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Behavior dynamics is a field devoted to analytic descriptions of behavior change. A principal source
of both models and methods for these descriptions is found in physics. This approach is an extension
of a long conceptual association between behavior analysis and physics. A theme common to both is
the role of molar versus molecular events in description and prediction. Similarities and differences
in how these events are treated are discussed. Two examples are presented that illustrate possible
correspondence between mechanical and behavioral systems. The first demonstrates the use of a
mechanical model to describe the molar properties of behavior under changing reinforcement conditions.
The second, dealing with some features of concurrent schedules, focuses on the possible utility of
nonlinear dynamical systems to the description of both molar and molecular behavioral events as the
outcome of a deterministic, but chaotic, process.
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Most of the papers appearing in this special
issue are outgrowths of presentations at the
Behavior Dynamics Conference held at Jack-
sonville State University, Jacksonville, Ala-
bama, in June 1989. This conference was en-
tirely supported by the Eminent Scholar
Program at Jacksonville State University, the
generous funding of which was a necessary,
but not sufficient, condition for a successful
meeting. Also required was the very creative
and hard-working efforts of Bill and Betty
Palya, Don Walter, Bud Gardner, and many
other behind-the-scenes workers. Special
thanks also go to Ed Fantino, Marc Branch,
and Greg Galbicka for making this issue pos-
sible and encouraging other authors to partic-
ipate with the call for papers on this topic.
The theme of the Jacksonville Conference

was occasioned by my longstanding interest in
fostering the development of mathematical ap-
proaches to behavior analysis (Marr, 1984,
1989) and in exploring the relationships, his-
torical and conceptual, between behavior anal-
ysis and physics (Marr, 1985, 1986, 1990). As
readers of this issue will quickly discern, be-
havior dynamics is a field with many different
perspectives but with a common focus on de-
scriptions of behavior change and the condi-
tions bringing about that change. What follows
is a rather general treatment of the concept of
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behavior dynamics as a metaphorical extension
of the term as it is used in physics. In partic-
ular, operant behavior as it interacts with con-
tingencies of consequences can be viewed as a
dynamical system that involves the action of
forces to maintain, displace, or dissipate be-
havior in various ways and controls possible
states of equilibrium, stable or unstable.

BEHAVIOR AND DYNAMICS
The application of dynamic analyses to be-

havioral questions is a potentially pervasive
exercise. Acquisition, extinction, periodic, ape-
riodic, and response-produced variations in re-
inforcement frequency under different contin-
gencies, changes in quantity and quality of
reinforcement, variations in delay of conse-
quences, response patterns and their variation
under simple schedules of reinforcement, se-
quential and distributional properties of molar
as well as molecular features of behavior, and
stimulus control all are areas familiar to be-
havior analysts that could conceivably benefit
from consideration of dynamical systems. These
are all old problems involving traditional pro-
cedures, largely studied under very restricted
conditions, with the transitions between states
almost totally ignored, both experimentally and
theoretically.

Behavior analysts first sought to understand
behavior change (Skinner, 1938), but some-
how this goal became obscured by the aes-
thetics and seeming simplicity of steady-state
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performance, as exemplified in the description
and exploration of behavior engendered by
schedules of reinforcement. The early enchant-
ment with schedules has waned, in part be-
cause the analyses of their properties turned
out to be far more complex than first appeared.
Traditional contingencies may be simple to
describe, but the orderly patterns of respond-
ing they generate are substantial challenges to
understanding. The stable or metastable re-
sponding engendered is the outcome of dy-
namic interactions between ongoing behavior
and the consequences of that behavior. This
was recognized early on by Skinner (1938),
Morse (1966), Herrnstein and Morse (1958),
Anger (1956), Blough (1966), and others, but
major analytical treatments have only recently
begun to emerge. In The Behavior ofOrganisms
(1938), Skinner devoted much space to the
treatment of "simple" acquisition and extinc-
tion. Despite his experimental and theoretical
sophistication, his attempts at analytical de-
scription were, at best, crude. Interesting ap-
proaches to Skinner's results took some 50 years
(e.g., Killeen's, 1988, formulation of the reflex
reserve). The concept of the reflex reserve is
not likely to take us very far today, but the
kinds of results Skinner discussed still repre-
sent significant challenges to an adequate anal-
ysis of behavior dynamics.

In physics, dynamics is a field with a long
and complex history, founded by Isaac Newton
and subsequently developed by such giants as
Euler, Lagrange, Laplace, Hamilton, and
Poincare (Dugas, 1988). By the late 19th cen-
tury, dynamics entered a relatively dormant
phase of creative activity. In recent years, how-
ever, the development of nonlinear dynamical
systems theory has transformed the staid and
venerable field of classical mechanics into the
third great scientific revolution of the 20th cen-
tury (after relativity and quantum mechanics).
The principal phenomena now avidly studied
by the modern nonlinear dynamicist were often
studied by earlier investigators, but via closed,
local, linear approximations. Virtually all in-
struction of students dealt with these kinds of
procedures, not realizing that the assumption
of linearity cast a thin but obfuscating veneer
over the vast, intricate, and beautiful world of
the everyday, the very phenomena the science
had set out to understand in the first place.
The accelerated interest in behavior change

and transition parallels the exciting develop-

ments in the general study of dynamical sys-
tems and the spread of its application to prob-
lems of enormous diversity, including behavior
analysis. Here are some general but interactive
issues raised by consideration of behavior-dy-
namic processes:

Molar versus molecular approaches. How are
they best defined and what connections are
there between them? What constitute the be-
havioral units upon which, for example, re-
inforcement acts? We know that during the
acquisition of any complex performance, be-
havior present at the beginning may disappear,
and new types of behavior may emerge. What
variables control which types of change and in
what directions?

Discrete versus continuous models. Assump-
tions about molar versus molecular issues may
lead to the question of under what conditions
is behavior more effectively treated as a con-
tinuous, as opposed to a discrete, variable?
This has clear implications for choices of an-
alytical methods.

Stochastic versus deterministic models. Can
the putative stochastic character of much be-
havioral data be generated by a deterministic
dynamical description characteristic of a cha-
otic process? What criteria should be applied
to assess the feasibility of such a description?
Is it worth it?

Behavioral variation. Behavioral variation is
the foundation for the generation of new be-
havior. As such, to understand behavior change
at all, we need good general theories of be-
havior variation. But what should they be like?

Constants of motion. Are there dimensions of
behavior that are conserved when behavior
changes? What, if any, extremum principles
can we invoke in the manner, say, of Hamil-
tonian mechanics? Certainly, operant behavior
is highly dissipative, requiring the relatively
frequent impulse of consequence to keep it
going. But the organism does not necessarily
come to rest upon extinction of a given class
of behavior; it just does something else. How
does the acquisition or elimination of one class
of behavior affect others?

