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ABSTRACT

Much of the statistical analysis of bio-
logical data depends on the assumption
that the data are Gaussian (or normal).
Some well-known procedures which use
this assumption are (i) t-tests (ii) anal-
ysis of variance (iii) regression estimation
and their attendant tests. If the data are
not Gaussian, one can use nonparametric
statistical techniques, if they exist, but
they often require larger amounts of data
to obtain equally precise results (see for
example Lumsden and Mullen (7) for a
discussion of this with regard to reference
value estimation). If the data are not
Gaussian a fruitful approach to their
analyses lies in trying to find a transfor-
mation which will render them Gaussian.
The data thus transformed to a Gaussian
form, can be analyzed validly using
standard statistical techniques. The pro-
cess of finding a good transformation of
the data has often been an arbitrary and
ad hoc one. The purpose of this article is
to look at a particular technique for
attempting to render nonGaussian data
Gaussian, and to illustrate its applicability
and breadth of use.

RCSUMC

La majeure partie de l'analyse statis-
tique des donnees biologiques d6pend de
la supposition que ces donnees presentent
une distribution equivalente a celle de
Gauss, i.e. normale. Voici quelques pro-
cedes bien connus qui utilisent cette
supposition: 1. les tests-t, 2. I'analyse des
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ecarts et 3. I'appreciation de la regression,
ainsi que les tests qui les accompagnent.
Si les donnees obtenues ne possedent pas
une distribution equivalente a celle de
Gauss, on peut les analyser a l'aide de
techniques statistiques non param6triques,
pourvu que de telles techniques existent;
il faut cependant plus de donnees, de
facon a obtenir des resultats aussi precis.
Consultez par exemple l'article de Lumsden
et Mullen (7), pour une discussion sur
l'evaluation des valeurs de reference.
Lorsque la distribution des donnees ne
s'avere pas equivalente a celle de Gauss,
une facon fructueuse d'aborder leur
analyse consiste a tenter de trouver une
transformation qui les convertisse en
donnees dont la distribution correspondra
a celle de Gauss. On peut ensuite les
analyser validement a l'aide de techniques
statistiques standards. La fagon de trouver
une bonne transformation des donn6es
s'avere souvent arbitraire et ad hoc. Le
but de cet article consiste a jeter un
regard sur une technique particuliere qui
vise 'a transformer en donnees dont la
distribution ne correspond pas a celle de
Gauss, des donnees qui correspondent
deja a cette distribution; il veut aussi
illustrer I'applicabilite' et les possibilit6s
d'utilisation de cette technique particu-
liere.

INTRODUCTION

This article is concerned with the
problem of finding a transformation for
rendering nonGaussian data Gaussian.
Examples of the use and necessity of
such transformations are discussed in
the establishing of veterinary reference
values by Lumsden and Mullen (7) and
applications to canine and bovine hema-
tology and biochemistry data are dis-
cussed in Lumsden et al (8,9). The prob-
lem considered in the above references
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is as follows. For any characteristic, its
reference values or reference interval
is a pair of numbers, calculated from
a randomly selected sample of healthy
animals, within which 95% of the
population values of healthy animals
can be expected to lie. The cal-
culation of the reference interval is
made simpler and more efficient if the
data are assumed to have a Gaussian
distribution. If this is not so, then one
can attempt to transform the data to
the Gaussian form. If the attempt is
successful, then Gaussian methods can
be used on the transformed data; if it is
unsuccessful, one alternative is to use
nonparametric techniques for estimating
the reference values, but these, although
better than wrongly assuming that the
data are Gaussian, do not permit one
to calculate the confidence that can be
placed in them for small sample sizes.

In Lumsden et al (8,9) if the data were
not Gaussian, then they were subjected
to four transformations, the square root
transformation x, the inverse transfor-
mation 1/x, the logarithmic transforma-
tion In ( x + 0.5) and the arcsine transfor-
mation. Each set of transformed data
was subjected to a test for normality
(usually a chi-square goodness of fit test
or the Kolmogorov-Smirnov test, both
discussed in Lumsden and Mullen (7)
and the most appropriately transformed
set (if any) was processed using the
Gaussian technique. The use of the afore-
named transformations is arbitrary and
ad hoc and more recently we have tried
a more unified and theoretically justified
approach, due to Box and Cox (1), which
will be discussed and applied here.

