
JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR

THE BEHA VIORAL THEORY OF TIMING:
TRANSITION ANALYSES

PETER R. KILLEEN AND J. GREGOR FETTERMAN

ARIZONA STATE UNIVERSITY AND INDIANA UNIVERSITY-PURDUE UNIVERSITY AT INDIANAPOLIS

Gibbon and Church (1990, 1992) have recently confirmed an important, parameter-free prediction
of the behavioral theory of timing (Killeen & Fetterman, 1988): The times of exiting from a bout of
activity are positively correlated with the times of entrance to it. The correlations were slightly less
than predicted, however, and the correlations between the start of an activity and the time spent
engaged in that activity were negative, rather than zero. We adapted their serial model as an augmented
(one-parameter) version of the behavioral theory, positing a lag between the receipt of a pulse from
the pacemaker and transition into the next class of responses. The augmented version of the behavioral
theory further improved the correspondence between the theory and the correlational data reported
by Gibbon and Church. It also accounts for previously unpublished data from our laboratory derived
from a new timing technique, the "peak choice" procedure. We show that the measured variance of
movement times from one key to another closely approximates the estimated variance of transition
times recovered from fits of the augmented model to the data. Such correspondence both attests to the
correct identification of this source of variance and suggests ways to remove it, both from behavior
and from our models of behavior.
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The Basic Model
The behavioral theory of timing (BeT; Kil-

leen & Fetterman, 1988) provides a simple
description of the way animals respond to ex-
perimental contingencies in settings that we
call "timing experiments." In its simplest ver-
sion, it assumes that there is a constant prob-
ability that an organism will move from one
class of behavior to the next. In the context of
periodic feedings, this might be realized as suc-
cessive bouts of different adjunctive or super-
stitious responses, such as turning, scanning a
corner, pacing the front wall, hopper inspec-
tion, and so forth. It follows from the constant-
probability assumption that the probability that
an animal will be engaged in one or another
class of responses at any point in time has a
gamma distribution, which can look like any-
thing from an exponential to a normal distri-
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bution, depending on its parameters. Unfor-
tunately, the various responses that can be
measured throughout an interval cannot all be
accommodated by the same gamma distribu-
tion. One way of fixing the theory is to invoke
generalized gamma functions (McGill & Gib-
bon, 1965), which permit the constant prob-
ability to be different for each state and provide
excellent descriptions of the distributions of
behavior during the interval between incen-
tives (Killeen, 1975). An instance of such dis-
tributions elsewhere in nature is the proba-
bility of observing a particular intermediate
isotope in a radioactive decay process, when
there is a constant probability of each of the
precursors changing into the next in sequence
but each precursor may have a different char-
acteristic probability. Note that this model casts
the process as a chain reaction, whether of
behavior or chemicals.
A different way of making the constant-

probability model flexible enough to produce
the observed distributions of behavior is to as-
sume that the organism moves from one state
to the next with a constant probability that is
uniform across states, but that several such
transitions may be necessary to arrive at a new
class of behavior. This approach replaces the
different values for the transition probabilities
with a uniform value, but then regains the
necessary flexibility by loosening the relation
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between underlying hypothetical "states" and
the observed classes of behavior, letting several
states underlie a single class.
The easiest way to think about this is for

each transition to be triggered by a "pulse,"
and after several such pulses are registered the
organism changes from one class of responses
to the next. This is the well-known "pace-
maker-counter" model of the timing system
(e.g., Church, 1978; Fetterman & Killeen,
1990; Treisman, 1963), in which the pulses
issue from a more-or-less regular pacemaker
and are registered by a more-or-less accurate
counter. One of the mathematically simplest
models of this process is that in which the
pacemaker is maximally random. This is our
constant-probability model, which is in this
context called a Poisson process, and which pre-
dicts the observed gamma distributions of ac-
tivity.