Meta-theoretical structure. To what extent
must hypothetical constructs and intervening
variables play a role? Can an analogy with
physical dynamical systems reduce our reli-
ance on those problematical features of psy-
chological theory? Alternatively, are models
derived from analogues of physical systems ap-
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propriate to deal with biological systems (see
Zeiler, 1992)?

Methods. What new formalisms and exper-
imental procedures can be brought to bear on
both the empirical and theoretical analysis of
behavior dynamics? For example, unlike clas-
sical mechanics where time has no inherent
direction, most, if not all, behavioral phenom-
ena can be shown to possess irreversible fea-
tures. What methods can we use to deal with
this pervasive effect?
Most of these topics and questions have a

long research history in behavior analysis, and
some are directly or indirectly addressed by
papers in this issue. In the course of the fol-
lowing discussion some of these issues will be
considered in more detail. They are like en-
twined motives blending into a single com-
position.

THE PHYSICS-BEHAVIOR AXIS
Throughout its history, psychology has been

nourished by and sought inspiration from that
most prolific and fundamental of sciences-
physics. From Descartes to La Mettrie, to
Fechner and Helmholtz, to Loeb and Freud,
to Kohler and Wertheimer, to Hull and Skin-
ner, models and descriptions of action have
been constructed whose inspiration came di-
rectly from physics. The experimental analysis
of behavior in its philosophical foundations
and its practice is a fairly straightforward ex-
tension and transmogrification of methods and
concepts of the likes of Galileo, Newton, Far-
aday, Mach, and Gibbs. Skinner's well-known
allusion to Russell's remark comparing force
and reflex emphasizes a special relationship
and is taken to be more than a casual and
comfortable metaphor.

Newton's achievement was to describe the
action of forces as causes of changes in motion;
Skinner's achievement was to describe the ac-
tion of reinforcement as a cause of changes in
behavior. Just as force was a concept inferred
to understand changes in motion, reinforcement
was a concept inferred to understand changes
in behavior. Reinforcement in its interaction
with ongoing behavior can thus be considered
the equivalent of force in physics, because it
is a principal agent of change in the rate of
behavior. Newton founded the field of dynam-
ics, concerned with the composition of forces
as they affected the motion of bodies; Skinner

founded behavioral dynamics, concerned with
contingencies of reinforcement as they affected
the behavior of organisms.

Look to a fundamental concept in the ex-
perimental analysis of behavior-contingency
of reinforcement. Here we find a dynamical
system driven by the interactions between be-
havior and consequence, allowing infinite vari-
ation, and engendering, along with a bewil-
dering fine structure, molar temporal patterns
of responding that rival the elegant beauty of
planetary motion.
To be sure, there are some important dif-

ferences between the concept of force in physics
and reinforcement in behavior analysis. Among
the most salient is the fact that forces act
through space, but reinforcers act through time.
In both cases, however, the exact quantitative
relation holding between magnitude and dis-
tance determines the effects seen. Considerable
theory and research have been devoted to as-
certaining the relations holding between effects
on responding and the time between a response
and a reinforcer (see, e.g., Commons, Mazur,
Nevin, & Rachlin, 1987).
An even more important difference, per-

haps, is that action through time implies his-
tory, and history implies irreversibility. In
Newtonian mechanics, time has no inherent
direction and predictability depends only on
imposing initial conditions on general solu-
tions of the proper differential equations of
motion. The origin of the initial conditions is
irrelevant. Further, if the equations are linear,
small changes in initial conditions lead to small
changes in outcomes. In contrast, the appli-
cation of a contingency of reinforcement yields
effects that may depend not only on a host of
initial conditions (such as the particular be-
havior occurring, its ongoing rate, prevailing
stimulus conditions, deprivation level, etc.) but
also on a long history with other contingencies
under other conditions (see, e.g., Barrett, 1985;
Morse & Kelleher, 1977).

Continued exposure to a contingency results
in what is commonly called steady-state per-
formance. Characteristics of steady-state per-
formance under various schedules of reinforce-
ment have been extensively studied since
Skinner's early work (Ferster & Skinner, 1957;
Morse, 1966; Nevin, 1973; Schoenfeld, 1970;
Skinner, 1938; Zeiler, 1977; Zeiler & Harzem,
1979). This program of research has focused
on carefully describing the patterns of respond-

251



M. JACKSON MARR

ing under different schedules and specifying
the variables controlling those patterns, inter-
dependent tasks of far greater difficulty than
initially anticipated. "Steady state" need not,
of course, mean "static state," but rather can
include conditions of dynamic equilibrium,
subject to shifts under the influence of some-
times subtle variables (e.g., Staddon, 1988).
An interesting example is the fixed-interval
schedule that engenders a pattern typically de-
scribed as a pause after reinforcement lasting
about a third to a half of the value of the
interval parameter, followed by an increasing
rate of responding until the moment of rein-
forcer delivery. This description conceals as
much as it reveals. As Skinner pointed out
many years ago, there are inherent variations
in the pattern-response rate from session to
session, response rate from interval to interval,
response rate within the interval, and response
grouping or tempo within an episode of re-
sponding (Skinner, 1938). In addition to these
variations, one could focus on changes in pause
times from interval to interval, or the condi-
tions prevailing at the moment responding be-
gins, or the sequential properties of all the
possible performance measures associated with
the schedule (see, e.g., Gentry, Weiss, & La-
ties, 1983). Sequential properties are of special
dynamical interest because they may provide
the most revealing clues as to the "forces" con-
trolling responding moment to moment. In the
same way, knowing the position and velocity
of a moving body as a function of time will
define an orbit from which certain dynamical
relations may be determined.

BEHAVIOR IN THE MACHINE
The Molar Approach
The fundamental question of dynamics in

physics is how forces act on bodies to change
their motion. An answer to this question in-
volves Newton's three laws of motion, along
with such abstract concepts as mass, inertia,
momentum, first and second moments, force-
distance functions, potential and kinetic en-
ergy, and so forth. A fundamental question in
behavior dynamics is how reinforcement acts
on behavior to change it. An answer to this
question depends, in part, upon knowing what
features of behavior, under what conditions,
are most sensitive to reinforcing effects. This

leads naturally to the question of what dimen-
sions or measures of behavior are appropriate
to the analysis of contingency dynamics. The
problem is usually framed in terms of molar
versus molecular approaches, an old but still
very contentious issue in behavior analysis (e.g.,
Baum, 1989; Bickel & Etzel, 1985; Galbicka
& Platt, 1986; McDowell & Wixted, 1986;
Nevin, 1982; Shimp, 1979, 1982).
Some lessons from physics may also be help-

ful here in establishing a rapprochement be-
tween molar and molecular perspectives. Both
classical mechanics and classical thermody-
namics had no need for molecular theories.
The laws of mechanics do not depend on know-
ing the ultimate composition of bodies. Like-
wise, powerful laws relating variables such as
pressure, volume, and temperature could be
derived and used without having to ask, for
example, what the "real" nature of tempera-
ture was. Behavior analysts now have a rep-
ertoire of molar laws: Herrnstein's hyperbola,
the matching law with response rate or time
allocation, the multivariate rate equation, be-
havior momentum relations, various feedback
functions, global maximizing functions, hy-
perbolic discounting, and so forth, all of which
have effective descriptive and predictive value
in at least some situations. The functional re-
lations were not derived on the basis of an
understanding of the fine structure of respond-
ing; indeed, in the case of time allocation, there
is just barely a need to specify a behavior at
all. However, despite a modicum of success
here and there, no one is likely to assert that
we are on the threshold of a general molar
theory of schedule performance.

