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ABSTRACT

The comparability and reliability of data generated
using microarray technology would be enhanced by
use of acommon set of standards that allow accuracy,
reproducibility and dynamic range assessments on
multiple formats. We designed and tested a complex
biological reagent for performance measurements on
three commercial oligonucleotide array formats that
differ in probe design and signal measurement meth-
odology. The reagent is a set of two mixtures with
different proportions of RNA for each of four rat
tissues (brain, liver, kidney and testes). The design
provides four known ratio measurements of >200
reference probes, which were chosen for their
tissue-selectivity, dynamic range coverage and align-
ment to the same exemplar transcript sequence
across all three platforms. The data generated from
testing three biological replicates of the reagent at
eight laboratories on three array formats provides a
benchmark set for both laboratory and data pro-
cessing performance assessments. Close agreement
with target ratios adjusted for sample complexity was

achieved on all platforms and low variance was
observed among platforms, replicates and sites.
The mixed tissue design produces a reagent with
known gene expression changes within a complex
sample and can serve as a paradigm for performance
standards for microarrays that target other species.

INTRODUCTION

Genome-scale gene expression technologies are increasingly
being used for safety and efficacy assessments of pharmaceu-
ticals, in disease diagnosis and in risk assessment of environ-
mental contaminants. However, there is currently concern
about the comparability of microarray data (1). Variable res-
ults have been reported on data reproducibility across different
microarray platform formats and across laboratories in multi-
site studies (2-8). Factors contributing to discrepant results
include differences in probe specificity (8), low technical
reproducibility (9) and the use of inappropriate statistical
methods. Microarray data comparability can be increased
with the use of standard protocols and reagents (6), by careful
alignment of probe sequences between platforms (10) and by
filtering genes below a noise threshold (11). Other assay
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parameters, like ozone levels, may also need to be tightly
controlled (12). More recent publications that take these
effects into account report reproducible results between plat-
forms and laboratories (6,8,13). The value of and confidence in
genomic data will be greatly increased if there can be reliable
comparison and integration of results across experiments,
users and platforms.

To ensure the data reliability needed to move microarray
technology from the realm of research to an integrated use in
regulatory decision making, there is a need to establish ‘best
practices’ in sample generation, sample processing and data
analysis (14). There are many options in target labeling,
hybridization, washing, signal extraction and data normal-
ization, each of which can affect data accuracy, precision
and comparability. As the technology continues to evolve
and improve there is a need for a common, objective approach
to the assessment and optimization of laboratory and data
processing protocols. A critical part in this process is the
adoption and use of universal standards for gene expression
technologies (15). The currently available quantitative
standards for microarrays are limited to sets of control
RNA provided by array manufacturers. This RNA is designed
to hybridize to specific probes on the array, but not to the
queried genomic sequences. This RNA is ‘spiked’” into sam-
ples at different concentrations and ratios to make precision
and accuracy estimates. Although different platform formats
typically use different sets of control sequences, there is an
effort underway to design a common set to be adopted as a
standard across platforms (15). Additional standards that are
currently available include benchmark datasets that have
designed-in changes in gene expression from sample dilu-
tion or spiked-in RNA (http://www.affymetrix.com/support/
technical/sample_data/datasets.affx). These datasets can be
used to compare and improve analytical and statistical
methods (16,17).

To generate a fuller understanding of the biological
response of an organism, it is important to be able to integrate
genomic data from different studies and sources (18). This
process requires an assurance of data comparability that
could be provided by a reference material (RM) that measures
data precision, accuracy and dynamic range on multiple
microarray formats. A reference material could also provide
the basis for benchmarking laboratory proficiency and assess-
ing the performance of reagents and methods. To provide a
performance standard for laboratories engaged in toxicoge-
nomic studies, a collaborative project was initiated to design
and test a complex biological RM for use on three commercial
rat expression microarrays (http://www.cstl.nist.gov/biotech/
UniversalRNAStds;/Thompson.pdf). The arrays used in this
study, from Affymetrix Inc., GE Healthcare and Agilent Tech-
nologies, are oligonucleotide arrays of different design and
that use different measurement methodologies. The Affymet-
rix GeneChip® RAE230A array is composed of 25mer in situ
synthesized oligonucleotides organized in sets of 11 pairs of
perfect match (PM) and mismatch (MM) probes per gene for
~16000 rat transcripts. The MM probe has a single base
substitution in the middle base of the corresponding PM
probe sequence and is used as a measure of local background
signal. The GE Healthcare CodeLink® UniSet Rat I array uses
a one probe per gene design composed of presynthesized
30mer oligonucleotides for ~10 000 rat transcripts covalently
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linked to a 3D matrix. The Affymetrix and CodeLink systems
both involve one-color sample labeling with one sample
hybridized per array. The Agilent G4130A array contains
one 60mer in situ synthesized oligonucleotide for each of
~20000 rat transcripts. This array uses a two-color labeling
system, with experimental and reference samples hybridized
to the same slide.

For highly parallel assays of gene expression, it is not prac-
tical to design a RM that can assess the specificity and sen-
sitivity of all probes. However, RMs can potentially be
designed for microarrays that have other properties in common
with single analyte RMs: measurement of accuracy, precision
and linear range (15), close resemblance to the test agent (19),
stability and reproducibility across lots, and similar output on
multiple array formats. For measurement of assay accuracy,
RM analytes need to be present in known quantities. Gene
expression is usually evaluated on microarrays relative to a
matched control or reference sample, so accurate and precise
measurement of real fold change differences between two
samples is an important performance characteristic for
microarray experiments (20). In this study, a RM for micro-
arrays was designed that has defined fold change differences in
transcript levels. It is composed of two samples, each contain-
ing different proportions of RNA from different tissues. Gene
transcripts that are predominantly expressed in only one of the
tissues in the mixture should produce signals directly propor-
tional to the relative amount of that particular tissue RNA in
the mixture. The probes that measure these tissue-selective
transcripts on the three array platforms in this study are the
proposed reference probes for the RM.

MATERIALS AND METHODS
Microarray platforms and collaborating laboratories

Eight sites were involved in testing the mixed tissue RNA
reference material (MTRRM); the results are reported
anonymized. The samples were run on Affymetrix GeneChip®
RAE230A arrays at three sites (sites 1, 2 and 3), on GE
Healthcare CodeLink UniSet Rat I arrays at two sites (sites
4 and 5), and on Agilent G4130A arrays at 4 sites (sites 3, 7, 8
and 9). Site 6 used the RM to help calibrate their in-house
platform (data not shown). Data from this study are available
at EBI ArrayExpress (http://www.ebi.ac.uk/arrayexpress/)
under accession number E-TABM-16.

