
609

scientificreport

©2003 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION EMBO reports VOL 4 | NO 6 | 2003

scientific report

We have designed a doxycycline-regulated form of the H1 promoter
of RNA polymerase III that allows the inducible knockdown of gene
expression by small interfering RNAs (siRNAs). As a proof-of-
principle, we have targeted β-catenin in colorectal cancer (CRC)
cells. T-cell factor (TCF) target-gene expression is induced by accu-
mulated β-catenin, and is the main transforming event in these cells.
We have shown previously that the disruption of β-catenin/TCF4
activity in CRC cells by the overexpression of dominant-negative TCF
induces rapid G1 arrest and differentiation. Stable integration of our
inducible siRNA vector allowed the rapid production of siRNAs on
doxycycline induction, followed by specific downregulation of 
β-catenin. In these CRC cells, TCF reporter-gene activity was inhibited,
and G1 arrest and differentiation occurred. The inhibition of two
other genes using this vector system shows that it should be useful for
the inducible knockdown of gene expression.
EMBO reports 4, 609–615 (2003)

doi:10.1038/sj.embor.embor865

INTRODUCTION
The transactivation of T-cell factor (TCF) target genes induced by 
wingless-related (WNT) pathway mutations is the main transforming
event in colorectal cancer (CRC; Kinzler & Vogelstein, 1996; Bienz 
& Clevers, 2000). We have recently studied the TCF target-gene 
programme by the inducible overexpression of dominant-negative
versions of TCF1 and TCF4 in CRC cell lines (van de Wetering et al.,
2002; Batlle et al., 2002). This overexpression disrupted endogenous
β-catenin/TCF4 activity in CRC cells. Importantly, it induced rapid G1
arrest and blocked a genetic programme that is physiologically active
in the proliferative compartment of colon crypts. Consequently, an

intestinal differentiation programme was induced. We concluded that
the β-catenin/TCF4 complex is the master switch that controls the
decision between proliferation versus differentiation in healthy and
malignant intestinal epithelial cells.

As the overexpression of dominant-negative proteins might
induce artefactual effects, we used a loss-of-function strategy to
confirm our results. It is possible to carry out classical gene
knockouts by homologous recombination in CRC cells
(Shirasawa et al., 1993; Chan et al., 1999, 2002; Kim et al., 2002;
Sekine et al., 2002), but this technology is relatively time-con-
suming. Moreover, as we expected a growth-arrest phenotype,
clones would either fail to develop or would be selected for other
growth-promoting events. More recently, RNA interference
(RNAi), a well-established method for gene knockdown in model
organisms (Sharp, 2001), can also be used for gene knockdown
in mammalian cells (Elbashir et al. 2001). So-called small 
interfering RNAs (siRNAs) have been introduced into mammal-
ian cells by the transient transfection of synthetic double-
stranded RNA. Alternatively, promoters of genes transcribed by
RNA polymerase III have been used to drive the expression of
hairpin RNAs, which are very similar to siRNAs (Brummelkamp
et al., 2002; McManus et al., 2002; Miyagishi & Taira, 2002;
Paddison et al., 2002; Paul et al., 2002; Sui et al., 2002; Yu et al.,
2002). These siRNA expression vectors have two advantages:
they can be stably introduced into cells, either as selectable plas-
mids or as retroviruses, and they are relatively cheap to generate
(for an overview, see McManus & Sharp, 2002; Paddison &
Hannon, 2002; Shi, 2003). However, as with conventional
knockout strategies, stably introduced siRNA vectors cannot be
used when the target is essential for cellular survival.