Molar approaches to behavior analysis, in
common with classical thermodynamics, have
tended to focus on steady-state conditions. This
does not mean that such approaches have no
interest in dealing with dynamical conditions.
For example, melioration can be considered a
dynamical theory (Herrnstein, 1982). Melio-
ration, however, focuses on an equilibrium state
congruent with a steady reinforcement rate; in
other words, it may talk about dynamics, but
in reality only predicts end states. Neverthe-
less, molar approaches can treat dynamical
systems for which the problem is to predict
functions characterizing how behavior will
change with time, especially under transient
or continuously varying conditions. Such a sys-
tem is typically described by differential or
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difference equations. The work of Myerson
and his colleagues (Myerson & Hale, 1988;
Myerson & Miezin, 1980) exemplifies the ef-
fectiveness of this approach.
A given differential equation can model a

multitude of systems. A particular system is
specified by the interpretation of, and values
assigned to, variables and parameters, as well
as specification of initial and boundary con-
ditions to yield particular solutions. Any me-
chanical system describable by a set of differ-
ential equations, for example, can be modeled
by an electrical circuit; this is the basis of an
analog computer. In the same way, any be-
havioral system describable by a set of differ-
ential equations has a mechanical (and elec-
trical) analog. Of course, if one already has a
useful set of equations describing some behav-
ior system, there may be little value in looking
for a mechanical analog. However, a mechan-
ical system may provide the inspiration for a
useful behavioral description. Herein is a
foundation or strategy for developing dynam-
ical theories of behavior. It is not the only one,
of course, as papers in this issue will attest.
The method is also fraught with difficulties,
especially in characterizing pertinent behav-
ioral variables and their mechanical analogs,
but certainly the limits are yet to be tested.
As an example, consider a modified random-

interval schedule in which the interval param-
eter (and hence the reinforcement frequency)
varied with time according to the function

r = rmsin2(2irt/), (1)
where r is the reinforcement rate, rm is the
maximum reinforcement rate, t is time, and T
is the period. Thus, scheduled reinforcement
rate will cycle from zero to a maximum and
back to zero over the period T. How will re-
sponse rate vary under this condition? Studies
of contingencies of this sort with a time-de-
pendent reinforcement frequency have been
made (e.g., Hunter & Davison, 1985; Johnson
& Wheeler, 1982; McDowell & Sulzen, 1981;
Staddon, 1964). Of this group, only Hunter
and Davison provided an analytic treatment
of response-rate variation comparing predicted
with obtained performance.
The present approach might begin with these

intuitions: Responding may be considered to
be driven by the current reinforcement rate. It
may be expected that momentary response rate
will be a function not only of momentary re-

inforcement rate but also the change in that
rate. Ongoing responding may be considered
to have a certain resistance to change (i.e.,
inertia or momentum; see, e.g., Nevin, 1992).
Thus, there must be a certain threshold of
sensitivity to changes in reinforcement fre-
quency so that momentary responding may not
track exactly the momentary reinforcement
frequency. This may also produce a phase lag
between the response-rate function and the re-
inforcement rate function.
A mechanical system with analogous prop-

erties consists of a bucket with a hole in the
bottom pushed down into a tank of water (see
Staddon & Ettinger, 1989, pp. 67-70, for a
similar analysis of a different behavior sys-
tem). As the bucket is pushed down, the water
begins to flow into the bucket through the hole.
The rate of filling will depend jointly on (a)
the difference between the depth of the bucket
in the tank and the current level of water in
the bucket (equivalent to the distance between
the surface of the water in the tank and the
surface of the water in the bucket) and (b) the
size of the hole. If the bucket is pushed to a
given depth and held there, the bucket will fill
to match the depth of the bucket in the tank.
If the hole is as big as the bottom of the bucket,
then the bucket will fill instantly and com-
pletely "in phase" with the change in depth.
A smaller hole, however, will have the effect
of "distorting" the filling function and altering
the phase relation. Now, imagine that the
bucket is not simply pushed into the water and
held there at a fixed depth, but is pushed up
and down according to a squared sinusoidal
function of time (i.e., Equation 1). The level
of the water will cycle up and down in some
relation to the pushing function. The equation
describing the bucket system is

dRb/dt = h(Rdsin2(27rt/1) - Rb), (2)
where Rb is the depth of the water in the bucket,
h represents the hole size, and Rd is the max-
imum depth of the bucket. What are the cor-
responding variables in the behavior system?
The tendency to respond (call it "response
strength" as manifested here by response rate)
is analogous to the depth of water in the bucket.
The changing reinforcement frequency that
drives responding is instantiated in the force
driving water in and out of the bucket, namely
the joint effect of the momentary depth of the
bucket and the hole size. To deal with the
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behavior system using Equation 2, we need to
have an expression for response rate as a func-
tion of reinforcement rate. For this we can use

Herrnstein's hyperbolic function:

R = k r/(r + ro). (3)

Substituting this function in Equation 2 above
will yield finally:

dRb/dt = h [(krmsin2(2rt/T)
rm2sin(2rt/7)

+ ro) - Rb]. (4)

A solution to this equation is shown in Fig-
ure 1, superimposed on the associated rein-
forcement rate function (Equation 1). Figure
2 shows some data collected with a pigeon
under a similar squared sinusoidal random-
interval schedule. (I am indebted to Bill Palya
and Don Walter for their roles in collecting
and displaying these data.) The theoretical and
experimental functions show at least a super-
ficial similarity. An adequate test, however, of
a model of the kind described would, at a min-
imum, require a number of parametric ma-

nipulations (e.g., changing the period or am-

plitude of the reinforcement rate function).
The method of mechanical analog, though

potentially useful in the analytic description
of dynamical behavioral systems, has special
challenges in its application. The primary
problem is to characterize and isolate corre-

sponding variables in the two domains. This,
of course, requires a theory that specifies what
variables are important in each domain, as
well as their conceptual status and interrela-
tion both within and across the two domains.
Moreover, it is one thing to generate meta-
phors linking two fields, for example, to speak
of "behavioral momentum" or "reinforce-
ment" as "force." But without a corresponding
mathematical account, such metaphors are of
little, if any, value. A mathematical model,
properly constructed, demands careful speci-
fication of pertinent variables and their quan-
titative interrelations. As such, the model should
then not only capture the originally selected
features of the phenomenon of interest but also
possess a generality to encompass other per-
tinent conditions and effects. For example, a

proper model of how responding might change
concurrently with changes in reinforcement
frequency should deal with numerous kinds of
reinforcement frequency functions, not simply

sinusoidal ones like Equation 1. Of course, any
given mechanical system serving as an analog
to model a behavioral system can, at best, cap-
ture only a limited set of features. Refinement
in modeling depends on the selection of more
appropriate (and, thus, usually more complex)
models coupled with better assessment of the
behavioral variables.