It is not uncommon to infer an underlying
pacemaker-counter system based on the evi-
dence of gamma distributions of behavior; that
was the course followed in the development of
BeT. It is useful to do so because one can then
more easily generalize the model (e.g., to pace-
makers that are more reliable than the Poisson
emitter, or to cases where there are missed
counts, and so on; for treatment of the general
case, see Killeen & Weiss, 1987). Concretizing
the processes in terms of a pacemaker and
counter aids our thinking, even though the
mathematical models do not strictly require a
biological pacemaker that emits pulses, nor
must the behavior reflect all of the properties
of the model (e.g., an organism might be able
to discriminate different states without being
able to discriminate their ordinal relations, and
several discriminable states may be associated
with what are measurably the same re-
sponses).
The time between pulses is a random vari-

able; in the case of the types of "renewal pro-
cesses" typified by the Poisson process, these
random variables are assumed to be indepen-
dent and identically distributed. In the partic-
ular case of the Poisson process, the distri-
bution of waiting times between pulses is
exponential. In many cases, the cumulative
normal distribution, as the limiting distribu-
tion for such renewal processes (or the differ-
ence of two such distributions for the proba-
bility of having entered a particular state but
not yet left it), provides an excellent description

of temporal generalization, psychometric func-
tions, and distributions of adjunctive behavior
(Killeen & Fetterman, 1988). It is interesting
that two different theories of timing, scalar
expectancy theory (SET; e.g., Church & Gib-
bon, 1982) and BeT (e.g., Fetterman & Kil-
leen, 1991), arrive at this common model.
However, the interpretation of the parameters
of these distributions is different, as are the
intuitions that motivate the theories. (For fur-
ther discussion of the relation between the
Poisson process and the gamma distribution
as applied to behavioral data, and their con-
vergence on the normal distribution, see Fet-
terman & Killeen, 1991; Gibbon, 1992; Kil-
leen, 1979, 1991.)
What is the evidence for the existence of

these constructs?We know that there are many
biological oscillators (e.g., Llinas, 1988), and
these may serve as the origin of a pacemaker's
pulses. But it is unknown at this time how
these engage the behavioral timing process (for
hypotheses see Church & Broadbent, 1991;
Grossberg & Schmajuk, 1989; Keele & Ivry,
1990; Miall, 1992; Moore, Desmond, & Ber-
thier, 1989). The nature of the counter has
been equally obscure. In 1988, we hazarded
an unlikely hypothesis: When animals are
asked to judge whether an interval is long or
short, they may rely on a ready-made counter:
At the end of a short interval they are likely
to be engaged in one adjunctive behavior,
whereas at the end of a long interval, they are
likely to be engaged in a different one. If re-
sponding "short" at a time when they had been
pacing is highly correlated with reward, and
responding "long" at a time when they had
been pecking the front wall is highly correlated
with reward, through associative conditioning
these types of adjunctive behavior should be-
come discriminative stimuli for the correct re-
sponse. The animal's sequence of elicited re-
sponses itself becomes the "counter."

This simple pacemaker-counter model ac-
counts for many data. But to develop it here,
we must further examine what we mean by
the "states" that are correlated with the pulses
from the pacemaker, and the role they play in
governing behavior.

States versus Classes of Responses
Each pulse from the pacemaker is said to

move the organism to a new state. Here, we
are using the construct in much the same way
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Fig. 1. Schematic of the simple and augmented versions of BeT. With each pulse from the pacemaker the animal
switches from one state to the next. Several of these states may be associated with variants of the same behavior. Here,
the first three are correlated with a class of responses we call A, which might be behavior that occupies a postreinforcement
pause, or responding on the first of a series of keys. After three pulses the animal switches into a State 4, which is
associated with another class of responses (B), say responding to a central operandum. Under the simple model, we

assume that the transition is instantaneous; the augmented model requires that it take some time, which contributes
an additional source of variance (bottom line). Because we must infer transitions between states from first occasions
of responses from new classes, more precise predictions require that we take this transition variance into account.

(Table 1 shows how to do this.)

