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Runx3 knockouts and stomach cancer
The challenge of identifying phenotypic defects directly attributable to
loss of gene function
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Gene targeting often results in knockout mice that show several
phenotypes, some of which may not directly relate to the intrinsic
function of the disrupted gene. Hence, to study the biological func-
tion of genes using knockout mice, one must identify the defects that
are directly due to the loss of the targeted gene. Runx3 is a transcrip-
tion factor that regulates lineage-specific gene expression in develop-
mental processes. Recently, two groups produced Runx3 knockout
mice. Two comparable defects were identified in both knockout
strains, one involved neurogenesis and the other thymopoiesis. In
addition, a stomach defect pertaining to gastric cancer was observed
in one of the mutant strains, but not in the other. Here, we assess the
differences between the two Runx3 mutant strains and discuss 
further studies that could reconcile these discrepancies. This article
highlights the difficulties of inferring gene function through the 
interpretation of knockout phenotypes.
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Introduction
Many knockout (KO) mice have multiple, and sometimes complex,
phenotypic defects. Often, the null phenotype does not seem to
recapitulate the known cellular function of the gene. This is fre-
quently the case when the gene being studied has a distinct tissue-
and/or temporal-specific function that is difficult to replicate in cell
culture. Many homozygous KO mice die in utero, and those that are
viable often have nutritional or immunological deficiencies that
cause secondary phenotypes associated with aberrant growth and
survival. Thus, the challenging aspect of analysis of gene function in
KO mice is to identify the defects that are directly linked to the loss
of function of the targeted gene. This study of Runx3 involvement in
gastric cancer is a good example of such a challenge. 

The RUNX transcription factors
Mammalian RUNX3 belongs to the runt-domain family of tran-
scription factors that act as regulators of gene expression in sev-
eral important developmental pathways. The three RUNX genes,
RUNX1, RUNX2 and RUNX3, appeared early in evolution and
have maintained extensive structural similarities (Fig. 1A; Eggers
et al., 2002; Kalev-Zylinska et al., 2002; Levanon et al., 2003).
Members of the RUNX family show homology in a 128-amino-
acid region known as the runt domain (RD), which directs the
binding of RUNX proteins to DNA and mediates their interaction
with the protein core-binding factor-β (CBF-β; Fig. 1B) (Ito & Bae,
1997; Speck, 2001). CBF-β enhances the binding of the RUNX
proteins to their target DNA and is essential for their proper 
function (Adya et al., 2000). 

The RUNX genes are regulated at the transcriptional level 
by two promoters and at the translational level by an internal
ribosome-entry site (IRES) and cap-dependent translation control
(Fig. 1; Miyoshi et al., 1995; Ghozi et al., 1996; Geoffroy et al.,
1998; Pozner et al., 2000; Bangsow et al., 2001; Levanon
et al., 2001b; Rini & Calabi, 2001; Xiao et al., 2001; Stewart
et al., 2002). All RUNX proteins bind to the same DNA motif and
activate or repress the transcription of their target genes through
the recruitment of common transcriptional modulators (Fig. 1B;
Karsenty, 2000; Wheeler et al., 2000). In spite of this, the RUNX
genes have well-defined biological functions, which are reflect-
ed in their unique expression patterns (Simeone et al., 1995;
North et al., 1999; Levanon et al., 2001a; Chen et al., 2002;
Stricker et al., 2002; Yamashiro et al., 2002) and the distinct phe-
notypes that are shown by the corresponding KO mice (Otto 
et al., 1997; Karsenty, 2000; Speck, 2001; Inoue et al., 2002;
Levanon et al., 2002; Li et al., 2002). RUNX3 is located on
human chromosome 1p36.1 (Levanon et al., 1994) and seems to
be the most ancient of the three RUNX genes (Bangsow et al.,
2001; Levanon et al., 2003). This is consistent with its function in
the neurogenesis of the monosynaptic reflex arc (Inoue et al.,
2002; Levanon et al., 2002), the simplest neuronal response 
circuit found in the most primitive animals, such as hydra-like
organisms.
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Runx3, gastric mucosa hypertrophy and stomach cancer
Stomach cancer is the second most common form of malignancy and
is a major contributor to cancer mortality throughout the world (Fuchs
& Mayer, 1995; Parkin et al., 1999). Gastric carcinomas have been
linked with the loss of homozygosity at various chromosomal loci, but
no single gene that accounts for the majority of cases has been identi-
fied. Recently, Li and colleagues (Li et al., 2002) reported that the gas-
tric mucosa of Runx3 null mice showed hyperplasia and concluded
that lack of RUNX3 is causally related to human gastric cancer.
Consistent with this, an analysis of RUNX3 in human stomach cancer
cell lines and primary human tumours revealed hemizygosity in 40%
of the tumours analysed, and silencing by promoter hypermethylation
in 60% of the tumours, the latter figure rising to 90% in the advanced
stage tumours (Li et al., 2002). Furthermore, silencing by hypermethy-
lation of the Runx3 promoter was also observed in cell lines derived
from N-methyl-M-nitrosourea-induced mouse stomach carcinomas
(Guo et al., 2002). 