Selection of a model depends, at least in part,
on identifying corresponding functions in the
mechanical and behavioral domains (e.g., ex-
ponential, sinusoidal, hyperbolic, etc.). These
functions, regardless of their origin, are so-
lutions to some class of differential equations.
Thus, generality is inherent in the properties
of these equations. In other words, a given
differential equation may describe an infinite
variety of systems, but all these systems share
common properties.

Molecular Approaches
The notions of atoms and molecules were

in some disrepute in the 19th and early 20th
centuries, but theoreticians like Maxwell and
Boltzmann gave credence to these hypothetical
constructs by demonstrating that it was pos-
sible to derive classical thermodynamical laws
and to generate and solve other interesting
problems by application of what came to be
known as kinetic theory and statistical me-
chanics. For example, temperature could be
equated with the average kinetic energy of a
huge collection of speeding, caroming, and col-
liding molecules. The irony was that the molar
laws of classical mechanics, applied to large
ensembles of constituent units, provided the
primary method; thus, a link was forged be-
tween classical mechanics and classical ther-
modynamics, two fields that had previously
been considered, with some perplexity, as in-
dependent.
To distinguish between "molar" and "mo-

lecular" in a behavioral context is not a trivial
exercise (T. Thompson & Lubinski, 1986; T.
Thompson & Zeiler, 1986). We do not have
"ready-made" behavioral units (e.g., hydrogen
atoms); rather, our units depend on our pro-
cedures. They are dynamic in that they can
change during the course of exposure to a set
of contingencies. Once it is possible to identify
or establish a class of behavior putatively en-
tering into some consistent relations with vari-
ables of interest, inevitably the temporal pat-
tern of behavior becomes an essential part of

254



BEHAVIOR DYNAMICS
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Fig. 1. A solution to Equation 4 describing a bucket with a hole in the bottom being pushed up and down into a
tank of water. The solution shows the depth of water in the bucket as a function of time, plotted along with the squared
sinusoidal pushing function. Notice the rounded top and phase lag of the depth function.

any analysis. This pattern, typically, both con-
trols and is controlled by the temporal pattern
of events impinging on the behavior. The mo-
lar-molecular issue deals primarily with the
nature and extent of that dynamic interaction.
Is a specified class of behavior primarily under
the influence of local, momentary, and short-
term events? If so, then perhaps local, mo-
mentary, and short-term features (e.g., inter-
response times: IRTs) of the behavior should
be emphasized in an account. Alternatively,
behavior-event interactions may involve inte-
gration over significant intervals, in which case
summary or distributional features of behavior
(e.g., response rate) may form the variables of
an account. In principle, both local and global
forms of dynamic interaction may occur (or
neither).

In the face of a degree of success of molar
theories of behavior (e.g., Baum, 1989), mo-
lecular approaches have the special onus of
showing not only that molecular events must
be taken into account, but also that selected
properties of those events must be examined.
The primary challenge, however, is to for-

mulate a correspondence principle showing
how molar properties emerge from molecular
events. Alternatively, a molar theory may con-
sider molecular events, but only in a general
way. For example, to generate a molar theory
one might assume that IRTs are independent
events described by an exponential distribution
(e.g., Rachlin, 1978).
A molecular unit of responding, the IRT,

was appreciated very early, and its selective
reinforcement was invoked as a major factor
in understanding overall rate differences in
schedules (Anger, 1956; Morse, 1966; Skin-
ner, 1938). Subsequently, numerous studies
have demonstrated that IRTs can be sensitive
to selective reinforcement and punishment (e.g.,
Anger, 1956; Blough, 1966; Galbicka &
Branch, 1981; Galbicka & Platt, 1984, 1986;
Morse, 1966; Shimp, 1968; Staddon, 1968),
yet it is still debated to what extent that sen-
sitivity contributes to an understanding of per-
formance under contingencies of reinforcement
(e.g., Angle, 1970; Baum, 1973; Catania, 1962;
Galbicka & Platt, 1986; Kintsch, 1965; Mc-
Dowell & Wixted, 1986; Nevin, 1982; Prelec,
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Fig. 2. The performance of a pigeon under a squared sinusoidal reinforcement schedule. Over a period of 30 min,
a random-interval schedule arranged reinforcement frequencies that varied from 0 to about 1.7 per minute. A session
comprised four such cycles. The theoretical and programmed reinforcement rates are shown along with the corresponding
response rate. Response rate shows the rounded top characteristic of the solution shown in Figure 1, indicating that,
like the bucket, response rate does not track reinforcement exactly; it is differentially sensitive to rates of change of
reinforcement frequency, as Herrnstein's hyperbola implies. Unlike the bucket, responding in this case is closely in
phase with reinforcement frequency and shows less variation with changes in reinforcement frequency.

1982; Shimp, 1979,1982; Silberberg, Warren-
Boulton, & Asano, 1988; Vaughan, 1987;
Vaughan & Miller, 1984).

