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Abstract

Several tantalum imido complexes have been synthesized and shown to efficiently catalyze the
hydroamination of internal and terminal alkynes. An unusual hydroamination/hydroarylation
reaction of norbornene catalyzed by a highly electrophilic cationic tantalum imido complex is also
reported. Factors affecting catalyst activity and selectivity are discussed along with mechanistic
insights gained from stoichiometric reactions.

Catalytic hydroamination is a potentially powerful synthetic method by which valuable
nitrogen-containing products (e.g., amines, imines, and enamines) may be obtained in a single
step from readily available unsaturated hydrocarbons. Several recent reviews have highlighted
the considerable current interest in this transformation.1 Catalysts derived from both early and
late transition metals as well as lanthanides have shown significant activity for the addition of
N–H bonds across a variety of alkynyl and activated alkenyl moieties;2–7 however, a general
and selective protocol for the hydroamination of unactivated alkenes remains unknown.

Hydroamination methods using complexes of the group 4 metals have been described by the
Bergman group3 as well as by Doye,1e,4 Odom,5 Beller,6 and others.7 In each of these
examples, metal-imido (M==NR) species have been proposed as key intermediates in the
catalytic cycle. We noticed that, in contrast to the extensive application of group 4 metals to
hydroamination catalysis, no examples existed of catalysis by group 5 analogues.8 Cationic
group 5 imido complexes seemed particularly promising as potential hydroamination catalysts,
since these compounds are isoelectronic to the group 4 catalysts and the enhanced polarity of
the metal imide linkage of such compounds would likely result in increased catalytic activity.

We report herein the synthesis of new neutral and cationic imidotantalum complexes and their
application to the catalytic hydroamination of alkynes. These tantalum imido species also
catalyze an unusual hydroamination/hydroarylation reaction between norbornene and aniline.
The hydroamination of norbornene represents one of the first reports of an intermolecular
alkene hydroamination catalyzed by an early transition metal.9 The scope of this method, a
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comparison between neutral and cationic tantalum catalysts, and mechanistic insights gained
from stoichiometric reactions are discussed below.

Neutral trialkyltantalum imido complexes 1a and 1b were synthesized by treatment of the
trichlorotantalum precursor (py)2Cl3Ta==NCMe3 (py = pyridine) with 3 equiv of the
corresponding Grignard reagent (Scheme 1). Benzyl anion abstraction from 1a with Ph3CB
(C6F5)4 produced an insoluble orange solid that was tentatively assigned as an oligomer of the
10e− cationic complex 2. This formulation was supported by reaction of 2 with
diphenylacetylene, which afforded the fully characterized azametallacyclobutene complex 3.

In a preliminary experiment, a mixture of diphenylacetylene and aniline in the presence of 5
mol % of 2 at 135 °C gave the products of hydroamination (imine/enamine = 3:1) in 26% yield
(1H NMR). Under analogous conditions, complex 3 gave similar results. Improved reactivity
and >95% yield were achieved through in situ generation of 2 (Table 1, entry 2).10 All
subsequent experiments with the cationic complex were therefore performed by premixing
1a and Ph3CB(C6F5)4 with the substrate–amine mixture.

Several neutral Ta complexes were also evaluated as catalysts for the hydroamination of
diphenylacetylene with aniline. As shown in Table 1, compounds 1a, 1b, (Et2N)3-
Ta==NCMe3, and Ta(NMe2)5

11 were all competent catalysts, affording the desired products
as thermodynamic imine/enamine mixtures. While all the catalysts screened provided high
yields, the enhanced reactivity associated with neutral tris(neopentyl) complex 1b and cationic
2 made these compounds attractive for further study.

Several alkynes were treated with aniline in the presence of 1b and 2 in order to determine the
scope of this method with respect to the alkyne component (Table 2). Both complexes catalyze
the hydroamination of all substrates investigated; dialkylacetylenes react more slowly than
diphenylacetylene (entries 1 and 2), while terminal alkynes are converted significantly faster
(entries 3 and 4). The hydroamination of 2-hexyne (entry 2) proceeded with no regioselectivity.
High levels of Markovnikov selectivity are observed with other substrates (entries 3 and 4),
but may be caused by selective decomposition of the anti-Markovnikov product.12
Surprisingly, 1-phenylpropyne was a difficult substrate for these catalytic systems (entry 5).
However, the hydroamination of 1-phenylpropyne with 2, while 1b fails to react, suggests that
2 is the more potent catalyst. Although 2 exhibits greater activity toward 1-phenylpropyne,
neutral catalyst 1b appears to provide reaction products for this survey of alkynes in
consistently higher yields.

Several substituted anilines were examined in the reaction with diphenylacetylene to determine
the tolerance of the two catalysts for the amine component (Table 3). Both 1b and 2 were
efficient catalysts for the reaction with para-substituted anilines. Ortho-substituted anilines
proved to be more challenging substrates, showing little or no reaction with 1b and giving
moderate yields with 2. The rate of catalyst decomposition in these cases appears to be
competitive with the rate of hydroamination.13 The reaction in entry 5 can be driven to
completion if additional 2 is introduced after 24 h. Very low yields of hydroaminated products
along with products of catalyst decomposition were obtained in reactions with benzylamine
and n-butylamine. Sterically demanding tert-butylamine was unreactive in the presence of both
catalysts.