as we do when we speak of states of hunger
or anxiety, and mean by such constructs more
than the observed behavior: We mean a change
in the likelihood of a class of behavior (Skin-
ner, 1938). Each state may be correlated with
a different class of responses or with the same

responses. Whether we call two responses
members of the same class or of different classes
will depend in part on our measuring instru-
ments and in part on processes of response
generalization and induction (i.e., some of the
many-to-one mappings between states and re-

sponse classes may be an artifact of how we

measure, and some may be a reflection of how
animals intrinsically respond).
A pulse from the (irregular) pacemaker

might occur before the animal even has a chance
to emit the behavior characteristic of that state.
It is as if we "had a mind" to say something,
but the opportunity passed before we got it
out. Thus, states are propensities to respond,
not the responses themselves. In particular (and
unlike the simplest interpretation of the gen-
eralized gamma model), the pacemaker-coun-
ter model does not entail a "behavioral chain"
in which one response is necessary for the next.
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Figure 1 provides a representation of these
underlying processes. With each pulse of the
pacemaker the animal switches from one state
to the next, but several states may underlie a

single response class. Here, the first three are

correlated with a class of responses we call A,
which might be behavior that occupies a post-
reinforcement pause. After three pulses the
animal switches into a State 4, which is as-

sociated with another class of responses (B),
say, responding to an operandum. Because
these hypothetical states are not the same as

the observed classes of behavior, they will not
be perfectly correlated with them. The states
are driven by the pacemaker, and behavior
follows suit as best it can. But we need not
worry about this slippage, unless we wish to
utilize this distinction to model the process more
precisely. For instance, we may recognize that
hands and paws and beaks have physical mass,
and thus inertia, so that it takes some time
after leaving one state (called a latency period,
or transition time) before the first response ap-
propriate to the new state can be emitted. We
can choose to capture these details in a more

precise model, or not, as our interests dictate.
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Peak Choice: A New Timing Technique
As a means of further illustrating the points

we wish to make, we step aside here to describe
the method and some results from a previously
unpublished experiment from our laboratory.
Three pigeons were trained on a "peak choice"
procedure, under which responses were rein-
forced on different keys at different times.
Stated simply, the task required the birds to
be at the right place at the right time. Pigeons
were given 60 daily trials in a standard three-
key operant conditioning chamber. Reinforc-
ers were arranged for responses on the three
keys according to the time elapsed from the
beginning of the trial (signaled by the onset of
an amber light behind the right key), and trials
were separated by a 20-s intertrial interval.
The first response on the right key illuminated
the center and left keys with amber light. Re-
inforcers were provided for responses on the
right key after a short time had elapsed (e.g.,
8 s), on the center key after an intermediate
time (e.g., 16 s), or on the left key after a long
time (e.g., 32 s). On each trial, a reinforcer
was arranged for only one of the keys. A re-
sponse to the designated key produced a re-
inforcer, provided the response occurred at the
time appropriate to that key. In one condition,
for example, food was available on the right
key between 8 and 10 s (technically a fixed-
interval 8 s with a limited hold of 2 s), on the
center key between 16 and 20 s, and on the
left key between 32 and 40 s. Responses at
other times could not be reinforced. Whenever
a subject failed to collect a scheduled rein-
forcer, the trial ended at the time appropriate
to the left key, and the reinforcement contin-
gencies were repeated on ensuing trials until
the reinforcer was collected. The right key be-
came dark and inoperative when a subject
switched responses to the center key and, sim-
ilarly, the center keylight was darkened when
the subject moved from the center to the left
key. Subjects were not permitted to move di-
rectly from the right to the left key, bypassing
the center key; this restriction was enforced by
immediately ending the trial without food when
illegal switches occurred.
The resulting pattern of behavior was or-

derly: Subjects responded on the right key at
the beginning of a trial; if food was not received
at the designated time, the subject switched to
the center key and responded until reinforce-
ment was delivered or the designated time of
food was past, at which point subjects switched

to the left key and responded until food was
delivered or (in rare instances) the trial ended
without reinforcement. Responses to each key
were recorded in successive time bins through-
out the trial, as were the times of the first
responses to the center and left keys (the
switching times). As the reader may anticipate,
in a subsequent section we shall develop the
idea that these switching responses correspond
to transitions between states; in particular, they
correspond to entry and exit from the center-
key response state.