Selective reinforcement of IRTs represents
a kind of Maxwell's Demon, a fantastic crea-
ture that could, in apparent violation of en-
tropy, separate high-speed from low-speed
molecules and thus be able to heat (and cool)
selected regions of a gas-filled chamber. Re-
sponse rate is analogous to temperature in that
it is a statistical property of an ensemble of
IRTs. The behavior analyst has the advantage
over the physicist because IRTs can be directly
observed, measured, and selected. Thus, the
behavior analyst can become a Maxwell's De-
mon (without violating entropy principles, of
course). Questions remain, however, as to the

detailed structure of response rate, and those
structural features upon which contingencies
act. The behavior analyst is at a disadvantage
compared to the physicist in that, to begin to
answer questions of this sort, one has to specify
not only the distributional structure but also
the sequential structure of IRTs. An addi-
tional disadvantage, of course, is that there
exist no clear principles of behavior dynamics,
molar or molecular, to bridge the two domains.
To a large extent, the separation between the
two remains because of an inadequate meth-
odology rooted in the traditional "simple"
schedules. As Galbicka and Platt (1986) point
out:

Standard reinforcement schedules were devel-
oped because of the ease with which they could
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be programmed, not because of what they could
tell us about behavior. To the extent ease of
programming is correlated with the number of
variables left uncontrolled, a continued reliance
on simple schedules as analytic devices ensures
continued ignorance of the variables controlling
behavior. (p. 379)

One of the major criticisms of molecular
approaches to behavior analysis is that events
like IRTs have no coherent or consistent se-
quential structure germane to a molar account
(Baum, 1989; Blough, 1963; Nevin, 1982).
For example, IRTs engendered by variable-
interval (VI) schedules are said to be described
by a Poisson distribution (Blough, 1963;
Mueller, 1950). There is evidence to the con-
trary, however, not only with respect to VI
schedules, but others as well (Wertheim, 1965).
The structures revealed so far are certainly not
simple. But even if the fine structure of re-
sponding indicated only what appeared to be
stochastic properties, this would not necessar-
ily militate against a molecular theory of the
molar properties of responding. Distributions
described as stochastic may be generated by
deterministic functions (e.g., Glass & Mackey,
1988). This is a highly significant feature of
some nonlinear dynamical systems, in partic-
ular, those deemed chaotic.

CHAOTIC DYNAMICS
To provide a perspective on the subsequent

discussion, a brief treatment of nonlinear dy-
namics will follow. (Two good elementary sur-
veys of the area are those of Gleick, 1987, and
Stewart, 1989.) A consideration of modern
nonlinear dynamical systems raises the ques-
tion of the meaning of a distribution, putatively
described by a stochastic process. As is already
well known, deterministic models of dynamical
systems, as embodied in nonlinear difference
or differential equations, can yield solutions
having a stochastic character. This property is
known as chaos, and one speaks of chaotic dy-
namical systems (Baker & Gollub, 1990; Glass
& Mackey, 1988; Jackson, 1989; Moon, 1987;
Rasband, 1990; Ruelle, 1989; Shaw, 1984; J.
Thompson & Stewart, 1986). To determine
whether or not an actual physical system dem-
onstrates chaos is not easy in practice (see
Moon, 1987, for a clear and detailed discussion
of this problem). A simplified list of criteria
might include:

1. Sensitivity to initial conditions. Small

changes in starting conditions may quickly re-
sult in totally different outcomes. Because ini-
tial conditions can never be known exactly, the
end result is unpredictable. As applied to a
behavior dynamical system, a number of vari-
ables could be relevant (e.g., behavioral his-
tory, states of deprivation, moment-to-moment
contingency changes, stimulus control varia-
tions, context, etc.). The metastable character
of behavior-consequence interactions has been
stressed, for example, by Morse and Kelleher
(1977). The events controlling exactly when
the first response occurs, say, in a fixed-inter-
val schedule, must be subtle indeed. Although
one can certainly give anecdotal lip service to
the sometimes delicate nature of behavioral
outcomes ("For lack of a nail, a kingdom was
lost"), the criterion is difficult to apply.

It should be emphasized that sensitivity to
initial conditions in a nonlinear deterministic
system arises not from the random character
of impinging events, nor from the possibilities
generic to a large number of degrees of free-
dom, but from the inherent dynamic properties
of the system. Explicit assumptions of nonsto-
chastic influences and a small number of sig-
nificant degrees of freedom are made in the
derivation of equations describing the time
evolution of a system. In a behavioral system,
neither of these assumptions may be tenable
(especially the latter); in any case, without very
precise control of relevant variables and a suit-
able analytic account, unambiguous assess-
ment of sensitivity remains elusive.

2. A broad spectrum ofoutputfrequencies with
a simple periodic or constant input. Power spec-
tra of such systems are "noisy." Very little
work has been done on power spectra of be-
havioral data. There is an inherent problem
in applying standard procedures to IRTs as
well as to other molecular events because they
are not typically recorded at equal time inter-
vals. Nevertheless, Weiss and his colleagues
have generated expectation density plots that
have some similarity to power spectra (Weiss,
1970; Weiss, Laties, Siegel, & Goldstein, 1966;
Weiss, Ziriax, & Newland, 1989). The results
with monkeys responding under IRT > t
schedules indicate that during acquisition IRTs
occur at random (i.e., the spectrum is broad).
Once stable performance is attained, however,
there are clear dominant frequencies appear-
ing in harmonic relation. As expected, one of
the frequencies occurs near the reinforced IRT.
There are no sharp bands, however, but rather
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considerable spread around the peaks. Thus,
there is a good deal of noise in the system. It
is difficult to interpret IRT spectra in relation
to the criterion above because the behavioral
system is not being "driven" periodically. To
complicate matters further, under the IRT >
t schedule, the driving frequency depends on

the output frequency of the system; that is, the
frequency of reinforcement depends on the fre-
quency of responding.

3. Display of the time evolution of the system
reveals a strange attractor. The concept of an

attractor is fundamental to a description of any
dynamical system. Basically it represents, us-
ing suitable coordinates, the long-term states
of the system after transients have decayed. A
system may have multiple attractors, some sta-
ble, some not, depending on the initial con-

ditions and values of certain parameters of the
system (e.g., damping, etc.). Consider a pen-
dulum comprised of a weight attached to a

rigid rod, which is in turn attached to a pivot
that allows the weight to swing freely through
360° in a plane. If we displace the weight, it
will swing back and forth. We can plot the
motion, or orbit, of this system in a phase space
with the position along the x axis and velocity
along the y axis. This is called the phase por-
trait of the motion. If we specify that both
position on the right and velocity to the right
is positive and leftward position and velocity
are negative, then a frictionless pendulum with
a small displacement will have a circular orbit
on phase space with the origin at the center.
The minimum velocity will be at the maximum
displacement and vice versa. Now let us in-
troduce a bit of reality by adding friction to
the system. Regardless of the initial displace-
ment or velocity we give to the pendulum, it
will ultimately settle or be attracted to its ver-

tical position at rest. In phase space, all orbits
will spiral inward to the fixed point attractor
at the center.

For more complex systems such as a forced
but damped pendulum, attractors may be pe-
riodic orbits, or limit cycles, such that nearby
orbits are attracted to them. They may also be
multiply periodic; that is, the trajectory loops
two or more times before returning to the start-
ing point. One can visualize such orbits as

flowing over the closed surface of a torus or

donut. A simple periodic attractor courses once
around the torus before joining itself, a two-
cycle orbit goes around twice, and so on. Even

more complex are quasi-periodic orbits that
never return to the same point but sweep out
the entire closed surface of the torus, like a
wire wrapped around and completely covering
a toroidal conductor to make a solenoid.