These observations prompt the question: does the loss of Runx3
in the KO mice cause gastric tumorigenesis? In the case of the
Runx3–/– mice described by Li et al. (2002) (hereafter referred to as
Runx3 type I KO), which were inbred on a C57BL/6 background,
most progeny died of starvation soon after birth and none survived
for more than 10 days. Therefore, studies of tumorigenesis in these
mice were not feasible. However, another strain of Runx3 KO mice
(Runx3 type II KO), which were bred on a heterogeneous genetic

background (ICR and MF1), produced progeny of which a signifi-
cant number survived for several months (Levanon et al., 2002).
Intriguingly, newborn Runx3 type II KO mice did not show hyperpla-
sia of the gastric epithelium and did not develop gastric tumours
(Levanon et al., 2002). This observation strongly suggests that loss of
Runx3 is not necessarily associated with gastric neoplasia, and that
the mucosal hypertrophy observed in the newborn Runx3 type I KO
mice might be related to the strain on which the study was per-
formed. It is interesting to note that the C57BL/6 strain is more sus-
ceptible to Helicobacter felis infection, which often results in a
severe gastric phenotype that is characterized by increased prolifera-
tion of the mucosal epithelium (Wang et al., 1998), than other strains
such as BALB/c or C3H/HeJ. Therefore, as suggested by Lund van
Lohuizen (Lund van Lohuizen, 2002), the possible involvement of
Helicobacter in the aetiology of stomach lesions in Runx3 KO mice
should not be overlooked. 

As mentioned earlier, CBF-β is essential for the activity of all the
Runx proteins (Adya et al., 2000); consequently, CBF-β -deficient
mice recapitulate the Runx1 null phenotype, as they lack definitive
haematopoiesis and die due to haemorrhaging at embryonic day
12.5 (Adya et al., 2000; Speck, 2001). Recently, three groups pro-
duced new strains of CBF-β-mutant mice in which the early
haematopoietic defect was reversed (Kundu et al., 2002; Miller
et al., 2002; Yoshida et al., 2002). The progeny of these mice were
born, but died within one day of birth. As the stomach defect in
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Fig. 1 | The mammalian RUNX genes: structure and mode of function. (A) The three mammalian RUNX genes have similar genomic organization with two

promoters (P1 and P2) and a very large first intron. The two promoters give rise to two biologically distinct 5´ untranslated regions (UTRs) (yellow and orange). In

humans and mice, each gene resides on different chromosomes (human 21, 6 and 1, and mouse 16, 17 and 4, respectively). The highly conserved runt domain is

encoded by the three exons marked in green. Exons comprising the transactivation domain are shown in black and grey and the 3´ UTR in blue. Runx3 is the

smallest and simplest of the three genes. (B) The runt domain directs binding to the RUNX DNA-motif PyGPyGGT at the promoter of target genes, and

protein–protein interactions withcore-binding factor-β (CBF-β). The RUNX proteins bind to the same DNA motif and either activate or repress transcription

through interactions with other transcription factors (blue ellipse) and co-activators (arrows), or co-repressors (blocked line). Of note, due to lack of space, only a

few examples of RUNX transcriptional co-modulators are indicated.
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Runx3 type I KO mice was detected immediately after birth and
before suckling commenced, it would be interesting to look for
mucosal hyperplasia in these new CBF-β–/– rescue mutants.
Moreover, the early death of the Runx3 KO C57BL/6 pups preclud-
ed the analysis of tumour development in these mice. However, as
breeding them into an ICR background significantly extended their
lifespan (Inoue et al., 2002), it is now possibile to examine stomach
tumorigenesis in these mice. It would be equally interesting to
breed the Runx3 type II KO mice onto a C57BL/6 background and
to examine the newborns for gastric mucosa hyperplasia. 

