Fig. 1C). In this case, recombination should take place as
early as the pronuclear fusion step (Lallemand et al., 1998). After the
cross was carried out, the expected number of transgenic mice (known
as BA–HGdel mice) were obtained in the resulting C1 generation; this
number was similar to that obtained in the N2 generation for the three
BA–GH lines 21, 27 and 31 (Table 2). However, when the BA–HGdel

C1 mice were crossed with wild-type mice to produce the C2 genera-
tion, we observed a large decrease in the number of transgenic off-
spring, although the sizes of the litters were normal (eight or nine
mice). This was seen for BA–HGdel lines 21 and 27, but not for line 31,
regardless of whether the transgene was of paternal (C2

TgP) or maternal
(C2

TgM) origin (Table 2).
To understand why transgene transmission was different in line 31

from that in lines 21 and 27, Southern blotting was carried out, fol-
lowed by sequential hybridization with HuR, β-actin and GFP probes
(Fig. 3A). Our interpretation of the results (Fig. 3B) is as follows: in
mice from BA–HGdel line 21, after Cre recombination, a single com-
plete copy of the BA–HGdel transgene remained, which hybridized
with the β-actin and HuR probes, but not with the GFP probe. In mice
from BA–HGdel line 27, two copies of the transgene, in opposite orien-
tations, one of which contained truncated β-actin sequences, were
identified. These did not hybridize with the GFP probe. Finally, in mice
from BA–HGdel line 31, truncations of the most 5′ and the most 3′
copies of the concatamer resulted in an incomplete deletion of the
GFP sequences in the remaining copy. Hence, whereas the HuR trans-
gene should be expressed in mice from BA–HGdel lines 21 and 27, no
such expression is expected in mice from BA–HGdel line 31.

To verify this, we carried out western blotting using proteins
extracted from the testes of mice from BA–HGdel lines 21, 27 and 31.
Myc–HuR protein was expressed in the testes of mice from
BA–HGdel lines 21 and 27, in both the C1 and C2 generations, but not
in the testes of wild-type or BA–HGdel line 31 mice (Fig. 2D, and data
not shown). These data show a strong correlation between
Myc–HuR expression in testis and a low rate of transgene transmis-
sion, as only mice expressing the HuR transgene showed a large
reduction in the number of their transgenic offspring.

To determine the nature of this defect in spermatogenesis, we car-
ried out a detailed analysis of transgene expression in BA–HuR and
BA–HGdel testes. As shown by immunohistochemistry, carried out on
tissues from BA–HuR mice, none of the spermatogonia, located at
the base of the seminiferous epithelium, expressed the transgene,
whereas a low level of labelling was seen in the primary spermato-
cytes, in both the nucleus and the cytoplasm. By contrast, transgene
expression was high in the round spermatids, mostly in the nuclei,
whereas it was only just detectable in the elongated spermatids 
(Fig. 4A,B). This was not seen in β-actin–Auf1 testes, which, although
showing the same pattern of expression in the spermatocytes and the
round spermatids, showed high expression of the Myc-tagged Auf1
transgene in the elongated spermatids (data not shown). This 
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Table 1 | Transgene transmission to the descendents of β-actin–HuR founders

Generation Transmission (%)

Founder 2 (F) Founder 5 (F) Founder 21 (M) Founder 6 (M) Founder 18 (M) Founder 19 (M) 

F
1 
(F

0
× WT) 0 (n = 16) 0 (n = 41) 0 (n = 57) 7 (n = 27) 18 (n = 16) 5 (n = 85) 

F, female; GFP, green fluorescent protein; M, male; n, total number of progeny; WT, wild type.
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difference could be explained either by a lack of HuR transgene
expression during late steps of differentiation, or by a loss of elongat-
ed spermatids expressing the HuR transgene, but not the Auf1 trans-
gene. This, in turn, could lead to a marked reduction in the number
of transgenic spermatozoa, explaining the low rate of HuR transgene
transmission. This was confirmed by a detailed analysis of Myc–HuR
expression in the spermatids at stages VIII–XII. Although there was a
high level of expression of the transgene in approximately 70% of
the spermatids (stages VIII and IX), a progressive loss of expression
was seen in the later stages: only 20% of the elongated spermatids
(stage X) expressed the transgene, and no labelling was detected in
stages XI and XII. These data were reproducible in all of the three
BA–HuR lines tested (Fig. 4A,B, and data not shown).