To inducibly downregulate β-catenin/TCF4 activity in CRC
cells, we have developed a doxycycline-inducible form of the
RNA polymerase III H1 promoter to drive siRNA expression. The
transfection of this plasmid into CRC cells carrying the tetracycline
(Tet) repressor allowed the selection of clones that had stably inte-
grated the vector in their genomes. The addition of doxycycline to
the growth medium induced rapid downregulation of β-catenin
messenger RNA and protein. This resulted in inhibition of TCF
reporter-gene expression, G1 arrest and differentiation of the CRC
cells, which confirmed our previous results.
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RESULTS AND DISCUSSION
Tet-inducible systems are widely used for mRNA expression driven by
polymerase II promoters. One system uses a chimeric protein that
consists of the transactivation domain of virion protein 16 (VP16)
fused to the Tet repressor (Gossen & Bujard, 1992). This TetR–VP16
chimaera strongly enhances transcription from minimal promoters on
binding to its cognate motif, the Tet operator. The addition of Tet
inhibits binding of the repressor to its binding site. Another system
makes use of the physiological function of the Tet repressor. Here, the
Tet operator is situated between the promoter and the coding region of
the gene of interest. Binding of the Tet repressor to the operator results
in a transcriptional block of the promoter (Yao et al., 1998). Ohkawa
and Taira have used the latter approach to inducibly express antisense
RNA from the polymerase III promoter of the U6 gene (Ohkawa &
Taira, 2000). For efficient expression of siRNAs, however, the Tet opera-
tor would have to be placed within the promoter region, as it is essential
that transcription starts at the first nucleotide of the target sequence.

The RNA polymerase III promoter of the H1 gene has been stud-
ied in detail (Myslinski et al., 2001). The H1 gene has a well-defined
transcriptional start site and terminates at a stretch of five thymid-
ines, and is thus ideal for the expression of short, non-coding RNA
molecules. It has been shown that sequences directly upstream of
the transcription start site are generally dispensable for promoter
activity in vivo (Myslinski et al., 2001). We reasoned that placing a Tet
operator in this region might not affect promoter activity, whereas
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Fig. 1 | Overview of the system. (A) Alignment of the H1 promoter sequences in pSUPER and pTER. The tetracycline (Tet) operator (TO) sequence is shown 

in bold. (B) Schematic representation of the proposed pTER ‘roadblock’. Transcription of the H1 promoter is blocked in cells expressing the Tet repressor 
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Fig. 2 | Downregulation of β-catenin in stable pTER transfectants.

(A) A northern blot, showing β-catenin expression at the time points

indicated. Equal amounts of RNA were loaded and analysed for β-catenin

expression (data not shown). Clones two and three, in particular, strongly

downregulate β-catenin messenger RNA on doxycycline treatment.

(B) Western blot analysis of β-catenin protein levels at the indicated

timepoints after induction. Equal loading was confirmed by β-actin staining

(data not shown).



scientific report

©2003 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION EMBO reports VOL 4 | NO 6 | 2003

An inducible RNA interference system
M. van de Wetering et al.

611

binding of the Tet repressor protein to this site would function as a
‘road block’, abrogating transcription.

As shown in Fig. 1, we created a binding site for the Tet repres-
sor by replacing 19 bp from positions –23 to –5, relative to the
transcription start site. BglII and HindIII sites were included to
allow the insertion of double-stranded oligonucleotides. The
pTER vector also contains a zeocin selectable marker. We inserted
a 59-nucleotide human-β-catenin-derived sequence that, when
transcribed, forms a hairpin consisting of a 19-bp stem and a 
9-base loop. As described by Brummelkamp et al. (2002), the ter-
mination sequence that consists of five thymidines was included
in the oligonucleotide. Two U residues are predicted to constitute
the 3’ end of the corresponding RNA molecule.

We stably transfected the CRC cell line, LS174T, with a Tet-
repressor expression construct using blasticidin selection (van de
Wetering et al., 2002). Clones that stably expressed the Tet rep-
ressor were subsequently transfected with pTER–β-catenin and
selected using zeocin. Selected clones were analysed for 
β-catenin expression by northern and western blotting before and
after doxycline induction. Three clones showed various levels of
reduction of β-catenin expression after 24–48 h, as shown in 
Fig. 2. To determine the efficiency of our inducible siRNA system,
we performed northern blotting to visualize the production of the
hairpin RNAs. As shown in Fig. 3, within 4 h of the addition of
doxycycline, the hairpins were produced at significant levels.
Moreover, the complete absence of short hairpin RNAs (shRNAs)
in the uninduced state shows the robust transcriptional block
mediated by the Tet repressor.