Animal studies

Animal care and procedures were approved by the Institutional
Animal Care and Use Committee at the US FDA. Male
Sprague-Dawley (SD) rats were ordered from Charles River
Laboratories (Product no. Crl:CD(SD)IGS) or from Harlan
Laboratories (Product no. Hsd:SD) at 6 weeks of age.
Three separate shipments of eight rats were ordered and
received for this study within a 2 months time frame. Each
shipment was processed and pooled separately to create three
biological replicate sets. Shipments 1 and 2 were made from
rats ordered from Charles River; Harlan was the source of
shipment 3. The rats received certified rodent diet #5002C
(Purina Mills Inc.) ad lib and drinking water purified by
reverse osmosis. The animals were acclimated for 6 days
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before euthanasia. The animals were on a 12 h light/dark cycle
and euthanasia was performed consistently within 4 to 6 h after
the start of the light cycle. The average weight at sacrifice
(7 weeks of age) was 223 £ 9 g.

RNA isolation

After euthanasia in a slow-charged CO, chamber, the rats were
immediately decapitated to allow for rapid access to the brain.
Four organs were quickly removed in the following order:
brain, liver, kidneys and testes. The whole brain, including
brain stem but excluding pituitary gland, was collected.
Tissues were quickly dissected into 0.5 cm sections while
submersed in RNA/ater (Ambion) in sterile petri plates and
placed into 50 ml tubes containing RNAl/ater at a ratio of 10 ml
per 1g of tissue. Tissues were stored at 4°C for a minimum of
24 h and a maximum of 72 h. All tissue RNA was isolated
using a Tempest rotor-stator homogenizer (VirTis) and
QIAGEN RNA isolation Kkits, following the manufacturer’s
protocol. Brain RNA was isolated using QIAzol reagent,
followed by a clean-up step with an RNeasy Maxi kit. Kidney,
liver and testes were homogenized in 15 ml QIAGEN RNeasy
Lysisbuffer (RLT) permgoftissue, diluted to 30 mI RLT permg,
and RNA was isolated on RNeasy Maxi columns using 15 ml
homogenate per column. After an additional clean-up step on
RNeasy Maxi columns, RNA was aliquoted and stored at
—70°C. The integrity of each RNA sample was assessed on
an Agilent 2100 Bioanalyzer (Agilent Technologies). Total
RNA was quantitated by ultraviolet (UV)/visible wavelength
spectrophotometry in TNE [40 mM Tris—HCI (pH 7.5), 1 mM
EDTA (pH 8.0), 150 mM NaCl]. For each tissue, equal
amounts of RNA were pooled from each of the eight animals
in the same shipment to create tissue shipment specific pools.

SD rat RNA was also tested from two commercial RNA
sources. Total RNA isolated from rat brain (Catalog no. 7912),
kidney (Catalog no. 7926), liver (Catalog no. 7910) and test-
icle (Catalog no. 7934) were obtained from Ambion. Total
RNA isolated from brain (Catalog no. 737001), kidney (Cata-
log no. 737007), liver (Catalog no. 737009) and testes (Catalog
no. 737023) were obtained from Stratagene. One lot of Strata-
gene brain RNA (Lot no. 0610696) could not be used to make
the MTRRM because it behaved on microarrays like RNA
from a tissue different from brain. MTRRM were prepared
from the commercial RNA in proportions based on the RNA
concentrations provided by the supplier to make MTRRM
batches 4 and 5 from Ambion and Stratagene RNA, respect-
ively. An independent batch (batch 6) of the MTRRM was
prepared at site 3 under the same protocol used to prepare
batches 1-3 from a set of eight rats.

MTRRM batch preparation

After pooling, the RNA was quantitated by measuring OD¢
on a UV/visible wavelength spectrophotometer in TNE,
checked for purity by OD,¢0/OD»gq ratio, and checked for
RNA integrity on the Agilent 2100 bioanalyzer. RNA
quantitation was confirmed on a NanoDrop ND-1000 spectro-
photometer (NanoDrop Technologies). Accurate RNA quant-
itation in TNE was found to be important for replication of the
results with the MTRRM. The average OD,40/OD5g ratio for
each tissue pool across the 3 shipments was the following:
brain, 2.09 + 0.01; kidney, 2.03 + 0.04; liver, 2.07 + 0.13 and
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testis, 2.09 + 0.03. Each pool of same-tissue RNA from each
shipment was run on Affymetrix RAE230A arrays (Affymet-
rix, Inc.) using the protocols associated with site 1 below. Two
mg each of two mixtures (Mix]l and Mix2) were prepared
for each shipment from the same-tissue RNA pools to
make MTRRM batches 1-3 from shipments 1-3, respectively.
Mix1 consisted of 200 pg testis RNA, 600 ug liver RNA,
800 pg brain RNA and 400 ug kidney RNA. Mix2 consisted
of 800 g testis RNA, 400 ug liver RNA, 400 pg brain RNA
and 400 ug kidney RNA. A total of 50 pg aliquots of each
mixture for each of the 3 batches were frozen at —70°C. The 3
batches of Mix1 and Mix2 RNA samples were run on microar-
rays at eight anonymized sites. For site 7, 100 ug of Mix1 and
Mix2 were treated with deoxyribonuclease I (E.C. 3.1.21.1)
(DNA- free, Ambion), and diluted to a concentration of

0.2 pg/ul.

Gene expression measurement on Affymetrix
RAE230A arrays

Sites 1-3 ran 3 batches of the MTRRM on Affymetrix
RAE230A arrays using either the standard or the alternate
protocol for labeling and processing specified by the
manufacturer (http://www.affymetrix.com/support/technical/
manual/expression_manual.affx). Standardized amounts of
input total RNA per labeling reaction (5 pg), labeled cRNA
target per array (15 pug) and hybridization volume per array
(200 pl) were used by the 3 sites. Labeling and processing
conditions at sites 1 and 3 included the use of the T7-Oligo(dT)
promoter primer kit (Affymetrix Part no. 900375), reagents for
cDNA synthesis from Invitrogen, cDNA and cRNA Clean-up
using the Sample Clean-up Module (Affymetrix Part no.
900371), and synthesis of biotin-labeled cRNA using an
Enzo kit (Affymetrix Part no. 900182). Site 2 used the altern-
ate protocols for cDNA clean-up that includes phenol/chloro-
form extraction with Phase-Lock gels and for cRNA clean-up
that use the RNeasy kit (QIAGEN Part no. 74103). At sites 1
and 2, microarrays were stained and washed on an Affymetrix
GeneChip® Fluidics Station 400 using the EukGE-WS2 pro-
tocol. The arrays were scanned on an Affymetrix GeneChip®
Scanner 2500 using default settings. Site 3 used an Affymetrix
GeneChip® Fluidics Station 450 with the EukGE-WS2v4
protocol and an Affymetrix GeneChip® Scanner 3000 with
default settings. Affymetrix MASS5 software was used to cal-
culate signal values for tissue-selectivity determinations and
for intra-site and cross-site comparisons. All data was globally
scaled to a target intensity of 500. For some applications, Mix 1
array data were normalized to a selected probe set on the Mix2
array (the 10% trimmed mean of kidney-selective probes
(listed in Supplementary Table 1). Gene summary values were
also calculated from CEL files using the Probe Logarithmic
Intensity Error Estimation (PLIER) algorithm. In contrast to
the MAS 5.0 algorithm, which applies a one-step Tukey’s
biweight estimate to produce a robust weighted mean signal
for each probe set the PLIER algorithm uses maximum like-
lihood type estimates in a model-based framework for finding
probe expression estimates. PLIER signal calculations for
body map data were performed using default settings (quantile
normalization, mismatch background estimation, perfect
match minus mismatch and full optimization). An affinity
model for the PLIER analysis was constructed from the
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four same-tissue RNA pools from each shipment that were run
on 12 Affymetrix RAE230A arrays. Normalization between
Mix1 and Mix2 was performed either on signals or ratios,
where indicated. If PLIER signal estimates were not quantile
normalized, Mix1 signal data was normalized by the 10%
trimmed mean Mix2 signal of kidney-selective analytes. If
PLIER signals were quantile normalized, Mix1:Mix2 ratios
were normalized by dividing each ratio by the 10% trimmed
mean ratio of the subset of kidney-selective reference probes.