Finally, there is a chaotic or strange attrac-
tor, which, in the case of the forced and damped
pendulum, not only never returns to the same
point, but stretches and contracts and folds the
surface of the torus into a delicate and infi-
nitely layered composition like some cosmic
chef's puff pastry.

Such a geometry defies visualization in three
dimensions; but, through a procedure devel-
oped by Poincare around the turn of the cen-
tury, slices may be made through the surface
to yield a cross-section of the attractor in two
dimensions. Such a slice is called a Poincare
section. Every time the orbit cuts through the
section, it marks a point on that plane. A sim-
ple limit cycle, for example, shows up as a
single point, called a fixed point; a two-cycle
makes two fixed points; a quasi-periodic at-
tractor that covered the surface of the torus
makes a circle (or ellipse). These examples are
also attractors because they represent dynam-
ical end states following the decay of any tran-
sients. Thus, a Poincare section through an
attractor is also an attractor.
A section through a chaotic attractor in three-

space would reveal in two-space the folding
and stretching of layers mentioned above, each
few thousand points yielding more and more
detail. As the motion proceeds, the points ap-
pear seemingly at random within a bounded
region, like stars at dusk. In the abstract, the
detail is infinite; no matter how much a region
is magnified, more structure will be present.
This is a rough definition of a fractal, a geo-
metrical entity with noninteger dimension.
Think of a cumulus cloud. It possesses a com-
plex structure at many orders of magnification
on down to a single water drop. From a great
distance, it appears to have bulk or solidity; of
course, it is not solid, but neither is it some
kind of surface. Dimensionally, it is in be-
tween, more than two but less than three.
The Poincare plane displays a discrete map-

ping, in that each point (x,+1, y,+,) can be said
to be the output of a function operating on the
previous point (xn, yj). That is, (x,+1) = F(xnX
y.) and (Yn+l) = G(xs, yn). Thus, the plot is a

picture of the time evolution of the system,
displaying the sequence of states of the system.
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If the system is periodically driven, then a
Poincare section can be made that, ideally,
shows all the possible states of the system at
equal time intervals.

Phase-plane portraits and associated Poin-
care sections can be generated by computer
routines, given a set of differential equations
describing the system along with parameter
values and initial conditions. Except in the
simplest cases, the solutions are the portraits
and sections. In other words, the solutions may
not be expressible as closed-form equations or
even tables of numbers. Thus, modern dynam-
ics relies heavily on geometry and topology and
is absolutely dependent on extensive computer
facilities involving sophisticated graphics rou-
tines.
The study of real dynamical systems may

begin, however, not with differential equations
but with experimental data. What can be done
in this more common case in which data are
gathered on a dynamical system, but no set of
equations has or perhaps could be written to
describe the system? More specifically, what
pictorial procedures are available to reveal more
clearly dynamical properties of behavioral
data? Behavior analysts are very much used
to forms of geometric description of data with
little or no analytic treatment. We show cu-
mulative records (or, at least, we used to) and
plot graphs. What we have had to say about
behavior has largely come from graphical
analysis of data because we do not have a sat-
isfactory analytical account. Fundamental to
a dynamical description is the display of a
behavioral variable as a function of time. The
cumulative record is an ingenious method for
viewing how response rate changes as a func-
tion of time. It is not, however, suited to de-
tailed analysis of the sequential properties of
responding or its local structure (Shimp, 1979).
There are presently two related display pro-

cedures that hold promise for a dynamical per-
spective on IRTs as well as other molecular
data. One is the band plot, in which each IRT
is plotted as a function of time or serial po-
sition. Some boundary points have to be spec-
ified, such as the beginning and end of an
experimental session, the maximum interrein-
forcement interval, or the position of an IRT
within an interreinforcement interval (e.g.,
within a ratio schedule run). The second dis-
play procedure is a return plot (sometimes
called a joint interval plot) that in two-dimen-

sional form consists of plotting IRTn+1 versus
IRTn. Thus, a return plot represents a crude
form of a Poincare plot-crude, because the
state of the system is not sampled periodically.
Among the first to present band plots was

Blough (1963), who developed a procedure for
graphically recording sequences of IRTs of
pigeons' key pecks under variable-interval,
fixed-ratio (FR), and IRT > t schedules, ex-
tinction, and transitions between particular
pairs. The IRTs appeared on a vertical scale
as points of light on an oscilloscope while the
beam swept out the time (or response number
in the ratio schedule). For the first time it was
revealed that response rate in the pigeon has
a complex structure, with IRT bands that ap-
peared largely invariant with respect to dif-
ferent contingencies, including stimulus con-
trol. These IRTs were in the range of 0.3 to
0.7 s, with a smaller cluster around 0.1 s.
Variations in response rate as a function of
different procedures were largely accounted
for by changes in IRTs > 1 s. The longer
IRTs appeared to be exponentially distributed
(i.e., without sequential dependence). Under
FR 30, a harmonic structure emerged with a
fundamental band at about 0.35 s and a double
at 0.7 s. This was interpreted as being a com-
bination of a series of periodic pecks inter-
spersed with pecks that failed to operate the
key.
A number of subsequent studies have pre-

sented sequential IRT data obtained from var-
ious schedules including IRT > t, fixed and
variable ratio, fixed and variable interval, and
Sidman avoidance. The subjects have included
rats, pigeons, and monkeys (Angle, 1970;
Crossman, Trapp, Bonem, & Bonem, 1985;
Davison, 1969; Gentry et al., 1983; Gott &
Weiss, 1972; Kintsch, 1965; Mazur & Hyslop,
1983; Pear, 1985; Pear & Rector, 1979; Pear,
Rector, & Legris, 1982; Weiss, 1970; Weiss
& Gott, 1972; Wertheim, 1965; Williams,
1968). Although there are quantitative vari-
ants, the general qualitative findings are that
(a) responding is comprised of periodic and
nonperiodic IRTs; (b) there can be dependen-
cies between successive IRTs; (c) there is a
stable structure relatively insensitive to vari-
ations of schedule, schedule parameter, or the
elapsing period between reinforcer delivery;
and (d) variation in response rate is largely a
function of the relative frequency of long IRTs.