Some Predictions and Applications of the
Basic Theory
The Poisson process is the simplest example

of a fallible pacemaker; all such "recurrent
processes" are "memoryless." This entails two
interesting properties that at first glance seem
inconsistent: The time of the nth pulse, tn, is
correlated with the time of the next pulse, tnI1,
but it is not correlated with the time between
successive pulses, tn+1 - tn,,2c u hat the
mean period of the pacemaker is r and its
variance is a2. If the time of the nth pulse is tn,
it is obvious that the next pulse must occur
later than that; indeed the next pulse will occur
at tn plus r (the average interpulse interval).
Because these pulses are random variables, that
estimate will not be precise, but we expect
some positive correlation between the time of
one pulse and the time of the next. To get to
tnll, we must sum n + 1 pulses (each with
variance o2), so the variance of tn+1 is (n +
I)u2. If you know the value of tn, the variance
in your estimate of tn+1 is reduced from (n +
1)cy2 to that of the single last pulse, u2, thus
providing a useful prediction (i.e., reduction
in uncertainty). However, the time you must
wait from one pulse to the next, tn+1 - tn,
equals r no matter what the specific value of
tn; whether that equals 5 or 50 s, the expected
waiting time will still equal r.

For the analysis presented in this paper it
is not necessary to specify the number of pulses
corresponding to each of the classes of behav-
ior. For simplicity, let us think of only three
classes of responding, Class A (corresponding
either to some set of responses during a post-
reinforcement period or to pecking on Key A),
Class B (corresponding to lever pressing or to
pecking on Key B), and Class C (correspond-
ing to post-lever-pressing behavior or to peck-
ing on Key C). The transitions into and out
of these classes are directly measurable by re-
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Table 1

Predictions of the simple and augmented versions of BeT along with those for SET.

BeT Augmented BeT SET

Start B (SB) 2A a2A + 02M ab(4 x + S*2) + (1 -B)202x
End B a2A + a2B 2A + a2B oa2b(o2 + S*2) + (1 + B)2 2fx
Start C (sc) a2A + 2B a2A + a2B + 02M
Dwell in B (dB) a2B a2 + 2a2M 4a2b(Or2 + S*2) + 4B2a2.

r(se, SC) \ /~B ,/(f2A + a + M)(GA aAt M+J+2(+

r(SB, dB) 0 ( GM 2 - +

aA+a2A/\2G2M 2A+ 2AJ + -12(1 + .-~]~+ y2(u + 4)

cording and categorizing the responses as an-
imal makes; in theory, they correspond to one
or more hypothetical states, transition through
which is driven by pulses from the pacemaker
(see Figure 1).
The measured variances of the times spent

in each of these classes of behavior are U2A,
a2B, and U2c. Then variance in the time of
entrance into the first state corresponding to
Class C (State 7 in Figure 1) is U2A + o.2B. If
you know the time of entrance into the first
state corresponding to Class B (State 4 in Fig-
ure 1), then your uncertainty is reduced by
a2A. The proportion of variance reduced by
knowledge of that time is O2A/AU2A + U2B). A
correlation coefficient is the square root of the
proportion of variance accounted for by a pre-
dictor; thus, the predicted correlation between
these two transition times is simply the square
root of that proportion (see Table 1, which
represents this argument in its first column).

Figure 2 presents representative data from
our peak choice procedure that confirm the
predicted correlations. The figure shows the
data of 3 pigeons, depicting the times of the
first response on the center key ("start") and
the first response on the left key ("stop"). We
take the switching times to represent transi-
tions into and out of the "center-key state,"
with such transitions instigated by pulses from
the pacemaker. For the condition shown in the
figure, the reinforced times were 8 s, 16 s, and
32 s; the data were cumulated over 30 to 35
test sessions (the number varied for different
birds), with each point representing the out-
come of a single trial. The predicted positive

correlation is evident for all birds. The time
of the first peck on the third key is correlated
with the time of the first peck on the second
key.

By measuring the relevant variances and
inserting them in the above proportion, our
timing model predicts correlations of r = 0.55,
0.70, and 0.48 for the data in Figure 2, and
the obtained correlations are r = 0.49, 0.64,
and 0.37. The time spent responding on the
second key shows almost no correlation with
the time of the first response to the second key:
The latter can be demonstrated most easily by
plotting the time residing in a state (the dwell
time; Gibbon & Church, 1992, call this the
spread) as a function of the time since entering
it. For a simple recurrent process, this should
be a random scattergram. Figure 3 presents
data similar to those shown in Figure 2, but
now we present scatterplots of start time (as
defined in Figure 2) against dwell time, where
dwell is measured as the difference between
the stop and start times displayed in Figure 2.
If we take the dwell time to measure the du-
ration of the underlying behavioral state (in
this case, the time spent responding on the
center key), Figure 3 indicates that the pre-
dictions of the simplest version of BeT provide
a good approximation to the data.