Gene expression measurements on CodeLink
UniSet Rat I arrays

At sites 4 and 5, the MTRRM was run on CodeLink RU1
arrays using a standardized amount of input total RNA per
labeling reaction (2 pg), labeled cRNA target per array
(10 pg) and hybridization volume per array (250 pl)
(http://www5.amershambiosciences.com/aptrix/upp01077.nsf/
Content/codelink_user_protocols). At site 4, target labeling
was performed using the manufacturer’s manual labeling
cDNA target preparation protocol; site 5 used the manufac-
turer’s automated target preparation protocol. Site 4 used the
manufacturer’s recommended hybridization and detection
protocols. A few modifications to this protocol were made
at site 5 (21). As a secondary label, site 4 used Cy5-
Streptavidin and site 5 used Alexa fluor 647-Streptavidin.
Both sites used the Axon 4000B scanners at settings defined
in the user manual. Version 2.3 of the CodeLink Expression
analysis software was used for feature extraction. A global
normalization of each array by the median normalized intensity
was performed. For some applications, this step was followed
by normalization of Mix] to Mix2 using the 10% trimmed
mean signal of the kidney-selective probe subset. Alternat-
ively, Mix1:Mix2 ratios were normalized by dividing each
ratio by the 10% trimmed mean ratio of the subset of
kidney-selective reference probes.

Gene expression measurements on
Agilent G4130A arrays

The four sites running the MTRRM on Agilent arrays used
either standardized protocols for sample labeling and hybrid-
ization or a propriety in-house method. Sites 3, 8 and 9 used
the Agilent Low Input RNA Fluorescent Linear Amplification
Kit (Part no. 5184-3523) for target labeling and the Agilent
60mer microarray processing protocol version 2.0 (Part
n0.G4140-90030). All sites used the Agilent DNA microarray
scanner (Part no. G2565BA). Site 7 used DNase-treated
MTRRM and proprietary protocols for target labeling, hybrid-
ization and washing. Mix1 and Mix2 samples were run on the
same array, in dye-swap replicate experiments. For this phase
of the project, the data was extracted and processed using a
standard method. The TIFF images from all four sites were
processed with Agilent Feature Extraction software version
A.7.4.47 (a prerelease version that is algorithmically identical
to v 7.5.1) using default settings. Adjustment for local vari-
ations in background signal was performed using a spatial
detrending algorithm. To normalize and correct for dye bias,
a combined method of linear scaling in each channel followed
by LOWESS curve fitting (‘Linear& LOWESS’ option in
version A.7.5) was used. Mix1 and Mix2 signals were calcu-
lated from the average of dye-swap replicates. For some
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applications, this step was followed by normalization of
Mix1 to Mix2 using the 10% trimmed mean signal of the
kidney-selective probe subset. Alternatively, Mixl: Mix2
ratios were normalized by dividing each ratio by the 10%
trimmed mean ratio of the subset of kidney-selective reference
probes. Features flagged as outliers by the feature extraction
software were not removed from the analysis for this study.

Platform intersection

To identify the probes on three commercial rat expression
array platforms (Affymetrix RAE230A, Agilent G4130A
and CodeLink UniSet Rat I) that were potential reporters of
expression levels for the same gene transcripts, probe annota-
tion data were intersected by GenBank accession number and/
or UniGene identifier using the annotation files supplied by the
manufacturer that were available in June 2003. Approxim-
ately, 6300 probes were identified that could be intersected
by annotation on all three platforms. This number includes
duplicate listings when a probe on one platform could be
linked to multiple probes on a second platform.

Tissue-selectivity index

Tissue-selectivity was determined using body map data, i.e.
signal values averaged across multiple control animal samples
for the individual tissues in the MTRRM. For each probe on
each of the three platforms, a tissue-selective index (TSI) was
determined as follows: the average signal value in a selected
tissue was divided by the maximum average signal value
among the other three non-selected tissues.

Body map data on Affymetrix RAE230A arrays was gen-
erated from the pooled tissue samples that are components of
the MTRRM, as described above. Each sample was composed
of RNA pooled from brain, kidney, liver or testes samples
across eight male SD rats that were in the same shipment
cohort. Using these samples from three biological replicate
experiments, an average signal value was determined for each
probe in each of the four tissues.

Body map data on CodeLink UniSet Rat I arrays was
derived from individual control animal data from vehicle-
treated male SD rats (vehicle not specified) provided by Iconix
Pharmaceuticals. Data was excluded for probes which showed
identified associations with process drift due to array protocol
changes over time. An average signal value for each of 8565
probes in brain, kidney and liver RNA was calculated across
25 control animal datasets. Six control animal datasets were
available to calculate an average signal in testes RNA.

Body map data on Agilent G4130A arrays was derived from
individual control animal data generated through a collabora-
tion between NIEHS and Iconix. Brain, kidney, liver and testis
RNA samples from three SD rats, that received a 0.5%
carboxymethyl cellulose (CMC) vehicle treatment for 5
days, were run on Agilent G4130A arrays. Each tissue sample
was run once on each of the Cy3 and Cy5 channels in a dye-
swap with the Iconix Reference RNA on the other channel.
The Iconix Reference RNA is a pooled RNA extracted from an
equal tissue mixture of 7 rat tissues taken from 10 male SD
rats, vehicle-treated with 0.5% CMC for 3 days. The signal
channel corresponding to the control tissue sample was sep-
arated from the reference sample channel for each dye-swap
pair, resulting in one Cy3 and one CyS5 signal value for each
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probe for each of three control animal samples per tissue. An
average signal value was calculated for each probe in each
tissue from these six signal values.