STATISTICAL DISCUSSION

Standard statistical techniques require
that the response (measurement) variable
follow a Gaussian distribution, have a
variance independent of the experimental
treatments and be acted upon additively
by the treatments. If these conditions
are not met it is convenient to transform
the response variable x to a new variable
y which satisfies the above conditions.
The alternative would be the utilization
of sophisticated, intricate and possibly
inefficient statistical methods. A de-

tailed discussion of various methods of
transforming data is given by Thoni
(13) and less extensive but excellent dis-
cussions can be found in the intermediate
level statistics books by Steel and Torrie
(12) and Snedecor and Cochran (11).
We propose to illustrate the use of a
unified and broadly applicable approach
suggested by Box and Cox (1) on some
data which was previously analyzed by
standard transformations applied in a
somewhat ad hoc fashion.
Box and Cox suggest transforming the

original response variable x to a new
variable y means of the relation

y= (x+A)" 1 if B 0
B

or y = log (x + A) if B =0.
Varying A and B generates a rich class
of transformations which includes the
square root transformation (B = 0.5),
the reciprocal transformation (B = -1).
and the log transformation (B = 0).
These latter transformations were con-
sidered by Lumsden and Mullen (7) and
the present approach allows one to de-
cide which, if any, is appropriate. It is
assumed one member of the Box-Cox
family of transformations leads to
Gaussian data. The statistical problems
are to determine the best choice for
A and B and then to decide if the cor-
responding response variable does in
fact conform to a Gaussian distribution.
Fortunately, transforming to Gaussian
form often (but not always) stabilizes
the variance and achieves additivity.
One efficient criterion for judging

which transformation is the best is the
intuitively appealing one of choosing
those values of A and B which make
the given data set the one most likely
to be observed. The term likelihood func-
tion is given to the expression to be
maximized and the values of A, B and
other parameters (mean IL, variance or)
in the model which maximize this ex-
pression are called maximum likelihood
estimates.

This method of maximum likelihood
estimation was first suggested by Sir
R.A. Fisher (4) and its optimal proper-
ties are discussed in detail by Cox and
Hinkley (2). Numerically it is equivalent
and often easier to maximize the loga-
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TABLE I. Data on Healthy Cattle in the Age
Group One to 14 Days

Serum Iron
(mg/dL)

37
177
77
95
82
83
200
50
45
102
27
35
45
100
50
53
156
65
63
106
28
142
64
121
164
283
67
136
45
127
45
38
193
69
52
75
95
135
47
102
224
78
161

TABLE Ila.
Function, L,
Data

Monocytes
(x 103/mL)

3
4
5
15
9
2
0
1
6
3
5
2
3
3
3
2
2
10
4
5
3
6
3
1
7
9
6
9
5
8
7
4
2
5
4
5
1
1

10
6
6

Neutrophil Bands
(%o)
10
0
4
1
0
0
2
0
3
0
3
3
13
1
3
0
4
0
5
0
2
0
0
3
0
1
0
0
2
2
0
1
1
0
0
0
0
0
1
0
2

Values of the Log Likelihood
for the Serum Iron (mg/dL)

B

A -0.5 0 0.5 1

0 - 167.1 - 165.9 - 168.5 - 174.6
1 - 167.0 - 166.0 - 168.5 - 174.6k
2 - 167.0 - 166.0 - 168.5 - 174.6

-The values of L for the original untransformed
data

rithm of the likelihood function. After
replacing the mean and variance by their
maximum likelihood estimates, the log
likelihood function L, is proportional to

-n ~~~~n-log(s2)+(B-1) log(xi+A)

where

1 n
s2

n (yi y)2n -1 i-i

and

n1
y = . Yn =1

are the sample variance and mean, res-
pectively. The use of L to find optimal
values of A and B is ideally suited for
a conversational APL terminal and an
APL program is available from the au-
thors on request. Basically one searches
by trial and error to find A and B which
give the largest value of L. Once A and
B have been found, and the x's have
been transformed to the y's, the result-
ing transformed data should be tested,
using for instance the Kolmogorov-Smir-
nov test, to see if the transformation
is adequate. Examples of this will be
given in the next section. If the trans-
formation adequately renders the data
Gaussian, then Gaussian techniques can
be used to complete the analysis.

SOME EXAMPLES

In order to illustrate this technique
we take three sets of data which were
used in Lumsden et al (9). The three
sets, on healthy cattle in the age group
one to 14 days are (i) serum iron
(mg/dL), (ii) monocytes (103/mL) and
(iii) neutrophil bands (%). The data
are presented in Table I.
The values of L, the log likelihood func-

tion, are shown in Tables IIa, b and c
for a choice of A and B for each of the
three sets of data.
An informal graphical check on wheth-

er a variable follows a Gaussian distrib-

TABLE Ilb. Values of the Log Likelihood
Function, L, for the Monocyte Data

B

A -0.5 0 0.5 1 1.5

1 - 47.7 - 42.5 - 42.0 - 45.8& - 53.2
2 - 44.0 - 41.9 - 42.5 - 45.8 - 51.7
3 - 42.8 - 41.8 -42.8 - 45.8 - 50.8
4 - 42.3 - 41.9 -43.1 - 45.8 - 49.6

-The value of L for the original untransformed data
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TABLE lIc. Values of the Log Likelihood a normal equivalent deviate, or more
Function, L, for the Neutrophil Band Data simply, a normal quantile or percentile.