Parsimonious Predictions of Data or
Precise Tests of Theory?
On the one hand, we could view these pre-

dictions as a triumph of the theory. If we take
it as the task of theory to account for data, and
what we seek is a parsimonious model of those
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Fig. 2. Times of first responses on one key (start) and

first responses on a second key (stop) for 3 pigeons. The
data were obtained from an unpublished study in our
laboratory using a peak choice procedure in which pigeons
were trained to peck on three keys, and reinforcers were

arranged for responses on each key according to the time
elapsed from the beginning of a trial. (See text for addi-
tional details.)

data, we have it and may stop here, because
there are no free parameters involved in the
above predictions. This may be contrasted with
more complex cognitive models that invoke
various free parameters to address such data.

25

f2 20

- 15

10

01 ,. ,., . , ., .I
0 5 10 15 20 25 30 3!

25

r, 20

= 15

.10

5 10 5I 20 25 30 35

Start (s)
Fig. 3. Times of first responses on one key (start) and

time spent responding on the key (dwell) for 3 pigeons.
Dwell is measured as the difference between the stop and
start times displayed in Figure 2. The data were obtained
from the peak choice procedure.

But there are alternate ways to view theories
and models. They may both be viewed as state-
ments of the truth about how things are; in
that case, they should be tested and may be
rejected if they are not perfectly truthful (with
the threshold for that decision depending on
measurement error). Or, models may be seen
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as a way of concretizing theory, forcing it to
come to terms with data and communicating
the constraints of the data back to inform the
theory. In either of these two cases, we are

motivated to search for additional data, or nu-

ances in the data, for which the predictions of
the model may be unsatisfactory. Then, in the
first of these two cases we would simply reject
the theory and wait for a better one. In the
second case we have the opportunity to ask
what the deviations require in the way of aug-
mentations of the theory and whether those
are worthwhile improvements to make.
A closer analysis of the data portrayed in

these two figures shows that the predictions
are not perfect. Given the large number of data
points shown in Figures 2 and 3, and thus
substantial power in the test, the deviations
between predicted and obtained results can be
shown to be significantly different than zero.

It is exactly such deviations from the predic-
tions of the simple model that Gibbon and
Church (1992) discovered; on the basis of these
deviations, they designed an augmented model.

The Augmented Model
Gibbon and Church (1992) developed a

model introduced by Wing and Kristofferson
(1973) to account for similar correlations found
in the tapping performance of humans. In this
model, transition from one state to the next is
not instantaneously revealed in changes in be-
havior; instead there is a latency period, with
some finite amount of time required for the
organism to "switch gears" into the new be-
havior. This time is not precisely the same on

each occasion, but rather is variable. We can

see that this latency will reduce the correlation
between the starting times of various classes
of behavior, because it contributes an addi-
tional random variable with its own variabil-
ity. Variance in the first measured occurrence
of behavior associated with Class C is now

a2, + a2B + a2M, where a2M is the variance of
the latency between the pulse from the pace-
maker and the first emission of the new be-
havior (see Table 1). We designate it with a

subscript of M to indicate movement or motor
variance. This is also something of a theoret-
ical commitment; rather than identify it as
"instructional" time or "go-to-sleep" time, as

do Gibbon and Church, we continue to prefer
the behavioral gambit: Define key variables in
ways that are directly measurable, and invoke
hypothetical processes (such as the pacemaker)

only when the theory with it is simpler than
the theory could be without it, given the data
it would cover (Branch, 1992; Skinner, 1938,
p. 24).