Relative signal intensity in the MTRRM

Using data generated by participating labs, an average signal
value in the MTRRM was calculated for each probe on each of
the three microarray platforms. For each site, the average
signal value across three replicate sets of Mix1 and Mix2
experiments was determined for each probe, expressed as a
percent of the average maximal signal (%Max) in the same
experimental set, and then averaged across all sites using the
same microarray platform in the study (n = 3 for RAE230A,
n = 2 for RUI, n = 4 for G4130A). The average %Max was
used to sort probes into nine exponentially distributed bins as
follows: <0.4; 0.4-0.8; 0.8-1.6; 1.6-3.2; 3.2-6.4; 6.4-12.8;
12.8-25.6; 25.6-51.2 and >51.2%Max, respectively.

MTRRM reference probe selection

For probes that could be linked across three platforms by
annotation, tissue-selectivity and relative signal intensity
were weighed together to derive a list of candidate probes
for the MTRRM. Probes were first sorted into nine exponen-
tially spaced bins based upon their %Max on the Affymetrix
platform. From each bin, 5-8 probes with the highest com-
bined TSI values for each platform were chosen in order to
select ~200 probes in total (~50 per tissue). The selected
probes were then binned according to their %Max on the
Agilent and CodeLink arrays and reselected, if necessary,
to achieve a similar distribution on each platform. Probes
for tissue-selective gene transcripts that did not receive a
MASS5.0 present call on all of the selective tissue samples
run on Affymetrix RAE230A for this study were not chosen
for the analyte list. Testes-selective genes with signal intens-
ities <0.8%MAX were also excluded because, in this intensity
range, the contribution of non-selective signal to selective
signal greatly attenuated the observed ratio for these probes.

To confirm that the candidate MTRRM analytes measured
the same gene transcripts on each platform, probes were
sequenced mapped to a common exemplar. Using annotations
from UniGene Build 135, probes were aligned against the
corresponding NCBI Reference Sequence database (RefSeq)
sequence (22) or, if not available, a common mRNA or EST
sequence. For a few exemplars that were not RefSeqs, probes
aligned to the reverse complemented strand of the GenBank
sequence. Cross-platform intersected probes that could not be
mapped to a common exemplar sequence were filtered from
the list. For one of the analytes, a single exemplar sequence
was not found that contained the probe sequences for all three
platforms, so two overlapping exemplars are listed in Supple-
mentary Table 1. Gene symbol and RefSeq status were
updated for all exemplars using the information available in
the NCBI public databases in November 2005.

In silico modeling of microarray
ratio measurements

An average signal intensity (/) for each probe in each of the
four tissues was calculated from body map data available for
each platform and used to calculate a modeled ratio (R) for
each analyte based upon tissue RNA proportions in Mix1 and

Nucleic Acids Research, 2005, Vol. 33, No. 22 el87

Mix2 using the following formula:

] .
RAnalyte = IMil
Mix2
o [Brain (04) + [Liver(0-3) + IKidney(O~2) + [Testis (01>

N [Brain (02) + ILiver(O-2> + ]Kidney (02) + [Testis (04)

An average ratio for each set of tissue-selective analytes was
calculated from 46-55 individual R Apaiytes-

Reverse transcription polymerase
chain reaction (qQRT-PCR)

Relative gene transcript levels between Mix1 and Mix2 were
determined using qRT-PCR. cDNA was generated from total
RNA using random hexamer primers and Superscript II
reverse transcriptase (Invitrogen). qRT-PCR was performed
using SYBR Green PCR Master Mix reagents (Applied
Biosystems) on the ABI Prism 7900HT sequence detection
system as described in User Bulletin #2 (updated 10/2001).
Seven 2-fold serial dilutions were used to prepare relative
standard curves for each of the targets and their endogenous
reference (18s rRNA). Gene expression data were normalized
by dividing the amount of target mRNA by the endogenous
reference. Relative changes in gene expression were calcu-
lated by dividing the amount of target mRNA in Mix1 by the
amount in Mix2.

High-performance liquid chromatography (HPLC)-purified
oligonucleotide primers were obtained from BioServe Bio-
technologies. The UniGene name, symbol, sequence accession
number and primer sequences for QRT-PCR for each target
transcript are provided below.

The three brain-selective targets were chromogranin B
(Chgb, NM_012526.1, forward primer: GGAAAAGTTCA-
GCCAGCGG, reverse primer: CAGCGAATGGCTCGTC-
TCTC), neurofilament 3, medium (Nef3, NM_017029.1, for-
ward primer: TGTACCTAGGGAATTTGCCAGTTT, reverse
primer: CGAGTGCCCCTCTTTCAACA), and neurofilament,
light polypeptide (Nfl, NM_031783, forward primer: GAC-
CTCCTCAATGTCAAGATGG, reverse primer: TCGCCTT-
CCAAGAGTTTCCT). The kidney-selective targets were
kidney-specific membrane protein (Tmem27, NM_020976.1,
forward primer: GAAATTTCCCACGTCCTGCTTT, reverse
primer: GCACTGTTGATCCGTTTCCTGT) and trefoil fac-
tor 3 (Tff3, NM_013042.1, forward primer: AGCTCCACAC-
CCTGGACTCTT, reverse primer: TGAGTGTTACCCTGG-
GCCAC). The two liver-selective targets were hepatic lipase
(Lipc, NM_012597, forward primer: GCTCCCATCCACT-
TGTCATGA, reverse primer: TTTCTAGCAAGCCATCC-
ACCG) and complement component 9 (C9, NM_057146.1,
forward primer: CATGTCAAAACGGAGGCACA, reverse
primer: TGCACTGTTGATCCGTTTCCT). The three testis-
selective targets were phosphorylase kinase, gamma 2 (Phkg2,
M73808, forward primer: AACTGTGCCTTCCGGCTCTA,
reverse primer: CTGCTGCTCCCCCTTCTTC), A kinase
anchor protein 4 (Akap4, NM_024402, forward primer: AAA-
CAAGACCAGCCTAAGACGG, reverse primer: GAGGAG-
CCAGTTGAGGACACTT), and ATPase, Na™/K" transport-
ing, alpha 4 polypeptide (Atpla4, NM_022848, forward
primer: TGGATGAGCTGAGTGCCAAGT, reverse primer:
CGTCTGTGACGCTAAGACCCTT). Nfl, Lipc, Akap4 and
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Atpla4 were not selected to be on the final cross-platform list
of MTRRM analytes.