We then investigated the effects of β-catenin knockdown on TCF
reporter activity. Most CRC cell lines spontaneously activate 
TCF reporters because of the constitutive activity of the WNT cas-
cade by mutations in APC (Korinek et al., 1997) or β-catenin (Morin
et al., 1997). LS174T cells carry a mutant, oncogenic β-catenin
allele and, as a consequence, actively transcribe TCF reporter con-
structs. The induced expression of dominant-negative versions of
TCF4 or TCF1 reduces this spontaneous activity to the background
transcription levels of the control reporter (van de Wetering et al.,
2002). Consistent with this result, the spontaneous activity of the
TCF reporter, pTopglow, was reduced to background (pFopglow)
levels on reduction of β-catenin levels by the induced expression of
pTER–β-catenin by doxycycline in two of the three clones (Fig. 4).

The removal of β-catenin function at 48 h occurred after the disap-
pearance of β-catenin mRNA at 24 h. This delay allowed us to deter-
mine the specificity of the β-catenin siRNAs. At 20 h, mRNA expres-
sion was only  affected by the production of siRNAs, and not by
secondary effects resulting from loss of β-catenin. We therefore per-
formed DNA microarray analysis to visualize the changes in gene
expression 20 h after induction. In the 2 duplicate sets of measure-
ments made in the experiment, using 17-K oligo arrays, 7 and 13
genes, respectively, were found to be downregulated more than 
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Fig. 3 | Production of β-catenin hairpin RNAs in stable pTER transfectants.

Northern blot showing the expression of hairpin RNAs directed against 

β-catenin at the timepoints indicated. Without induction, no hairpin RNAs

were detected, demonstrating the tight regulation by doxycyline (top panel).

Equal amounts of RNA were loaded, as shown by the ethidium bromide

staining of the 5.8S RNA (lower panel).
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Fig. 4 | T-cell factor/β-catenin-driven transcription is abrogated on knockdown of β-catenin. The activity of the T-cell factor (TCF) reporter, pTopglow (Top),

and the control, pFopglow (Fop), after 48 h with or without doxycyline treatment is shown. Parental cells that expressed the tetracycline (Tet) repressor were used

as controls. Renilla luciferase levels were used as transfection controls. Clones 2 and 3 show complete inhibition of TCF reporter activity.
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two-fold (data not shown). More importantly, the only gene in com-
mon between the duplicate sets was β-catenin, which confirmed the
specificity of the siRNAs that were used.

Inhibition of β-catenin/TCF activity in LS174T cells by the induced
expression of dominant-negative TCF proteins results in a rapid G1
cell-cycle arrest and differentiation. Cell-cycle analysis of the three
clones showed that the reduction in β-catenin to levels that are not
sufficient to drive TCF/β-catenin transcription produced similar

results. G1 arrest was already seen after 48 h of induction, but became
more prominent after three days (Fig. 5A,B). The G1 arrest coincided
with the differentiation of the cells. Fig. 6A shows the results of north-
ern blot analysis of the expression of one of the differentiation mark-
ers, galectin 4, that we previously defined in the system (van de
Wetering et al., 2002). This differentiation marker was rapidly induced
in cells that had switched off TCF/β-catenin transcription, but was
unaffected in the control cells. As a more global demonstration of
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Fig. 5 | Knockdown of β-catenin results in cell-cycle arrest and growth arrest. (A) Ls174T pTER–β-catenin clones show a marked reduction in S-phase cells on 

β-catenin downregulation. The fluorescence activated cell sorting profiles of cells after 48 h with or without doxycycline (Dox) are shown. The percentages of cells

in S phase for each clone analysed are indicated. Only clones in which TCF transcription is completely abrogated (clones 2 and 3 in Fig. 3) show a cell-cycle block

in G1. The results are representative of several independent experiments. (B) Proliferation was arrested in Ls174T pTER–β-catenin transfectants. This was

visualized by crystal-violet staining of cell cultures after β-catenin knockdown for five days. BrdU, 5-bromo-2-deoxyuridine.
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the differentiation of CRC cells, we also used a histochemical stain
for complex carbohydrates (mucins), periodic-acid/Schiff (PAS)
stain. Fig. 6B shows the increase in PAS reactivity in induced LS174T
cells on knockdown of β-catenin, which indicates the production of
mucins in these differentiating cells.