Return plots are a more common method
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for displaying data from mechanical systems.
This is vividly illustrated in a monograph by
Robert Shaw (1984) entitled The Dripping
Faucet as a Model Chaotic System. This work
might be considered a paradigmatic approach
to the analysis of the dynamics of virtually any
behavioral system, not simply in the use of
return plots, but with other methods as well.
Shaw begins by invoking familiar themes:

We live in a whirl of moving structures, swept
by social, economic and personal currents whose
dominant theme is one of unpredictability. Yet
laws, constraints of some sort seem to be op-
erating, as evinced by our ability to function.
The central issue of physics, that of predict-
ability, is in fact addressed as a practical matter
by each newborn infant: How do we construct
a model from a stream of experimental data
which we have not seen before? How do we
use the model to make predictions? What are
the limits of our predictive ability? Simple ex-
periments, as well as the experience of daily
living, still have much to teach us. Here, as a
case in point, is an experimental study of a
dripping faucet. (p. 1)

The dripping faucet is a system that is periodic
for certain flow rates, but at others becomes
aperiodic. The system is, moreover, intractable
to an exact mathematical description. Shaw
built a simple apparatus to measure the in-
terdrip times (IDTs) of the falling drops as a
function of variation in flow rate. The IDTs
constituted the sole data for analysis of the
system dynamics.

Plotting IDTnll against IDTn yielded a two-
dimensional return plot. When the drips were
simply periodic, a single spot appeared. As the
flow rate increased, variations in frequency
occurred, smearing out the spot. As the flow
rate increased further, quite suddenly a period
doubling bifurcation occurred, yielding two
spots. Thus two drops had to fall before the
cycle repeated. At higher rates of flow, a sort
of fuzzy parabola emerges. There is an ap-
parent randomness, but with structure, a prin-
cipal property of a chaotic system. The at-
tractor becomes more and more complex,
requiring a third dimensional presentation; that
is, IDTn12 versus IDTnll versus IDTn. In a
lower dimensional space, each drip time no
longer uniquely determines the succeeding drip
time. Eventually, three dimensions are not ad-
equate to picture the events. Shaw was able to
describe some of the properties of the system
with a relatively simple nonlinear differential

equation that possessed both periodic and cha-
otic solutions. However, the equation in no
way encompassed all the specifiable properties
of the system.
The use of a crude return plot appears early

in the history of behavior analysis in a study
by Mechner (1958). Using rats as subjects,
Mechner established a performance in a two-
lever arrangement whereby a minimum of eight
consecutive presses of Lever A had to be emit-
ted before a reinforcer would be delivered fol-
lowing a press of Lever B. The median length
of a run was plotted as a function of the length
of the preceding run. A sequential dependency
was revealed by a linear function with positive
slope showing that successive response runs
tended to be correlated (i.e., long runs followed
by long runs, etc.). The median run is a sum-
mary statistic; what is needed is a more de-
tailed picture of the dynamics gained from
plotting individual values as a function of the
preceding value.
A step in that direction was taken by Wer-

theim (1965), who plotted modal probabilities
of transition from IRTn to IRTn+1 in a Sidman
avoidance procedure with rats as subjects. The
IRT values were actually ranges, not individ-
ual IRTs; thus, few points (generally less than
20) were plotted. Return plots were obtained
from the beginning, middle, and end of ses-
sions, showing changes in successive IRT de-
pendencies from "stochastic" at the beginning
to a very orderly positive linear relation at the
end of the session.

Using a similar procedure to study IRT
dependencies in mixed and tandem IRT > t
schedules in the rat, Angle (1970) showed that
only when an IRT was reinforced was there
any significant relation between consecutive
IRTs; otherwise, the distribution was sto-
chastic.

Weiss (1970) provided the first return plot
with large numbers of individual IRTs from
a monkey responding under an IRT > 20-s
schedule. As Blough (1963) had shown earlier
with the pigeon, a very short IRT shows little
relation to the preceding IRT. However, a
large diffuse ball of points in the upper right
quadrant indicated a positive relation between
successive long IRTs. Until very recently,
Weiss and his colleagues (e.g., Gentry et al.,
1983; Weiss et al., 1966) have stood almost
alone in their extensive investigation of the fine
structure of responding using sophisticated an-
alytical routines. In this and all the previous
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work of this kind, there are no indications of
chaotic processes.

In this issue, Palya (1992), using band and
return plot procedures as well as other tech-
niques applied to literally tens of millions of
data points, displays and describes in unprece-
dented and definitive detail the IRT structure
of pigeon responding under several schedule
arrangements. As he convincingly concludes,
there is no evidence for chaotic dynamics at
work here. The return plots reveal no strange
attractors, and, as he demonstrates, the system
is perhaps best modeled as a somewhat noisy
oscillator stochastically shifting back and forth
between a fundamental and its harmonics,
modulated to a greater or lesser degree by the
prevailing contingency of reinforcement.

It is perhaps a disappointment that strange
attractors have not yet emerged from behav-
ioral data gathered from the operant labora-
tory, but to focus only upon this possibility is
to miss the point of the whole enterprise of
behavior dynamics viewed from the perspec-
tive of nonlinear dynamical systems. Study of
such systems provides both conceptual models
and methodologies for revealing dynamical
structure, whether chaotic or not. Neverthe-
less, the search for chaos in behavior dynamics
is compelling, not only because of the need to
understand behavioral variation within a de-
terministic framework, but also because of the
possibility of becoming part of a fundamental
and historic scientific movement.

DYNAMICS OF CHOICE
I will conclude this essay by describing a

dynamical system that has the potential for
capturing certain molar and molecular fea-
tures of concurrent-schedule responding. We
might view a concurrent VI-VI schedule as a
system with two attractors. The nature of these
attractors will depend on the contingencies im-
posed. If, for example, one of the schedules is
changed to extinction, then responding will
"spiral in" to a fixed point on that alternative
continuing to deliver reinforcement. If, how-
ever, the VI schedules deliver equal reinforce-
ment frequencies to the two alternatives, then
responding will cycle back and forth between
the alternatives; in other words, a kind of limit
cycle. Unequal reinforcement frequencies will
result in shifts between two different limit cy-
cles on the two halves of the phase portrait.
Of course, the actual situation is considerably

more complicated than the foregoing descrip-
tion. Consider first the variables influencing
performance. They include at a minimum both
relative and absolute reinforcement rates, as
well as the changeover requirements. Second,
consider some of the types of behavior engen-
dered by these contingencies. Relative re-
sponding (and time allocation) is distributed
on the basis of relative reinforcement fre-
quency, and changeover rates (or dwell times)
depend on relative and overall reinforcement
rates as well as changeover requirements (Al-
sop & Elliffe, 1988; Davison, 1991; Davison
& McCarthy, 1988; Hunter & Davison, 1978).
Heyman (1979) found no sequential depen-
dencies in changeover responses; they seemed
to be described by a Markovian process. How-
ever, there has been a vigorous debate on this
topic (e.g., Nevin, 1982; Shimp, 1982; Silber-
berg & Ziriax, 1982). Silberberg and Ziriax,
for example, showed the conditional proba-
bility of a changeover as a function of time
was clearly not reflective of a Markov process.
There are other features of concurrent-sched-
ule responding, of course, such as bias, over-
and undermatching, and so on, but the model
to be presented will not directly address them.
The concurrent schedule may be viewed in