The dynamic pattern of transgene expression observed in BA–HuR
testes was also seen in BA–HGdel testes, as analysed by immunofluo-
rescence. Analysis of chromomycin-labelled sections of testes showed
strong orange (Fig. 4E) or red (Fig. 4G) staining, corresponding to HuR

transgene expression in the round spermatids of mice from BA–HGdel

line 21, but not in those from line 31 (Fig. 4I,J). Again, weak orange/red
staining in the elongating spermatids of BA–HGdel mice from lines 21
and 27 was detected, confirming the results of the immunohistochem-
ical analysis of testes from the various BA–HuR lines (Fig. 4A,B). This
supports the hypothesis that a loss of elongated spermatids occurs in
the transgenic mice.

The results obtained from the immunohistochemical and
immunofluorescence analyses of Myc–HuR expression led us to
speculate that the low rates of transmission in BA–HuR mice and
mice from BA–HGdel lines 21 and 27 were due either to ectopic
expression of HuR protein, or to overexpression of this protein at a
specific stage of spermatogenesis. To investigate this, we analysed
the expression of endogenous HuR protein in the testis, which had
not been done previously. We showed, by western blot analysis, that
endogenous HuR is present in wild-type and transgenic testes, and
that its level of expression is not modified by transgene expression
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(Fig. 2D). The difference in the levels of expression of Myc–HuR and
endogenous HuR was assessed further by northern blot analysis.
mRNA expression from the HuR transgene was shown to be seven
and five times higher than endogenous HuR mRNA in the testes of
mice from BA–HGdel lines 21 and 27, respectively (Fig. 2E). We
examined endogenous HuR expression at the cellular level, during
spermatogenesis, by immunohistochemical analysis of seminiferous
tubule sections of transgenic or wild-type testes (Fig. 4C, and data
not shown). In both cases, HuR protein was expressed throughout
spermatogenesis. These results show that HuR is overexpressed in
the round spermatids of BA–HuR and BA–HGdel mice, which 

suggests that the problem in transgene transmission is due to HuR
overexpression at this stage of gametogenesis.

The cell population in which HuR is mainly overexpressed dur-
ing spermatogenesis is characterized by a massive wave of transcrip-
tional activity, leading to the activation of many post-meiotic genes
(Sassone-Corsi, 2002). HuR might, therefore, be required during
spermatogenesis to maintain the expression of some of these genes
by stabilizing their mRNAs. In transgenic testes, HuR overexpression
might inappropriately control mRNA destiny (its nucleocytoplasmic
transport, stability or translation), thus altering the differentiation
and maturation of the spermatids, in which the expression of HuR
target mRNAs is misregulated. The recent identification of numerous
transcripts expressed during spermatogenesis might be helpful in
identifying the mRNA targets of HuR (Fujii et al., 2002). However,
these targets might either be specific to a particular stage of sper-
matogenesis, or be expressed in other organs. As the low rate of
transgene transmission was not only observed in the male, but also
in the female germline (Tables 1 and 2), HuR overexpression might
deregulate a process common to ovogenesis and spermatogenesis
due to impaired mRNA metabolism.

Whatever the mRNA targets of HuR might be, our data clearly
show that the effect of HuR on them is different from that of Auf1.
Indeed, we have made four β-actin–Auf1 lines that express a high
level of transgenic Auf1 in spermatids, and in which there is no
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Table 2 | Transgene transmission to the descendents of β-actin–loxP–
GFP–loxP–HuR founders
Generation Transmission (%)

Founder 21 (F) Founder 27 (M) Founder 31 (M)

F1 (F0 × WT) 58 (n = 17) 16 (n = 56) 31 (n = 42)

N2 (F1 × WT) 39 (n = 28) 31 (n = 36) 34 (n = 58)

C1 (F1 × Cre) 39 (n = 19) 31 (n = 61) 34 (n = 35)

C2
TgP (WT × C1) 13 (n = 52) 17 (n = 70) 31 (n = 23)

C2
TgM (C1 × WT) 7 (n = 28) 8 (n = 86) 41 (n = 49)

F, female; GFP, green fluorescent protein; M, male; n, total number of progeny; TgM,
maternal transgene ; TgP, paternal transgene; WT, wild type.
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defect in transgene transmission (Gouble et al., 2002). These results
suggest that these two AUBPs, which both recognize AUUUA
repeats that are found in numerous ARE-containing mRNAs, do not
regulate the same set of mRNAs during spermatogenesis.