While the animal is in transition from one
behavior to the next, the pacemaker continues
to operate. Suppose that one transition from
A responses to B responses takes more time
than usual, perhaps because the animal falters
in going from one part of the chamber to the
next. Because the pacemaker doesn't stop dur-
ing this latency period (that is the simplest
assumption), if we estimate the time in states
underlying Class B behavior from the first re-
corded B response, we are leaving out the long
transit time and will underestimate the du-
ration by just that amount. So when the first
response of a class is later than usual because
of a long transit time, the dwell time in that
class will be shorter than expected. A similar
argument holds for exceptionally fast transits.
Thus we expect a negative correlation between
start and dwell times.
The bottom tracing of Figure 1 gives a di-

agrammatic sketch of the augmented model.
The distribution of transition times is shown
in the bottom line of the figure. Because we
can know that an animal has made a transition
to a new class of responses only after the first
measured instance of that response, our esti-
mates will be in error by the average transition
time, and the variance of our estimates of the
onset of the new classes will be increased by
the transition variance. In keeping with our
predilection for simplicity, we will assume that
the mean and variance of transition times are
the same for moving between any two classes
of response. We do not even need to stipulate
the mean of the transition time, because it just
acts to shift the origin by a small amount and
plays no role in any of our predictions. Fur-
thermore, we assume that all of the transition
variance is associated with the physical act of
moving from one class of responses to the next,
so that it adds variability only to measurements
of the subsequent class of responses. Notice
that we are associating the transition times
with the measured time between instances of
one class of behavior and instances of another
class, not with the transition between states,
which we take, for simplicity's sake, to be in-
stantaneous.
The exact predictions for an augmented

model of BeT have been worked out by Gibbon
and Church (1992) and are presented in their
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Fig. 4. Obtained correlations between start and stop times shown against predictions based on the simple (left

panel) and augmented (right panel) versions of BeT. The data come from 3 pigeons trained under the peak choice
procedure, with two different sets of time values (4-8-16 s and 8-16-32 s) for each pigeon. The predictions are based
on information presented in Table 1. (See text for additional details.)

Tables 2 and 3. Relevant parts of those tables
are modified and presented in the second col-
umn of Table 1 in this paper. Note in partic-
ular that the correlation between response
classes (Line 5) will be less than that between
states by the presence of the motor variance in
the denominator of that expression, and of a
fraction multiplying it. If the motor variance
goes to zero, see that the correlation increases
to that predicted for the correlation between
states, as it should. Note also that the new
fraction in that expression, UFfeAA+e2M)A
is simply the correlation between exit from
Class A and entry into Class B. If motor vari-
ance goes to zero, that fraction goes to one, as
it should, because with no motor variance, the
transition between classes of behavior-like
the transition between states-is instantane-
ous. In the next line we see that the correlation
between the start of a response class and the
dwell time in that class will be negative. Once
again, if motor variance is zero, the correlation
converges on that predicted between entry into
a state and dwell time in the state, which is
zero.
We may introduce the motor variance as a

free parameter and estimate it so as to optimize
the goodness of fit of data to theory. In the
case of Figures 2 and 3, assigning it a value
of 0.63 s2 improves the predictions: Instead of

predicting correlations of r = 0.55, 0.70, and
0.48 for the data in Figure 2, we predict r =

0.51, 0.62, and 0.42-much closer to the ob-
tained values of r = 0.49, 0.64, and 0.37. That
same hypothetical value of motor variance
changes our prediction of no relation between
start and dwell time to predictions of r = -0.13,
-0.15, and -0.16-much closer to the ob-
tained values of r = -0.11, -0.16, and -0.14.

Note that the estimated motor variance cor-
responds to a standard deviation of 0.96 s. If
the distribution of transit times is approxi-
mately normal, this means that approximately
68% of the transit times are within ±0.8 s of
the mean transit time. In the case of moving
from one key to the next, this seems to be a
very reasonable estimate.
We may repeat this analysis on the data

from 3 pigeons over several conditions. The
left panel of Figure 4 shows the predictions of
the simple theory for transitions from onset of
Class B to onset of Class C, and the right panel
of Figure 4 shows the predictions of the aug-
mented theory. Figure 5 shows the predictions
of the augmented theory for correlation be-
tween onset and dwell of Class B. The value
of the free parameter required for these ad-
justments, 02M, is given in Table 2. The av-
erage standard deviation of transition times
across subjects and techniques of estimation is
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Table 2
Estimates of motor variances and the average standard
deviations of transition times.