Statistical analysis

Two ANOVA models were applied to identify the major
sources of variability within the MTRRM data collected on
three platforms from eight sites using three biological replicate
batches. A two-way ANOVA, using S-PLUS®, was used to
study the tissue and gene effects as well as their interactions. A
mixed-model three-way ANOVA was performed using
Partek® software (Copyright, Partek Inc.). Partek and all
other Partek Inc. product or service names are registered trade-
marks or trademarks of Partek Inc. This model was used to
determine the contribution to variation by the platform, batch
and site effects. The input data for these models are the batch-
specific ratios for 199 tissue-selective analytes without the
Mix1:Mix2 normalization step. Affymetrix signal estimates
were calculated using PLIER. Four probes were excluded
from the analysis because they were masked as suboptimal
probes in the Manufacturing Slide Report files for the lots of
CodeLink arrays used in this study.

One sample z-tests comparing replicate Mix1:Mix2 ratios
(for single analytes or across sets of analytes) to a theoretical
mean were performed using GraphPad Prism version 3.03 for
Windows (GraphPad Software, San Diego, CA). Two sample
t-tests were performed in Excel and Partek software. ANOVA
within body map data was performed using Partek Genomics
Solutions software version 6.1. Multiple comparison correc-
tions were performed using the Benjamini-Hochberg False
Discovery Rate procedure within Partek software.

RESULTS
Design of a rat mixed tissue RNA reference material

The use of a mixed tissue RNA design for a RM depends on
identification of tissues with highly dissimilar gene expression
profiles. Large uniformly-populated in-house databases con-
taining samples from many different rat tissues were mined to
identify tissue pairings with the least similar gene expression
profiles. In an analysis of expression data from 10 tissues
harvested from vehicle-treated male SD rats and run on
CodeLink UniSet Rat I arrays, it was determined that liver
and brain was the most divergent tissue pair. Brain, liver,
testis, intestine and bone marrow were identified as providing
an optimal representation of low, medium and highly
expressed genes with diverse expression ratios. Similar results
were seen in a second analysis that involved single channel
data from five tissues (liver, brain, muscle, kidney and heart)
from untreated control rats that had been run on Agilent IJS
oligonucleotide arrays. The tissue pairs that had the greatest
number of genes differentially expressed at or above a stat-
istical confidence level were brain and either heart, liver, kid-
ney or muscle. The next most divergent pairings were of
kidney and either heart, liver or muscle. Similar results
were found in other species (mouse, human and dog). The
tissue composition of the RM was based on the tissue dissim-
ilarity analysis, relevance to toxicology and reproducibility
and quantity of source material. Based on these criteria,
liver, kidney, brain and testis were selected to be the four
rat tissue RNA components of the RM.
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Figure 1. MTRRM Composition. The relative input proportions of total RNA
from four rat tissues are shown for Mix1 and Mix2.

A mixed tissue RNA reference material was designed to
consist of two mixtures (Mix1 and Mix2) of four tissues in four
different proportions (Figure 1). Mix1 contains total RNA
from four tissues in the proportions of 40% brain, 30%
liver, 20% kidney and 10% testes. Mix2 contains 40% testes
RNA and 20% each of brain, kidney and liver RNA. The tissue
ratios between the two mixtures were designed to provide
potential measurement of 1-, 1.5-, 2- and 4-fold changes.
The 2- or 1.5-fold changes are common threshold fold change
cutoffs for the prioritization of significantly changed genes on
microarrays. A larger fold change ratio can potentially be a
more sensitive indicator of data compression or signal satura-
tion. In addition, components designed to be at a 1:1 ratio
between Mix1 and Mix2 could be used for normalization
between arrays. The proportions of tissue RNA in each mix-
ture that would produce these ratios and minimize the dilution
of any one tissue RNA were determined empirically and by in
silico modeling. A limitation of this design is that accuracy of
measurement of tissue-selective analyte ratios will be affected
by contributing signals from non-selective tissue RNA in the
RM that could arise from either gene-specific or cross-
hybridizing transcripts, or from background. These additions
to the selective signal may constitute a significant proportion
of the signal at low expression levels.

Additionally, the protocol for MTRRM formulation was
designed to prepare a complex RNA mixture that will
be relatively invariant in composition when remade over
time and in different laboratories. Each tissue RNA in the
MTRRM was prepared from a whole-organ homogenate
and pooled from eight male SD rats. Three biological replicate
sets of mixtures (batches) were made from eight male SD rats
that had been received in three different shipments from two
different suppliers. The age of the animals when received and
at sacrifice was kept constant, as was the time and method of
sacrifice. To maximize recovery, brain RNA was prepared by a
method designed for recovery of RNA from tissue of high lipid
content. Further testing is needed to determine how deviations
from this protocol affect the properties of the RM.

MTRRM analytes will be limited to transcripts that can be
measured on multiple array formats and that produce signals
proportional to the tissue RNA input. To select these analytes,
the first step was to identify the probes on Affymetrix
RAE230A, Agilent G4130A and CodeLink UniSet Rat I arrays
that were potential reporters of expression levels for the same
gene transcripts. Approximately 6300 probes were identified
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that could be intersected by GenBank accession number and/or
UniGene identifier across the three platforms.

Probes were next identified for gene transcripts that behaved
as ‘tissue-selective’ on each platform, i.e. had an average
expression level that was significantly higher in a given tissue
than in the other tissues in the MTRRM. Body map data,
defined as microarray data generated from multiple examples
of brain, kidney, liver or testes RNA samples from control
male SD rats, were collected on each platform. Using signal
values averaged across multiple control animal samples, a
tissue-selectivity index was calculated for each probe on all
three platforms for each of the four tissues in the RM. For
example, a brain TSI is calculated for a given probe from its
average signal in control brain RNA samples divided by its
highest average signal among control kidney, liver or testis
RNA samples. About 2900 probes, matched by annotation
across all three platforms, were minimally selective for the
same-tissue (TSI >1) on each of the three platforms.

Defining the limits of measurement linearity is a recom-
mended performance evaluation for the use of multiplex
assays for diagnostic applications (http://www.fda.gov/cdrh/
oivd/guidance/1210.pdf). Guidelines for linearity evaluations
of quantitative measurement procedures in clinical laborator-
ies recommend at least five different concentration measure-
ments be run in duplicate (19). On microarrays, expression
level measurements typically span a 2-3 log;o range (23,24),
but the reliable range of linear signal measurement can be
limited by background and signal saturation. Based on expres-
sion level and combined TSI, ~50 analytes per tissue were
chosen (203 total) that produced signals in the MTRRM that
spanned the dynamic range and were reliably tissue-selective
on three platform formats (see Materials and Methods). As a
final step, oligonucleotide probe sequences for each analyte,
which were originally intersected across platforms by Uni-
Gene or GenBank identifier, were mapped to a consensus
gene transcript. About 90% of the identified exemplar
sequences were annotated as RefSeq sequences. Sequence
mapping of probes should provide a cross-platform intersec-
tion key that is more stable over time than one matched solely
by UniGene cluster assignments, which are subject to change.
The probes selected for measurement of tissue-selective
analytes within the MTRRM and their corresponding exem-
plar transcript sequences are listed in Supplementary Table 1.
For each reference probe, the TSI and relative signal intensity
on each of the three rat expression array formats are reported in
Supplementary Table 2. A statistical measure of tissue-
selectivity was generated by ANOVA comparison of multiple
examples of control expression levels in brain, kidney, liver
and testes, followed by multiple comparison correction. For
most of the reference probes, a statistically significant differ-
ence in signal between the four tissues was observed. The few
exceptions tended to be probes with signals in the lowest
intensity bin, which were included for dynamic range
determinations.