In summary, we have shown that misregulation of HuR, due to
HuR transgene expression, impairs transgene transmission. Our
data provide the first demonstration that this RNA-binding protein
has a crucial function in a physiological context, and highlights the
importance of HuR regulation for proper germ-cell differentiation.
The β-actin–Auf1 and β-actin–HuR transgenic mice that we gener-
ated, which express increased levels of either Auf1 or HuR, are
potentially important tools for identifying the set of mRNAs that are
differentially regulated by these two AUBPs during gametogenesis.

METHODS
Production of HuR transgenic mice. For BA–HuR lines, the
human HuR complementary DNA (GenBank accession number
U38175; Ma et al., 1996) was cloned in-frame with a Myc tag,
and was inserted into blunt-ended pBAP (Gunning et al., 1987).
The resulting plasmid was named BA–HuR. A 5.5-kb fragment,
consisting of β-actin and Myc–HuR sequences, was microinject-
ed into fertilized (CBA × C57Bl/6) × (CBA × C57Bl/6) oocytes to

obtain transgenic founders (Brinster & Palmiter, 1986), which
were then crossed with (CBA × C57Bl/6) wild-type mice, fol-
lowed by intercrossing or backcrossing with wild-type mice to
create transgenic lines.

For BA–GH lines, an EGFP cassette, containing enhanced 
GFP (EGFP) sequences flanked by two LoxP sites (a gift from 
S. Tajbakhsh), was inserted between the β-actin and Myc–HuR
sequences in the BA–HuR construct to produce the BA–GH con-
struct. A 7.1-kb fragment, consisting of the BA–GH sequences,
was microinjected into fertilized (CBA × C57Bl/6) × (CBA ×
C57Bl/6) oocytes to obtain transgenic founders, which were
crossed with wild-type (CBA × C57Bl/6) mice to produce F1

transgenic mice. These mice were then backcrossed to wild-type
mice to produce N2 transgenic mice.

For BA–HGdel lines, in vivo excision of the GFP cassette was car-
ried out by crossing F1 or N2 BA–GH males to pgk–Cre transgenic
females (Lallemand et al., 1998). The resulting BA–HGdel C1 mice
(male or female) were backcrossed to wild-type mice to produce
BA–HGdel C2 transgenic mice.

For expression analysis, the animals used were of the same age
(3–6 months), the same weight, and did not show any morphological
or anatomical abnormalities.
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Protein extraction and quantitative western blot analysis. Protein
extraction and quantitative western blot analyses were carried out as
described previously (Gouble et al., 2002). The following antibodies
were used: monoclonal anti-human-c-Myc antibody, 9E10; mono-
clonal anti-GFP, JL-8 (Clontech) and monoclonal anti-HuR, 19F12 (a
gift from H. Furneaux; Rodriguez-Pascual et al., 2000), which reacts
specifically with the endogenous HuR protein, and not with the
Myc-tagged HuR protein.
Immunohistochemical and immunofluorescence analyses. Immuno-
histochemistry was carried out as described by Gouble et al. (2002).
For immunofluorescence, sections of testes were blocked and perme-
abilized in 10% goat serum, 1% BSA, 1% Triton X-100 in PBS, incu-
bated with primary antibody (9E10 or 19F12) for 1 h at 20 °C, and
washed in PBS. Immunostaining was detected using a rhodamine-
conjugated goat anti-mouse antibody (Alexa 546, Molecular Probes).
For nuclear staining, samples were incubated in freshly made chro-
momycin A3 solution (Sigma) in PBS and 150 mM MgCl2, and were
washed in PBS. Sections were analysed using a Leica SP2 confocal
microscope equipped with helium–neon lasers and appropriate filter
combinations.
Genotyping and Southern blot analysis. Southern blot and PCR
analyses were carried out using genomic DNA, which was extracted
from the tails of wild-type or transgenic mice.
Northern blot analysis. Total RNA was extracted using Trizol
(Invitrogen), and the RNA species were separated by electrophoresis
through a denaturing gel (2.2 M formaldehyde, 1.2% agarose) and
transferred to a nylon membrane. DNA probes were labelled with
[32P]dCTP using a random-priming kit (Amersham Pharmacia
Biotech).
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