Is Runx3 intrinsically required in the gastric epithelium?
The phenotypic differences between the two Runx3 KO strains
also extend to the expression pattern of Runx3 during develop-
ment. Analysis of heterozygous Runx3LacZ/+ embryos of both type I
and type II KO mice revealed X-gal staining in sensory ganglia,
epidermal appendages and developing skeletal elements
(Levanon et al., 2001a, 2002; Li et al., 2002). In addition, Runx3
RNA was detected by in situ hybridization in the stomach epitheli-
um of type I KO mice and strong X-gal staining was observed in
the stomach and intestine of E14.5 embryos (Li et al., 2002). These
data do not correspond with data for the type II KO mice, in which
no Runx3 expression was detected in the stomach, either by LacZ
or immunostaining with specific Runx3 antibodies (Levanon 
et al., 2001a). The latter studies also showed that Runx1 is highly
expressed in epithelia, including the gastric epithelium, whereas
Runx3 expression is restricted to the mesenchymal tissues
(Levanon et al., 2001a; Yamashiro et al., 2002). The genetic back-
grounds of the two types of KO mice could account for the pheno-
typic differences observed, but what is the underlying cause of
these gene expression discrepancies?

Differences in the targeting constructs
One important difference between the two mutant strains is the
structure of the targeting vectors used for creating the KO mice. In
type II KO mice, Runx3 was disrupted by inserting a LacZ–neomycin
(neo) cassette into exon 2, the first exon of the RD (Fig. 2). Here,
expression of LacZ is mediated by the distal P1 and proximal P2 pro-
moters of Runx3, and by the IRES of the vector, thus generating a free
LacZ protein (Fig. 2). In Runx3 type I KO mice, however, the
LacZ–neo cassette was inserted in frame at the carboxyl terminus of
the RD, creating a RD–LacZ fusion protein (Fig. 2). As the C terminus
of the RD is important for DNA binding (Nagata et al., 1999;
Rudolph & Gergen, 2001), the fused RD–LacZ protein would be
expected to bind very poorly to DNA. However, as this fused prod-
uct retains most of the RD, it may bind to the Runx partner protein
CBF-β (Bravo et al., 2001) and therefore exert a dominant-negative
effect (Michaud et al., 2002), particularly in the stomach of Runx3
type I KO mice where the RD–LacZ protein is highly expressed. A
potential target for this negative effect is Runx1, which is expressed
in the gastric mucosa of developing mouse embryos (Levanon et al.,
2001a). So far, there has been no functional analysis of Runx1 activity
in the stomach and intestine of either Runx3 type I or Runx3 type II
KO mice, and this may prove to be informative.

Structural differences within the targeted genomic locus
In addition to the structural difference in the LacZ product of the
two constructs, the genomic targeting site also differs in the KO
types. In type II KO mice the LacZ–neo cassette was inserted into
exon 2, whereas in Runx3 type I KO mice it was placed ~10 kb
downstream, near the 3′ end of exon 4 (Fig. 2). 