Performance characteristics of a rat MTRRM

The rat MTRRM described above was designed to allow meas-
urement of precision, accuracy and linear range as a function
of signal strength on three different commercial rat expression
arrays. To help assess whether these criteria were met, three
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biological replicate sets of the MTRRM (batches 1-3) were
run on Affymetrix RAE230A, Agilent G4130A or CodeLink
RUI arrays. The study was performed at eight different labor-
atories highly experienced in running microarrays in order to
reduce variability due to different levels of laboratory profi-
ciency. The generated datasets allowed for comparisons of
reproducibility between three sites on the Affymetrix array,
two sites on the CodeLink array, and four sites on the Agilent
array. To limit the variables within this study, certain array and
data processing steps were standardized within platforms (see
Materials and Methods).

Coverage of each platform’s dynamic range of measure-
ment by the MTRRM analytes was visualized in log,-scaled
scatter plots. Representative data generated across three batch
replicates of the MTRRM on Affymetrix RAE230A, Agilent
G4130A and CodeLink RU1 arrays are shown in Figure 2. The
average signal in Mix1 versus the average signal in Mix2 is
graphed for each set of tissue-selective probes and overlaid
upon the signal distribution from all probes on each array
format. Expression measurements were calculated from the
Affymetrix array data using both Microarray Suite 5.0
(MASS) and PLIER algorithms in order to assess performance
of the MTRRM using the manufacturer’s standard analysis
method and a newer method with improved signal estimates
at lower intensities (Figure 2A and B).

The MTRRM analytes spanned the reliable measurement
range on all three platforms and allowed for replicate meas-
urements across the dynamic range. Different methods are
used to assess the lower limits of signal reliability on each
platform. On the Affymetrix platform, reliable measurements
are indicated by detection calls, which are assigned by apply-
ing a statistical algorithm to PM and MM probe pairs (http://
www.affymetrix.com/support/technical/whitepapers/
sadd_whitepaper.pdf). On CodeLink and Agilent arrays, sig-
nal significance is typically calculated in relation to local
background (11,25). Signals consistently detected as absent
or not significantly above background on all 6 of the arrays in
each of the analysis sets graphed in Figure 2 are shown as
empty circles in the scatter plots. The upper end of reliable
signal measurement can be indicated by data compression or
signal saturation. This effect, most noticeable in the testis-
selective probe set on the Affymetrix platform, has been
attributed to saturation of binding affinity rather than optical
saturation in the high intensity signal range (26). Although
some feature extraction software programs remove saturated
features from the processed data reports for the purpose of
increasing data reproducibility (http://lifesciences.chem.
agilent.com/scripts/LiteraturePDF.asp?iWHID=31889), out-
liers were not removed from any dataset in this study during
post-processing to allow comparable assessment of perform-
ance of the MTRRM across platforms.

gRT-PCR was used to verify the mixture proportions by
measuring the ratios of several tissue-selective transcripts
within the MTRRM. Two or more targets per tissue were
selected. All targets had median signal intensities and
observed signal ratios near the average for their set based
on microarray data from each of the three different platforms
(see Supplementary Table 3). The nominal input ratios were
highly similar to ratios that were measured by qRT-PCR and
averaged across each set of tissue-selective targets (Table 1).
For the six tissue-selective targets in Table 1 that were
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Figure 2. Scatter plots of MTRRM analyte signals on three platform formats. Signal intensities from brain-selective (pink), kidney-selective (yellow), liver-selective
(green), testis-selective (orange) and non-selective probes (grey) were averaged across three biological replicate experiments. Non-selective probe signals are
designated as ‘absent’ (empty) if they were consistently assigned a call of ‘Absent” on Affymetrix, of ‘Empty’ on CodeLink, or were not flagged as “Well Above
Background’ on Agilent arrays; probe signals not ‘absent’ by these criteria are designated as ‘present’ (solid). MTRRM samples were run on Affymetrix RAE230A
arrays at site 1 and analyzed using MASS5 (A) or PLIER (B) algorithms. MTRRM samples were run on CodeLink UniSet Rat I arrays at site 5 (C) or on Agilent

G4130A arrays at site 9 (D).

Table 1. Measurement of accuracy of MTRRM analyte ratios by qRT-PCR

Tissue Input qRT-PCR qRT-PCR ratio qRT-PCR
ratio target tissue average
Brain 2.0 Chbg 2.02 £ 0.16 (6) 2.07
Nef3 2.10 £ 0.21 (2)
Nfl 2.09 +£0.12 (3)
Kidney 1.0 Tmem27 0.97 = 0.08 (3) 1.05
T13 1.13 £ 0.01 (2)
Liver 1.5 Lipc 1.54 £ 0.01 (3) 1.51
c9 1.47 £ 0.01 (2)
Testis 0.25 Phkg2 0.27 £ 0.01 (2) 0.27
Akap4 0.26 = 0.01 (3)
Atpla4 0.27 £ 0.01 (3)

qRT-PCR ratios was calculated relative to 18s rRNA levels. The average ratio
and SD (if n > 2) or range (if n = 2) were calculated across the number of
replicate experiments indicated in parentheses. The RNA source is MTRRM
batch 1.

analyzed in three or more qRT-PCR assays, the mean Mix1:
Mix2 ratios were not significantly different from the corres-
ponding input ratios in a one sample #-test (P > 0.01). These
results indicated that a design based on mixing total RNA from
different tissues could produce a complex mixture in which
tissue-selective components could be individually measured at
the same ratios as the overall input proportions.