To support the results of our experiments using inducible siRNA,
we attempted the knockdown of other genes. We transfected LS174Tr
cells (LS174T cells expressing the Tet repressor) with c-MYC and
transfected human embryonic kidney (HEK) cells that expressed Tet
repressor (HEK-Tr cells) with pygopus-directed pTER vectors. Zeocin-
resistant clones were tested by northern blotting. Between one in two
clones (for β-catenin and pygopus) and one in ten clones (for c-MYC)
efficiently downregulated the indicated genes. For each gene, two
clones are shown in Fig. 7. For the pTER–β-catenin clones (Fig. 2A),
strong gene-specific reduction of RNA was seen after induction with
doxycyline, whereas no effects on expression of other genes were
seen (for example, β-catenin expression in the pTER–MYC and
pTER–pygopus clones; Fig. 7).

We conclude that knockdown of β-catenin/TCF activity by a
loss-of-function approach reproduces the phenotypic changes that
occur in CRC cells in which dominant-negative versions of TCF
proteins are overexpressed. Moreover, the successful knockdown
of three independent genes shows that our vector system is widely
applicable for the inducible knockdown of gene expression. This
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Fig. 6 | Knockdown of β-catenin induces differentiation of LS174T cells. (A) Northern blots showing expression of galectin 4, a marker of differentiated intestinal

cells. Expression is strongly induced on β-catenin knockdown. (B) Periodic-acid/Schiff (PAS) staining of pTER–β-catenin transfectants and control cells shows a

marked increase in mucin production on inhibition of β-catenin/T-cell factor signalling. Dox, doxycycline.
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Fig. 7 | Specific downregulation of c-MYC and pygopus in stable pTER
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corresponding messenger RNA are markedly decreased. No effects on

unrelated mRNAs (for example, β-catenin) were seen.
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should be particularly useful for the analysis of genes of which the
functions are difficult to evaluate due to phenotypic effects on 
the growth or differentiation characteristics of cells (cell-cycle reg-
ulators, oncogenes and tumour suppressor genes), and for genes
that control apoptosis.

METHODS
Construction of pTER. The oligonucleotides supertet (5’-CGATAA
GCTTAGATCTCTATCACTGATAGGGAACTTATAAGATTCCCAAAT
CC-3’) and T7 were used to amplify the H1 promoter from pSUPER
(Brummelkamp et al., 2002) by PCR, thereby introducing a Tet oper-
ator sequence into the promoter. PCR fragments were cloned into
pGEM-T and were confirmed by sequencing. The promoter fragment
was cut out of pGEM-T using BamHI and HindIII and was ligated
into pCDNA3.1-ZEO that had been digested with BglII and HindIII,
thereby generating pTER (for Tet-inducible RNAi).

To make pTER–β-catenin, pTER–MYC and pTER–pygopus, gene
specific oligonucleotides (100 pmol of each) were phosphorylated
using T4 polynucleotide kinase in a total volume of 50 µl for 30 min.
To anneal the oligonucleotides, the mixture was incubated at 95 °C
for 5 min, and was cooled slowly.