An approximately straight line plot is
B evidence for a Gaussian distribution.

A - 1 - 0.5 0 0.5 Figures la,b,c provides normal proba-
bility plots for the three data sets in

1 - 10.8 - 10.5 - 14.2 - 23.5 Table I. It can be noted that all three
2 - 13.3 - 151 - 19.5 - 2796 distributions are decidedly nonGaussian.

Also the cumulative percentages are

usually modified slightly to -Y2 100%ution is supplied by a normal probability n
plot of the data. The ith smallest obser- so as to preserve symmetry between the
vation is plotted versus the standardized smallest and largest observations and
normal variable corresponding to a cu- to avoid the problem of plotting the

largest observation at +oo. The standard-
mulative percentage of I 100%. This lat-

n
ter standardized normal value is called
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Fig. la. Normal probability plot for serum iron data.
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Fig. lb. Normal probability plot for monocyte data.

order that the data can be compared
with the 450 line. If a computer program
is not available the use of specially pre-

pared normal probability paper makes it
easy to plot the data by hand.

The Kolmogorov-Smirnov test deter-
mines if the deviations between the points
and the 450 line are larger than can be
attributed to sampling fluctuation. For

each data set the observed significance
level (the probability of obtaining devia-
tions as large as those observed by
chance above) was less than 1% and
this formal test confirms our conclusion
that the three data sets are not Gaussian.
Figures 2a,b show that the serum iron
data and the monocyte data can be suc-

cessfully transformed to normality. The

method of determining these transfor-
mations will now be discussed.
For the serum iron data, we see from

Table IIa that the value of A seems
to have little effect on the value of L

hence A may be set equal to zero. We
see also that for B = 1 the value of L
is -174.6 and that L increases as B gets
closer to zero and then starts to decrease
again, implying that B = 0 is the opti-
mum value. Thus the serum iron data
were transformed to

y = logex

which, when tested with the Kolmogorov-
Smirnov test were concluded to have a

Gaussian distribution. For the monocyte
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Fig. lc. Normal probability plot for neutrophil band data.

data, the value of A again seemed to be
unimportant and hence was set at a con-
venient value of 1 (A cannot be set
equal to zero, because the transforma-
tions would necessitate taking the square
roots of negative numbers). We see that
L increases as B approaches zero. There
appears to be little difference in the
values of L for B = 0 (the logarithmic
transformation) and for B = 0.5 (the
square root transformation); in fact
both transformations gave results which
we concluded to be Gaussian, but for
further discussion here, we used the
square root transformation so that

y = 2 Vx + 1 2

For the neutrophil band data, the largest
value of L is obtained for A = 1, B = 0.5,
for which the transformation is

2
y=-Vx+1

However, upon making this transforma-
tion, and applying the test for Gaussian-
ness, the data still did not satisfy the
conditions for being Gaussian. This con-
clusion was to be anticipated for the
neutrophil band data since there is a
mode at x = 0 where half the observa-
tions were found. Clearly, no monotone
transformation can symmetrize this da-
ta. Therefore no transformation was ap-
propriate for them and further analyses
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Fig. 2a. Normal probability plot for log serum iron data.

could be done using nonparametric tech-
niques.
In conclusion, of the three sets of data,

the serum iron data were rendered Gaus-
sian by a logarithmic transformation,
the monocyte data were rendered Gaus-
sian by a square root-type transforma-
tion and the neutrophil data could not
be rendered Gaussian.

DISCUSSION AND OTHER
APPLICATIONS

It has been assumed that for some
(A,B) value, the transformed variable is
normally distributed. The primary func-
tion of A will usually be to ensure that

the numbers x+A are positive. Any val-
ues of (A,B) close to the maximum
likelihood estimates will be reasonable
ones. In fact, for fixed A, values of B
whose log likelihood differs from the
maximized log likelihood by no more than
0.65 (1/2 times the logarithm to the base
e, of the 95th percentile of a chi-square
variable on 1 degree of freedom) make
up a 95% confidence interval for B.
For example, for the monocyte data if
it is decided to take A = 1 then the
maximum likelihood estimate of B is 0.5
and any values of B in the range -0.2
to 0.7 are reasonably plausible values. A
value for B which is biologically mean-
ingful is to be preferred over the exact
maximum likelihood estimate. For exam-
ple, if the variable x is survival time
(number of animals or cells in a certain
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Fig. 2b. Normal probability plot for V monocyte data.

region) then I is interpretable as the
"rate of dying" ("density") which, if
B = -1 is a plausible value, would sug-

gest that the reciprocal transformation
should be used.