When measured on microarrays, some degree of attenuation
of the ratio of tissue-selective analytes in the MTRRM might
be expected from cross-hybridizing transcripts present in the
other tissues in the MTRRM. An estimate of the tissue-
selective analyte signal in the mixed tissue RM that would
be measured on microarrays was modeled for each platform
from body map data (Table 2). The model is based on the
assumption that the signal of a transcript measured in a
complex mixture on a microarray will be additive of each
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Table 2. Tissue-selective ratios modeled for non-selective tissue signal
contributions using body map data for each platform
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Table 3. Observed ratio measurements of tissue-selective analytes by microar-
ray platform

Tissue Input RAE230A RAE230A Rat UniSet I G4130A
ratio ratio (MAS5.0) ratio (PLIER) ratio ratio

Brain 2.0 1.78 = 0.14 1.73 £ 0.24 1.82 £0.13 1.70 £ 0.17

Liver 1.5 1.45 = 0.07 1.45 £ 0.09 1.45 +£0.08 1.43 +0.08

Kidney 1.0 1.01 = 0.07 1.02 £+ 0.05 1.02 £ 0.09 1.00 = 0.09

Testis  0.25 0.34 £ 0.09 0.34 £ 0.11 0.33+0.11 0.37£0.10

Ratios shown are the predicted ratios of tissue-selective gene expression in the
MTRRM that would be measured on microarrays based on modeling of indi-
vidual tissue RNA microarray data. Signal estimates were derived for Affyme-
trix body map data using either MAS5.0 or PLIER algorithms. A SD was
calculated across the ~50 Rapalyie Values for each tissue-selective set.

individual component of the complex mixture, adjusted for its
proportion. The modeled ratios for tissue-selective analyte sets
were similar across platforms and across two different meth-
ods of signal calculation on Affymetrix arrays. The kidney-
selective ratio did not differ from the input ratio because, in the
model, equivalent amounts of non-kidney-selective signal are
added to the kidney-selective signal in both Mix1 and Mix2.
The brain-selective signal is compressed from 2-fold to
between 1.7-1.8-fold in the model. Most significantly,
the modeled testis-selective signal is attenuated from a 1:4
input ratio to a little less than 1:3.

The accuracy of measurement of the ratio of tissue-selective
analytes within the MTRRM was next assessed on microar-
rays. The MTRRM Mix 1 and Mix2 samples were designed to
be significantly different in three of the four components and
are therefore more complex than comparison sets in typical
microarray experiments. An additional normalization step was
therefore applied to Mix1 that is based on the trimmed mean
kidney-selective analyte signal in Mix2, because this tissue
RNA was designed to be equivalent between the two mixes.
The fold change between Mix1 and Mix2 for each of the four
components of the MTRRM were averaged across each set of
46-55 tissue-selective analytes and shown for a representative
dataset per platform in Table 3. To reduce the effect of outliers
on measurement precision, the average ratios were calculated
as the 10% trimmed mean for each tissue-selective analyte set.
On each platform, the average ratio measurements were highly
similar to the modeled ratio and highly reproducible across
batches. Using a one sample #-test that compares a population
mean to a theoretical mean, the mean ratios of brain- and
testes-selective analytes measured on microarrays were signi-
ficantly different from input ratios (P < 0.001), but not from
modeled ratios (for the datasets in Table 3). The mean ratios of
the liver-selective analytes measured on the three array for-
mats were statistically different from input ratios but not from
modeled ratios at a P-value threshold of 0.05. Therefore, a
more accurate measurement of the designed-in ratios was
achieved if the target ratio was adjusted as described above
for signal contributions from the four tissue components in the
complex mixture. No significant difference was observed in
the precision of signal measurements calculated using two
different algorithms for Affymetrix signal estimates, MASS
and PLIER.

The observed ratios for each reference probe, averaged
across three replicates and generated at a representative site
per platform, are shown in Supplementary Table 3. The

Tissue Modeled ratio RAE230A ratio Rat UniSet I ratio G4130A ratio
Brain  1.75 1.80 = 0.04 1.81 = 0.10 1.73 = 0.02
Liver 1.44 1.40 = 0.06 1.41 = 0.06 1.44 +0.01
Kidney 1.01 1.01 = 0.03 1.04 = 0.01 1.03 = 0.01
Testis  0.35 0.35 + 0.01 0.35 + 0.02 0.34 + 0.002

The modeled ratio was averaged across three platform formats (from
Table 2). The observed ratios are the 10% trimmed mean fold change and
SD across three replicate experiments for each set of MTRRM analytes for a
representative laboratory per platform (sites 1, 5 and 9 for Affymetrix, CodeLink
and Agilent arrays, respectively). Mix! signals were normalized to the 10%
trimmed mean of the kidney-selective analyte signals in Mix2. Affymetrix
signal estimates were calculated using MASS.0.

probability of detecting a difference in signal between Mix1
and Mix2 was also calculated. In general, most of the reference
probes that are selective for the two tissues with designed-in
fold change differences =2 (i.e. brain and testes) were
observed to have statistically significant differences in expres-
sion at a false discovery rate of 0.05 on all three platforms.
Most kidney-selective reference probes were not statistically
different between Mix1 and Mix2, which is the anticipated
result for a designed target ratio of 1:1. Smaller proportions
(50-67%) of liver-selective analytes were observed to be stat-
istically different between Mix1 and Mix2. The 1.5-fold
change designed for this set may be near the lower limit
that can be distinguished as statistically different under the
conditions of this study.

In this study, three independent batches of the MTRRM
were run on three different platforms at a total of eight
sites. To determine which factors in the study contributed
the most variability, two ANOVA-based statistical analyses
were applied to Mix1:Mix2 signal ratios for all datasets in this
study. The combined results of both ANOVA models are
shown in Figure 3. The mean of mean square (graphed on
the y-axis on a log; scale) is a measurement of the contribu-
tion of each factor on the x-axis to the variability in the experi-
ment. A two-way ANOVA showed that the tissue is the major
source of variability, which confirmed the expected specificity
of results with this mixed tissue RNA design. The next largest
source of variation is the interaction between gene and tissue,
which is a measure of how well the gene transcripts selected as
MTRRM analytes characterize the tissue response. The high
mean of mean square value (7.88) for this factor indicates good
tissue characterization by the analytes. The actual interaction
P-value given by the ANOVA model for each gene transcript
can be used to rank the performance of each analyte as a tissue
representative across all platforms. The gene effect as an inde-
pendent source of variation is very low (0.269), which indic-
ates that the selected transcripts show a consistent response
across all samples and across all platforms. The mixed-model
three-way ANOVA showed a very low platform effect (0.143)
confirming the results in Table 2 that the ratios of tissue-
selective analytes are very similar across platforms. The 3
batches in the experiment are highly reproducible as indicated
by a very low batch effect (0.09). The platform-batch inter-
action effect is even lower (0.082), which indicates that the
batch effect of all the combined platform ratios is not platform
dependent. Sites, which are nested in platforms, show the
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Figure 3. Source of variance in the MTRRM project data. Two ANOVA
models were applied to identify the major sources of variability within the
MTRRM data collected on three platforms from eight sites using three biolo-
gical replicate batches of the mixed tissue RNA. A two-way ANOVA model
(black bars) was used to study the tissue and gene effects as well as their
interactions. A mixed-model three-way ANOVA (grey bars) was applied to
determine the contribution to variance by the platform, RNA batch and site
effects. The input data for these models are the batch-specific Mix1:Mix2 ratios
of the MTRRM tissue-selective analytes. The mean of mean squares plotted on
the y-axis on a log scale is a measure of the contribution of each factor to the
variability in the experiment.

lowest effect (0.056), indicating very high reproducibility
between laboratories. The very low mean of mean square
(0.058 and 0.038) of the residuals (labeled as error in
Figure 3) for both models is an indication that the applied
models fit well and most of the variability in the experiment
can be explained by the tested factors.