1 µl of this mixture was ligated into pTER vector that had been
digested with BglII and HindIII and treated with calf intestinal
phosphatase. The oligonucleotides used were as follows: for 
β-catenin, 5’-GATCCCGTGGGTGGTATAGAGGCTCTTCAAGAG
AGAGCCTCTATACCACCCACTTTTTGGAAA-3’ and 5’-AGCTTTT
CCAAAAAGTGGGTGGTATAGAGGCTCTCTCTTGAAGAGCC
TCTATACCACCCACGG-3’; for MYC, 5’-GATCCCGATGAGGAA
GAAATCGATGTTCAAGAGACATCGATTTCTTCCTCATCTTTTTG
GAAA-3’ and 5’-AGCTTTTCCAAAAAGATGAGGAAGAAATCGA
TGTCTCTTGAACATCGATTTCTTCCTCATCGG-3’; for pygopus,
5 ’ - G AT C C C T C CAC C T G C T T C TAC T G C T T T CA AG AG A
AGCAGTAGAAGCAGGTGGATTTTTGGAAA-3’ and 5’-AGCTTT
TCCAAAAATCCACCTGCTTCTACTGCTTCTCTTGAAAGCAGTA
GAAGCAGGTGGAGG-3’.
Generation of stable pTER cell lines. Ls174T cells were cultured in
RPMI with 10% FCS. PCDNA6TR (Invitrogen) was used in accor-
dance with the manufacturer’s instructions to generate clones
expressing the Tet repressor (van de Wetering et al., 2002). Tet repres-
sor clone 1 (Tr1) was then transfected with pTER–β-catenin. Zeocin-
resistant clones were tested for their ability to downreguate 
β-catenin by northern blotting . The parental LS174 Tet-repressor cell
line, Tr1, was used as a negative control in all experiments. HEK-Tr
cells were purchased from Invitrogen.
Cell-cycle analysis and cell staining. 5 × 106 Ls174T cells were
seeded in 9-cm dishes and doxycycline was added to a concentra-
tion of 1 µg ml–1. After 24, 48 or 72 h, 5-bromo-2-deoxyuridine
(BrdU; Roche) was added for 20 min and the cells were trypsinized
and fixed in 70% ethanol. Nuclei were isolated and incubated with
anti-BrdU–FITC (purchased from BD), and cell cycle profiles were
determined by fluorescence-activated cell sorting analysis. For
crystal-violet staining, 1 × 105 cells were seeded in wells of a six-
well plate in the presence or absence of doxycycline. After five
days, the cells were fixed in methanol, washed with water and
stained with crystal violet for 5 min. Excess dye was washed away
with water. For PAS staining, cells were washed with PBS, incubat-
ed in 1% periodic acid and stained with SCHIFFS Reagent (Merck).
Luciferase reporter assay. To measure TCF/β-catenin-driven trans-
activation, a luciferase reporter assay was performed using the TCF

reporter constructs pTopglow and pFopglow (van de Wetering et al.,
2001). pTopglow contains TCF binding sites upstream of a minimal
E1b TATA box that drives the expression of luciferase. The control
plasmid, pFopglow, contains mutated TCF binding sites. For tran-
sient transfections, 2.5 × 105 cells per well were seeded in six-well
plates and transfected with 500 ng of TCF reporter and 50 ng
TKRenilla (Promega) using Fugene-6 (Roche). Luciferase activity was
determined 48 h after transfection, using the Dual-luciferase
reporter assay system (Promega).
Northern blotting. 10 µg of total RNA was separated on 1.25%
agarose gels and transferred to Zeta-Probe membranes (Biorad).
Loading was checked by ethidium bromide staining. Hybridization
was performed using ExpressHyb Hybridization Solution (Clontech).
Probes were labelled using the RadPrime DNA labelling system
(Invitrogen).

For shRNA visualization, 30 µg of total RNA was separated on
9% polyacrylamide gels containing 8 M urea. The RNAs were then
transferred to Zeta-Probe membranes by electroblotting. After back-
ing at 80 °C, hybridization was performed at 52 °C in 0.25 M phos-
phate buffer, pH 7.2, and 7% SDS. Oligonucleotides of 19
nucleotides were labelled with [32P]γATP and used as probes.
DNA microarray analysis. Total RNA treated with DNAse was used
to generate complementary DNA labelled with CyDye (Amersham
Bioscience). Equal amounts of probe were hybridized against 17-K
oligonucleotide arrays. Dye swaps were performed for each exper-
iment. The whole procedure is described in detail in van de Peppel
et al. (2003).
Western blotting. 3 × 106 Ls174T cells were seeded in 9-cm dishes
in the presence or absence of doxycycline (1 µg ml–1). Cells were
harvested after 24 and 48 h, and 1 × 106 cells per sample were lysed
in 1% nonidet P40 (NP40) lysis buffer (1% NP40, 30 mM Tris-HCl,
pH 8.0, 150 mM NaCl, proteinase inhibitor (Boehringer)) on ice for
30 min. Lysates were cleared by centrifugation at 14,000g for 30 min
and supernatants were collected. A Bradford test was used to deter-
mine the protein concentration. Equal amounts of protein were
boiled, electrophoresed on 10% SDS–polyacrylamide gels and
transferred to Immobilon-P membranes (Millipore). Blots were incu-
bated with anti-β-catenin antibody (Transduction Laboratories),
using RAMPO (Pierce) as the secondary antibody. Immune com-
plexes were visualized using an enhanced chemiluminescence kit
(Amersham Life Science).
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