dynamical terms as a "double-well potential"
problem (see Killeen, 1992, for further dis-
cussion of the concept of the potential in be-
havior analysis). The concept of the potential
function was developed by Laplace. The func-
tion describing the force on a body at a point
is equal to the negative derivative of the func-
tion describing the potential at that point.
Imagine a marble in a hemispheric bowl. If
no forces are acting on the marble, it will sit
in the bottom of the bowl. This is a stable
fixed-point attractor. If we place the marble
up the side of the bowl near the edge and
release it, it will roll down the side, up the
opposite side a ways, and back and forth until
it comes to rest at the bottom (assuming fric-
tional forces are at play). The side of the bowl
represents the potential function, and its slope
at any point represents the net force acting on
the marble. The bowl may be described as a
potential well. The marble will be confined to
the well unless enough energy is imparted to
it to escape the potential. Now imagine that
the bottom of the bowl is dented upward to
make a smooth symmetrical mound inside. If
the marble is rolled down the side it must climb
over the mound to reach the opposite side. As
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Fig. 3. A solution of Equation 5 showing the displacement of a marble in a two-well potential with a sinusoidal

forcing function. The horizontal line marks the transition from one well to the other. In Panel A, the well is symmetrical
with the result that, although there is much shaking about within a well, the time spent on the two sides is about
equal. In Panel B, the wells are asymmetrical, with the result that more time is spent in one well than the other.
Notice that occasionally in both the symmetrical and asymmetrical wells, but particularly in the latter, the marble
swings back and forth with increasing amplitude before jumping to the other side. This result implies a certain degree
of "sequential dependency" in dwell times, although this has not yet been investigated with this system. For more
detail on correspondences with concurrent schedules, see the text.

the marble climbs the barrier it slows down;
if it goes just pass the top, it will accelerate to
the bottom of the opposite well. If we were to
divide the bowl exactly in two and look straight
on at the inside boundary of the cross-section,
we would see the double-well potential func-
tion in a single plane. With no other forces
acting on it, this system has two fixed-point

attractors; the marble will either sit on one
side or the other. The top of the mound is an
unstable point.
Now shake the bowl back and forth in one

plane (assume that the marble will only move
in one plane). The marble will shift from one
side to the other in a manner that depends on
the shape of the bowl (i.e., characteristics of
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the potential function) and the driving force
on the bowl. A dynamical system with these
kinds of properties is described by a general-
ized Duffing equation:

d2x/dt2 + adx/dt - bx
+ cx2 + dx3 = F(t). (5)

(See Gluckenheimer & Holmes, 1983, and
Moon, 1987, for detailed discussions of the
Duffing equation.) This is a nonlinear second-
order differential equation solvable only by
numerical methods. The first term is the ac-
celeration of the marble at any point, the sec-
ond represents frictional forces, and the re-
maining left-hand terms relate to the potential
function described above. The right-hand term
is the forcing function defining the shaking of
the bowl. There are a large number of param-
eters [a, b, c, d, and at least two hidden in F(t)]
all of whose values critically determine the
nature of the solutions, many of which lie in
the chaotic domain.
How does all this relate to concurrent sched-

ules? As mentioned above, each alternative is
a well of the potential function. The "hump"
in the middle represents a changeover contin-
gency. The overall reinforcement contingency
establishes and maintains switching, and is thus
embodied in the forcing function F(t). Without
the reinforcing consequences, behavior, like the
marble, will come to rest. The simplest form
of F(t) is sinusoidal; for example, F(t) = A
cos(2irft), where A is the amplitude and f is
the frequency. The overall frequency of
switching is related to f, but also depends on
the potential function.
Under concurrent VI-VI schedules, the

higher the overall frequency of reinforcement,
the greater the switching rate, and the more
similar the alternative reinforcer rates, the
greater the switching rate (Alsop & Elliffe,
1988). If the two alternative reinforcer rates
are equal, the potential function is symmetrical
(the parameter c above would be zero). With
a symmetrical potential, it would be expected
that the relative dwell times would be equal.
With unequal rates, the potential becomes
asymmetrical (c > 0), and the dwell times
should favor the deeper potential well.
These two conditions are illustrated in Fig-

ure 3, which shows the displacement of our
marble as a function of time. The marble moves
in an irregular fashion back and forth within
a well; then, after some unpredictable time, it
crosses to the other side, and so on. For present

purposes the time spent on each side of the
double well is the variable of interest. (Perhaps
the within-well variation in displacement be-
fore switching is reflective of ambivalence!) For
a symmetrical well (Panel A), as predicted, the
time allocation to each side appears about the
same. With an asymmetrical potential (Panel
B), however, the tendency is to spend more
time in the deeper well. The words "about"
and "tendency" are important here, because,
as in concurrent-schedule performance, there
is moment-to-moment variation in the state of
the system. This is a chaotic system, given the
assigned parameter values. The system is not
chaotic for all such values, however. For ex-
ample, under some conditions, the marble will
bounce back and fourth periodically, as did
Herrnstein's pigeons in his original experi-
ment (1961) when no changeover delay was
in effect. Or, the marble may remain on one
side, as in the case of, say, concurrent VI ex-
tinction schedules.

This model is only just being explored in
its details. As mentioned above, there are many
parameters and initial conditions to examine.
An essential domain of information is lacking,
namely the stochastic properties of the chaotic
solutions. This is a largely unexplored area of
chaotic systems in general, but in the present
case we need to know, for example, whether
the dwell times have distributional and se-
quential properties characteristic of actual
concurrent-schedule performance.
The properties of the potential function are

such that they may encompass interaction ef-
fects between the changeover contingency and
relative and overall reinforcement rates. These
also remain matters for further investigation
in the operant laboratory. Vital to the present
approach is the analysis and display of data
in ways to reveal dynamical processes. For
example, data reside now in many laboratories
that could be used to determine the sequential
properties of dwell times by simply plotting
Tn against Tn,l at various relative and overall
reinforcement frequencies. Until we under-
stand better the appropriate details of perfor-
mance, we cannot hope to develop adequate
dynamical models.

A FINAL WORD
As a cursory glance at Skinner's The Be-

havior of Organisms (1938) affirms, we began
with behavior dynamics. Now after many years
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of an odyssey through the stable baseline, the
steady state, and the static condition, we are
at last returning to the Ithaca of change, of
transition, of variation-in a word, dynamics.
I have attempted to show that in developing a
dynamics of behavior, we can look to the edifice
of physics for models and methods. This is not
the only approach, nor is it free of serious
criticism (see, e.g., Zeiler, 1992). But the prin-
cipal concern should not be how we approach
the topic of behavior change, but that we deal
vigorously and effectively with it, whatever our
methods. The contributions to this issue affirm
this enterprise.
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