For the initial studies on the MTRRM, all RNA was pre-
pared at one site to avoid potential variation in data due to
differences in RNA isolation procedure and yield. To deter-
mine if the performance of the MTRRM would be affected by
RNA source and isolation method, the MTRRM was prepared
from two commercial sources of RNA (batches 4 and 5) and at
an independent site (batch 6) that used the same RNA isolation
and pooling protocols developed for batches 1-3. The
MTRRM analyte set should be fairly robust to RNA isolation
protocol because the selection process was based in part on
body map data generated from different RNA sources. Rat
tissue RNA was purchased from two commercial suppliers,
mixed-in the specified proportions for the MTRRM [verified
by qRT-PCR (data not shown)], and run on Affymetrix
RAE230A arrays at site 1. As a benchmark set, an average
log, ratio was calculated for each of the 203 analytes across
batches 1-3 using signal estimates derived by the PLIER algo-
rithm with data generated at site 1. Each of batches 1, 2 and 3
had a tight correlation with the batch average [Pearson cor-
relation coefficient (p) =0.99]. Batches 5 and 6 were also
highly similar to the batch 1-3 average (p = 0.98). Of the
RNA sources tested, batch 4 had the lowest correlation
(p = 0.95) with batches 1-3, although the microarray QC
metrics for batch 4 were comparable with the other batches
tested. To assess the stability of the MTRRM after one year of
storage at —70°C, batch 1 was retested at site 1 twelve months
after its initial assessment. Upon retesting, this batch had a
high correlation (p = 0.98) with batches 1-3 run a year earl-
ier, indicating that the prepared RNA batches of reference
material are stable to prolonged storage.
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DISCUSSION

This paper describes the formulation of a set of reference
materials from readily available sources that can be used
for performance measurements on microarrays that differ in
design and signal measurement methodology. Cross-platform
evaluations have usually been performed using two samples
that mimic an experimental design (i.e. comparison of control
and perturbed states) for which relatively few changes are
subsequently verified as ‘real’ by gqRT-PCR (4,7,8). For evalu-
ating precision within platforms or process drift within a site, a
common approach is to measure the correlation of signal val-
ues between technical replicates. Unlike these approaches, the
MTRRM can provide an assessment of both accuracy and
precision for multiple signal ratio measurements in a well-
characterized and regenerable sample, allowing comparisons
within or between laboratories and platforms. The reference
probe set for the MTRRM, defined by cross-platform tissue-
selective behavior and mapping to a common curated tran-
script sequence, provides a basis for measurement of ‘true’
fold changes in signal level between the two mixes of the
MTRRM on multiple platforms. In addition to providing an
exemplar set for proficiency assessments, the publicly avail-
able dataset generated from this project can serve as a bench-
mark dataset for evaluating the effect of different data
processing choices like signal algorithm and normalization
on accuracy and cross-platform agreement. Association of
the MTRRM with a performance metric that defines an accept-
able range of performance is an area of continuing research
that may require accumulation of results from a wider range of
conditions and proficiency levels.

The MTRRM provides for measurement of linear range as a
function of both signal intensity and fold change, unlike the
alternate approaches referred to above. Establishing the reli-
able measurement range can be critical for applying limita-
tions to biological interpretation of data derived from
measurements outside of this range. Deviations from linearity
can result from signal noise and assay imprecision as well as
from signal plateauing at the upper or lower limits of linearity.
Although useful for linear range determinations, for precision
or accuracy measurements it may not be desirable to include
probes at the lower and higher ends of the signal spectrum that
may be more subject to noise or saturation. The effect of
relative signal intensity on the measured Mix1:Mix2 ratio
can be observed in scatter plots (Figure 2) and in the data
presented in Supplementary Table 3.

Although accuracy is an important parameter of microarray
performance (20,27), there tends to be an underestimation of
fold change with this technology in comparison to measure-
ments made by qRT-PCR (28). Measurement of representat-
ive single analytes within the MTRRM using qRT-PCR assays
that are each optimized for amplification of individual target
transcripts confirmed that the MTRRM contained tissue-
selective mRNA at the mixed-in total RNA ratios. In contrast,
measurements on microarrays may include a certain level of
cross-hybridizing signal, which may be increased in a complex
mixture like the MTRRM. The signal attenuation observed
with the MTRRM on three different microarray platform for-
mats could be modeled by adding a signal component from
non-selective tissues to the tissue-selective signal (Tables 2
and 3). Close agreement with this adjusted target value was
achieved on all three platforms.
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The formulation and application of the MTRRM produced a
set of samples from complex biological sources that have
minimal biological variation. The low level of batch-to-
batch variance seen for most of the sites in this study and
the low site-to-site variance between experienced laboratories
indicates that new batches of the MTRRM can be made with-
out adding significantly to performance variance. These
batches of the MTRRM can potentially be made at different
sites using the same protocol and achieve similar performance.
There are steps in the protocol that need to be strictly adhered
to in order to reduce variance of results, e.g. quantification of
RNA in TNE buffer, and these will continue to be identified as
more sites replicate the MTRRM in their own laboratories.

As well as performance level, data comparability is depend-
ent on the use of protocols and reagents optimized to achieve
reproducible results and to adherence to protocol standardiza-
tion across laboratories. In this study, participating laborator-
ies were allowed to use their ‘best practice’ conditions of
labeling and hybridization, although some parameters like
image processing method were standardized when found to
be a significant source of variation (data not shown). The effect
of different array and data processing protocols on the output
generated with the MTRRM is under investigation.

A RM for microarrays is of critical importance for evalu-
ating the effect of current and modified protocols, reagent kits
and platform design on data comparability and reproducibility.
Optimization of microarray technology should be built around
achieving detection of the true fold change within a sample,
which the design of the MTRRM allows. By its design, the
MTRRM can query a broader spectrum of transcript expres-
sion than controls made from single tissues. The MTRRM is
potentially extensible to other array formats, including cDNA-
based arrays, if probe sequences can be matched to the ref-
erence probe exemplar sequences in Supplementary Table 1
and the tissue-selective expression of probes can be confirmed
through, e.g. body map data that is available for that platform.
The design and development of this standard could also serve
as a paradigm for similar performance standards for mouse
arrays and for human arrays used in clinical applications.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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