It is often important to draw conclu-
sions in terms of the original metric
rather than in the transformed one. Since
the ordering of the observations is pre-

served by the family of transformations,
one merely takes the inverse transforma-
tion of percentile estimates (and their
confidence limits) computed in the trans-
formed metric to obtain those in terms
of the original one. For the serum iron
data the median of the transformed data
is 4.36, the 22nd smallest observation,

and hence the estimated median in the
original metric is e436 = 78.3 (mg/dL).
If one wishes to estimate the 95% toler-
ance limits of the log serum iron measure-

ments one uses y+ks where k = 2.3465
(7).
Taking antilogs yield eY+kS (20.7,319.3).
If one ignored the nonGaussian nature of
the original measurements and worked
directly with them one would have ob-
tained (-39.6, 232.1) where the lower
limit is clearly inadmissable. This exam-

ple illustrates that using a properly
chosen transformation can preclude non-

sensical results. See Lumsden and Mul-
len (7) for details on tolerance and per-
centile estimation for veterinary data.
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If one decided to use y = 2v'2i4T -2
for the monocyte data, one could equally
well use the somewhat simpler trans-
formation y = v'xTi. This procedure of
changing the scale 2, and location -2, is
valid unless one is carrying out a regres-
sion analysis without a constant term
(10).
The problem of estimating means of

the original data is somewhat more in-
volved since the inverse transformation
of the mean in the transformed metric
is a biased estimator of the mean of the
original measurements. Details as to how
to correct for this bias are given in
Land (6).

It is becoming more common to analyze
veterinary data arising from complex
experiments using regression and analysis
of variance techniques. One way of pro-
ceeding is to work with the "standard-
ized variable"

(x + A)B - 1
BG

where G = eAvge(x+A) is the geometric mean
of the (x+A)'s (1). One then determines
the value of (A,B) which leads to the
smallest residual or error sum of squares.
The reader is encouraged to read

Draper and Hunter (3) for more exam-
ples which are analyzed using a slightly
different approach. Hinkley (5) provides
a quick method of choosing a transforma-
tion that is suitable for hand calculation
and is not sensitive to outlying observa-
tions.

REFERENCES

1. BOX, G.E.P. and D.R. COX. An analysis
of transformations. J.R. Statist. Soc. B
26: 211-252. 1964.

2. COX, D.R. and D. L. HINKLEY. Theoret-
ical Statistics. pp. 283-310. London: Chap-
man and Hall. 1974.

3. DRAPER, N.R. and W.G. HUNTER.
Transformation: Some examples revisited.
Technometrics 11: 23-40. 1969.

4. FISHER, R.A. On the mathematical foun-
dations of theoretical statistics. Phil.
Trans. A 222: 309-368. 1921.

5. HINKLEY, D. On quick choice of power
transformation. Appl. Statist. 26: 67-69.
1977.

6. LAND, C.E. Confidence interval estima-
tion after data transformations to nor-
mality. J. Am. Statist. Ass. 69: 795-802.
1974.

7. LUMSDEN, J.H. and K. MULLEN. On
establishing reference values. Can. J.
comp. Med. 42: 293-301. 1978.

8. LUMSDEN, J.H. K. MULLEN and B.J.
McSHERRY. Canine hematology and bio-
chemistry reference values. Can. J. comp.
Med. 43: 125-131. 1979.

9. LUMSDEN, J.H., K. MULLEN and R.
ROWE. Hematology and biochemistry
reference values for female Holstein cat-
tle. Can. J. comp. Med. 44: 24-31. 1980.

10. SCHLESSELMAN, J. Power families: a
note on the Box and Cox transformation.
J.R. Statist. Soc. B 33: 307-311. 1971.

11. SNEDECOR, G.W. and W.G. COCHRAN.
Statistical Methods, 6th Edition. pp. 325-
330, 493-502. Ames: Iowa State University
Press. 1967.

12. STEEL, R.G.D. and J.H. TORRIE. Prin-
ciples and Procedures of Statistics. To-
ronto: McGraw-Hill. 1960.

13. THONI, H. Transformations of variables
used in the analysis of experimental and
observations date. A review. Tech. Report
7. Statistical Laboratory, Iowa State Uni-
versity, Ames, Iowa. 1967.

51