Motor variance

Direct
Free Difference measure-

Pigeon parameter measure ment

36 0.63 0.72 1.29
40 0.86 1.07 1.53
54 1.37 1.21 1.00
Average SD 0.96 0.99 1.12

-0.2 I response: It is the transition between states that-0.2 -0.1 0.0 0.1 0.2 is driven by the pacemaker, and our measured

Obtained classes reflect those transitions imperfectly be-
'ig. 5. Obtained correlations between start and dwell cause of the accidents of movement and mea-
s against predictions based on the augmented version surement. But even more substantial parallel-
'eT. The data come from 3 pigeons trained under the ism would not thereby constitute an argument
k choice procedure, with two different sets of time for cognitivism, any more than swinging one's
es (4-8-16 s and 8-16-32 s) for each pigeon. The . '
lictions are based on information presented in Table arms while walking raises ambulation to a
See text for additional details.) cognitive act.

very close to 1 s. (A more thorough analysis
of these data will be provided in a forthcoming
paper.) Of course it would be possible to in-
troduce a second free parameter, say, a differ-
ent motor variance to enter the third state, that
would utilize all of the degrees of freedom in
the data to make the predictions perfect. We
have tried this, but do not see systematic dif-
ferences in the two motor variances; thus, we
believe that at this level we are starting to "fit
noise" (i.e., unsystematic variations due to ex-
ceptional circumstances) rather than data is-
suing from behavior under the control of these
contingencies.

Gibbon and Church (1992) did not sound
particularly hopeful about the prospects of this
augmentation of BeT, because they thought it
would require six parameters, constitute a new
class of "parallel" models, and thereby be tan-
tamount to a cognitive theory. But we see that
it requires only one new parameter, not six.
This parameter is not a hypothesized mental
process but a simple motor latency. The par-
allelism is minimal-the pacemaker keeps
running as the organisms are moving from one

response class to the next. This is a more par-
simonious construction than having the pace-
maker pause until the animal makes its first

Constraints and Predictions
The connotative meaning of these concepts

is somewhat at odds with their scientific mean-
ings. Constraints seem to bind, predictions to
liberate. But a constraint on a model is the
same as a prediction, in that it tells us what
the model allows and what it disallows. Gib-
bon and Church's (1992) Table 2 shows that
there are more constraints on the simple ver-

sion of BeT than there are on SET. Indeed,
it was Gibbon and Church who discovered the
exceptional parameter-free predictions be-
tween start and stop times that were implicit
in BeT and manifest in the data. Whereas the
basic model was constrained to make these
predictions, the predictions were not perfect.
Consideration of the actual behavior we were
measuring and its physical constraints per-
mitted the development of an augmented model,
based on the work of Gibbon and Church
(1992), to get the model as close to the data
as we could under the constraint of parsimony.

Another constraint of the simple model was
that the variance in starting time of Class C
should equal the sum of the variances of the
starting time of State B plus that of the dwell
time in Class B. However, the measured vari-
ance of the start time of Class C is always less
than that sum (see also Gibbon & Church,
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1992, Figure 5). Figure 1 and Table 1 show
how the augmented model explains that de-
viation. In Line 1 in the second column of
Table 1, we see that the expected variance of
the first response in Class B is G2A + G2M. Let
us measure dwell time as the time from the
first response from Class B to the first response
in Class C. (The way Gibbon and Church
measured their "spread" time might be better
captured as the time between the first and the
last responses in Class B.) The variance of the
dwell time equals the variance of the time in
the relevant states, plus the variance of the
transition time into the class, plus the variance
of the transition time into the next class. Be-
cause we are attempting to remain as parsi-
monious as possible for these predictions, we
treat the two transition times as equal. The
result is given in Line 4 in the second column
of Table 1: G2B + 2GU2M. The sum of these two
measurements is a2A + G2B + 3G2M. But the
augmented model predicts that the measured
variance of the time until the first response in
Class C will be only G2A + G2B + G2M (see Line
3 of Table 1). Thus, adding the Start B and
Dwell B times to predict the Start C times
generates an estimate with too large a variance.
In fact we can say exactly how much it is in
error: It predicts a variance 2a2M larger than
the correct prediction. This is because we have
counted transit variances twice where we
shouldn't: Variability of transit into Class B
affects our measurement of starting time of
Class B but does not affect the starting time
of Class C (because the pacemaker does not
pause during transit times). And we counted
it twice in our measurements of dwell time,
entry into Class B and entry into Class C. The
only time we should count it is for variance of
entry into Class C.