How might this affect the gastric phenotype? Long-distance
effects on neighbouring genes are well-known phenomena. As
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pointed out by Balmain (2002), Runx3 is subject to upregulation
in T-cell lymphomas by the insertion of murine leukemia virus
(MuLV) at the Dsi1 locus, located 30 kb upstream of its P1 pro-
moter (Stewart et al., 2002) (Fig. 2). If this, or another transposable
element is present in the strain used to generate the type I KO
mice, it might also affect Runx3 expression in the stomach.
Interestingly, a gene that encodes the chloride intracellular chan-
nel 4 (Clic4) is located downstream of Runx3, close to the 3′-end
of the gene (Figs 1,2), and downregulation of Clic4 is known to
abrogate p53-dependent apoptosis (Fernandez-Salas et al., 2002).
Therefore, an intriguing possibility, is that the targeting of Runx3
exon 4 might have affected the expression of Clic4 in cis, leading
to attenuation of apoptosis in the gastric mucosa of Runx3 type I
KO mice. In particular, the introduction of the neo gene, which is
driven in the Runx3 type I KO mice by the phosphoglycerate
kinase (PGK) promoter that is known to influence neighbouring
genes (Scacheri et al., 2001), may have affected Clic4 expression.
In this regard, it is worth noting that several Clic4 expressed
sequence tags (ESTs) have previously been isolated from stomach
complementary DNA libraries (for example, NCBI, UniGene
Cluster Hs.25035). Analysis of Runx3 mutant mice for MuLV inte-
gration, as well as analysis after removal of the LacZ-neo cassette
by Cre-recombinase–mediated excision, should help to clarify
these issues.

Is the RUNX3 P1 promoter methylated in gastric cancer?
What is the connection between the downregulation of RUNX3 and
human gastric cancer? Furthermore, how might the hypermethyla-
tion of the RUNX3 promoter that has been observed in primary
human gastric tumours fit into the puzzle? 

Gastric carcinomas, as with many other human tumours, are
associated with multiple genetic alterations that affect numerous
genes. These changes include genetic instability, reactivation of
telomerase, inactivation of tumour-suppressor genes and activation
of oncogenes (Yasui et al., 2000). Thus, it could be considered possi-
ble that epigenetic silencing of RUNX3 in human gastric tumours
reflects a secondary event induced by the malignant transformation. 

The regulation of RUNX3 by two promoters may also be a fac-
tor in its potential silencing, as only the P2 promoter was evaluated
for hypermethylation in gastric tumours (Li et al., 2002). In con-
trast to the P2 promoter, which is located within a conserved CpG
island (Fig. 2), the environment of the P1 promoter is CpG poor
(Bangsow et al., 2001), so it is unlikely to be a target for methyla-
tion. Silencing of the P2 promoter by hypermethylation could
therefore be accompanied by an upregulation of the P1 promoter
(Stewart et al., 2002). Such a P2-to-P1-promoter switch has been
previously observed for RUNX1 (Pozner et al., 2000). This pro-
moter switch should not be overlooked as it could result, as with
RUNX1, in an enhanced production of alternatively spliced iso-
forms of RUNX3 (Levanon et al., 1996), some of which could lack
various parts of the carboxy-terminal region of the protein. As this
missing domain is considered to be the transactivation domain of
RUNX3, such isoforms may act as dominant-negative regulators.
Moreover, RUNX3 isoforms that lack the trans-activation domain,
but have transcription start sites at the P1 promoter, may not be
detected by the RT–PCR (PCR after reverse transcription) primers
used by Li et al., (2002). Examination of the methylation status of
the RUNX3 P1 promoter in primary gastric tumours should shed
light on this.

Perspectives
The discrepancies between the two Runx3 mutant strains will have
to be reconciled through further investigation. However, it is worth
noting that Runx3 KO mice have two phenotypic defects that are
comparable in both type I and type II, despite variations in strain
and targeting strategy. These are a prominent sensory-motor defect
(Inoue et al., 2002; Levanon et al., 2002) and a well-defined 
defect in thymopoiesis (Taniuchi et al., 2002; Woolf et al., 2003).
In both cases, Runx3 is readily detected in the affected tissues and
a cell-intrinsic requirement for Runx3 has been shown. However,
Runx3 has several alternatively spliced isoforms (Bangsow et al.,
2001), the expression of which has not been carefully evaluated in
either of the two Runx3 KO strains. Thus, the ‘down but not out’
phenomenon seen in other KO models (see Kos et al., 2002)
should also be considered here. Furthermore, the association of
Runx3 deficiency with defects in cytotoxic T-cell development
(Taniuchi et al., 2002; Woolf et al. 2003) may cause secondary
phenotypes that are not directly linked to Runx3 activity. Thus, the
phenotypic differences described here pose the challenge of dis-
tinguishing between defects that are directly due to loss of Runx3
and those that are unrelated, non-cell-autonomous or secondary.
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