In an attempt to extend the scope of Ta-catalyzed hydroaminations beyond alkynes, both 1b
and 2 were examined as catalysts for the addition of anilines to allenes and olefins. Catalyst
1b failed to exhibit any activity toward allenes; however, 2 catalyzed the hydroamination of
both propadiene and cyclonona-1,2-diene (Scheme 2).
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Treatment of a mixture of norbornene and aniline with a catalytic amount of 2 afforded products
both of olefin hydroamination (10) and hydroarylation (11) in a ratio of 1:2 (Scheme 3).9,14,
15 This is one of the first examples of intermolecular alkene hydroamination with an early
transition metal catalyst. Unoptimized, this reaction only provides 32% yield of the desired
amines. A significant amount of polymer and other higher molecular weight byproducts were
observed in this reaction and are thought to be responsible for the overall low yields of the
desired products. An interesting aspect of this transformation is the possibility of selectively
activating N–H bonds versus C–H bonds. Variation of the ratio of aniline to norbornene failed
to alter the 1:2 ratio of products; however, preliminary studies with substituted anilines have
shown promising results.16

Two key steps in the catalytic cycles proposed for hydroamination with group 4 complexes are
the formation of an intermediate azametallacycle and its subsequent protonation by amine.
3a,c,d,4b To assess whether similar steps could be involved in cationic Ta-catalyzed
hydroaminations, a study was carried out using stoichiometric amounts of isolable
azametallacyclobutene complex 3 and 2,6-dimethylaniline (Scheme 4). Upon mixing at room
temperature, the amine immediately coordinates to the electrophilic tantalum center of 3, as
indicated by the appearance of two distinctive diastereotopic N–H resonances (δ = −1.05,
−1.23) in the 1H NMR spectrum of the reaction mixture (12).17 Interestingly, this complex is
stable at room temperature for approximately 24 h before the Ta–C bond of the metallacycle
is protonated and the diastereotopic N–H resonances disappear. Furthermore, metallacycle 3
catalyzes the addition of aniline to diphenylacetylene with efficiency identical to that of 2.
Overall, these results suggest that cationic tantalum-catalyzed hydroaminations proceed
through a catalytic cycle similar to that proposed for group 4 analogues.

In summary, several neutral and cationic tantalum imido complexes have been identified as
effective catalysts for the hydroamination of alkynes, allenes, and norbornene. Cationic
tantalum complex 2 has shown enhanced reactivity toward more challenging substrates such
as ortho-substituted anilines and allenes, in agreement with our original hypothesis.
Interestingly, the cationic complex is also one of the first two early metal complexes shown to
catalyze the intermolecular hydroamination of norbornene. Stoichiometric reactions have
indicated that the cationic tantalum catalyzed processes are occurring through a mechanism
similar to that known for group 4 catalysts. Work is currently in progress to increase the
lifetimes, activities, and substrate scope of these and related catalysts.
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Scheme 1.
Synthesis of Neutral and Cationic Alkyl Tantalum Imido Complexes
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Scheme 2.
Hydroamination of Allene and Cyclononadiene
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Scheme 3.
Addition of Aniline to Norbornene
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Scheme 4.
Treatment of 3 with 2,6-Dimethylaniline
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Table 1
Hydroamination of Diphenylacetylene with Aniline Using Tantalum Imido Complexes

entry [Ta] time (h) % yieldb

1 (PhCH2)3Ta==NCMe3, 1a 30 >95
2 [(PhCH2)Ta==NCMe3]+, 2 8 >95
3 Np3Ta==NCMe3, 1b 12 >95
4 (Et2N)3Ta==NCMe3 30 >95
5 Ta(NMe2)5 30 >95
6 Cl3Ta==NCMe3 30 NR

a
Identical results were obtained when the reaction was run in C6D6 or C7D8.

b
Yields are given as NMR yields.
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Table 2

Hydroamination of Various Alkynes with Aniline 

% yieldb

entry R1, R2 6/7 time (h) 1b 2

1 Et, Et NA 24 >95 (83c) >95
2 n-Pr, Me 1:1 24 >95 71
3 Ph, H only 6 2 77 (65c) 66
4 n-Pr, H only 6 2 70 62
5 Ph, Me only 7 24 NR 19

a
Identical results were obtained when the reaction was run in C6D6 or C7H8.

b
Yields are given as NMR yields. Hydrolysis to the corresponding ketone was used to confirm these assignments.

c
Isolated yield of imine reduction product.
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Table 3
Addition of Substituted Anilines to Diphenylacetylene

% yieldb

entry X 8/9 1b 2

1 H 3:1 98 96 (75c)
2 4-Me 4:1 79 74
3 4-OMe 7:1 31 72 (83c)
4 4-Cl 4:1 >95 >95 (66c)
5 2,6-Me2 only 8 7 69

a
Identical results were obtained when the reaction was run in C6D6 or C7D8.

b
Yields are given as NMR yields. Hydrolysis to the corresponding ketone was used to confirm these assignments.

c
Isolated yield of the ketone hydrolysis product.
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