So, the augmented model shows that the
predictions of the simple model-simply add-
ing the variances of start and dwell times-
should be too high. Furthermore, by specifying
by exactly how much they will be in error, it
provides us with another way of estimating
motor variance: The difference between the
prediction of the simple model and the mea-
sured variance of the starting time of C should
equal twice the motor variance. These new
estimates of motor variance are shown in the
second column of Table 2. It is clear that they
are in accord with the estimates derived from

the correlational analysis. They could be used
in place of the free-parameter estimate to pro-
vide excellent predictions of the correlations.

Gibbon and Church (1992) also elaborated
their SET to account for similar data. The
relevant equations are shown in the third col-
umn of Table 1, and the reader is referred to
the original work for their interpretation. Note
that the correlations are predicted from the
interaction of three parameters (the 'ys) asso-
ciated with thresholds for memorial processes.
But these parameters, corresponding to hy-
pothetical cognitive processes, are not directly
observable, nor are they easily identified with
a measurable behavioral process. This is not
the case for motor variance.

Binding a Free Parameter
The augmented model with one free param-

eter improves upon an already good account
of the data. It would be ideal if we could re-
move even the one parameter that we have
invoked to improve the predictions. It was in
the hope of doing so that we identified the
parameter with simple transit times between
classes of behavior. If we could make direct
measurements of the transit times, we might
be able to further improve the model. The
improvement would not be in accuracy (be-
cause that is already optimized by the free
parameter) but rather in parsimony. Although
we believe that hypothetical constructs are nec-
essary in science, we also believe that the power
of a model is enhanced when processes cor-
responding to those constructs can be discov-
ered and the "hypothetical" thus removed.
The experimental paradigm used to gen-

erate the data shown in the above figures pro-
vides the possibility of such measurement.
Transit times should approximately equal the
time from the last response of one class to the
first response of the next class, which we mea-
sure as the difference between the last response
on one key (right or center) and the first re-
sponse on the next key (center or left). Un-
fortunately, these data were collected for only
the most recent of conditions, which consisted
of a redetermination of the condition displayed
in Figures 2 and 3 (providing an example of
how theoretical exchanges can help to struc-
ture empirical enquiry). They are shown in
the third column of Table 2, and are of the
same order as the other two estimates of motor
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variance as a hypothetical construct. All esti-
mates place the standard deviation of transits
at around 1 s.

If our simplest assumption-motor variance
affects primarily entrance times into the sub-
sequent state-is accurate, then we should get
a much "cleaner" measurement of state tran-
sition time by basing it on last responses in a
class rather than first responses. In fact, under
that hypothesis it should be possible to revert
to the predictions of the simple, unaugmented
version of BeT. And indeed, we find that the
simple model provides excellent predictions of
the correlations between the end of State A
and the end of State B (obtained r = 0.80, 0.71,
and 0.74 for Pigeons 36, 40, and 54; predicted
r = 0.80, 0.73, and 0.74).
The predictions could be slightly improved

again with a parameter corresponding to the
interresponse time within a class rather than
a transit time between classes, but now the
needed hypothetical variance is much smaller,
and, if one wished to extend the inquiry, em-
pirically available.

Theories and Data
Is it theory's duty to explain data, or data's

duty to test theory? That depends on how cen-
tral the data are to the rest of the endeavors
in the field. We must eventually create a co-
herent theoretical account to explain contin-
gency effects, because those data are central to
our field. Conversely, the data reviewed in this
paper are of less general interest; it is the the-
ories, which purport to provide general ac-
counts of time perception, that are of more
central interest. Here, the role of the data is
to test the theories.
What do we want of theory? An accurate,

comprehensible, and, we hope, true statement
of the way things are. Ideally, a theory should
be simpler than the data it explains. We believe
that our behavioral theory of timing has ad-
mirably passed the tests provided by the data
under review. The original model made good
parameter-free predictions. Gibbon and
Church (1992) showed that those were less
than perfectly accurate. Using their excellent
mathematical groundwork, the model was eas-
ily augmented to embrace those second-order
effects by recognizing a physical constraint,
inertia. Best of all, this analysis holds out the
hope that when we really understand the true

picture, things will get simpler again; binding
hypothetical constructs to measured behavior
may, by guiding our empirical measurements,
let us move back toward simpler theory.
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