
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
Kalign – an accurate and fast multiple sequence alignment
algorithm
Timo Lassmann* and Erik LL Sonnhammer

Address: Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius vag 35, S-17177 Stockholm, Sweden

Email: Timo Lassmann* - timo.lassmann@cgb.ki.se; Erik LL Sonnhammer - erik.sonnhammer@cgb.ki.se

* Corresponding author

Abstract
Background: The alignment of multiple protein sequences is a fundamental step in the analysis of
biological data. It has traditionally been applied to analyzing protein families for conserved motifs,
phylogeny, structural properties, and to improve sensitivity in homology searching. The availability
of complete genome sequences has increased the demands on multiple sequence alignment (MSA)
programs. Current MSA methods suffer from being either too inaccurate or too computationally
expensive to be applied effectively in large-scale comparative genomics.

Results: We developed Kalign, a method employing the Wu-Manber string-matching algorithm, to
improve both the accuracy and speed of multiple sequence alignment. We compared the speed and
accuracy of Kalign to other popular methods using Balibase, Prefab, and a new large test set. Kalign
was as accurate as the best other methods on small alignments, but significantly more accurate
when aligning large and distantly related sets of sequences. In our comparisons, Kalign was about
10 times faster than ClustalW and, depending on the alignment size, up to 50 times faster than
popular iterative methods.

Conclusion: Kalign is a fast and robust alignment method. It is especially well suited for the
increasingly important task of aligning large numbers of sequences.

Background
The alignment of multiple sequences is essential in the
analysis of protein sequences [1]. In contrast to pairwise
alignment, multiple sequence alignment (MSA) can
reveal subtle similarities among large groups of proteins.
Such information can be used in phylogenetic analysis
[2], function prediction [3], HMM building [4], finding
consensus sequences and in the identification of residues
critical to function. Due to the importance of multiple
sequence alignments in such a wide range of applications,
a considerable amount of interest has been focused on
improving the accuracy of MSA algorithms. Two basic
modes of sequence alignment exist: global, i.e. over the

entire length of the sequences [5], and local, in which only
high-scoring areas are considered [6]. In general, database
search algorithms use the local strategy [7-10], while most
MSA algorithms use the global strategy. However, two
noticeable exceptions are the two local MSA methods Poa
[11] and Dialign [12,13]. Global methods tend to outper-
form local methods when sequences are related over their
entire length [14], while local methods are superior in
multiple domain cases when sequences may only share
one common domain [15]. Since it is rarely known how
sequences are related prior to the alignment, a method
attempting to combine both local and global features was
proposed by Notredame et al. [16]. Although this method

Published: 12 December 2005

BMC Bioinformatics 2005, 6:298 doi:10.1186/1471-2105-6-298

Received: 30 May 2005
Accepted: 12 December 2005

This article is available from: http://www.biomedcentral.com/1471-2105/6/298

© 2005 Lassmann and Sonnhammer; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16343337
http://www.biomedcentral.com/1471-2105/6/298
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2005, 6:298 http://www.biomedcentral.com/1471-2105/6/298
produces good alignments [14,16,17] it suffers from
being time consuming. Recently two new approaches,
Mafft [18] and Muscle [19] were proposed. Both methods
claim to produce alignments as accurate as those by T-Cof-
fee while being considerably faster. The high accuracy is
achieved by two iterative refinement strategies that are
applied after an initial 'rough' alignment has been found.
An important task for multiple sequences alignment algo-
rithms in the future lies in the annotation and analysis of
complete proteomes [20]. For an algorithm to be success-
ful in such a setting it must produce high quality align-
ments consistently and, due to the volume of data, in a
computationally feasible way. With these two goals in
mind we developed Kalign, a global, progressive align-
ment method. We enhanced this approach by employing
an approximate string-matching algorithm to calculate
sequence distances and by incorporating local matches
into the otherwise global alignment. We demonstrate that
Kalign is well suited both in terms of speed and accuracy
to deal with the challenges posed by large-scale compara-
tive genomics.

Algorithm
Alignment strategy
The Kalign algorithm follows a strategy analogous to the
standard progressive method for sequence alignment
[21]. Pairwise distances are calculated, a guide tree is con-
structed and sequences/profiles are aligned in the order
given by the tree. In contrast to existing methods, the Wu-
Manber approximate string-matching algorithm [22] is
used in the distance calculation and optionally in the
dynamic programming used to align the profiles.

Distance estimation and tree building
In progressive alignment the order in which sequences are
aligned is crucial for accuracy. The goal is to align the most
similar sequences first, to avoid errors in early stages of the
alignment that cannot be corrected later on. This is nor-
mally accomplished by building a guide tree that dictates
the order of pairwise alignments. The tree is typically built
from a matrix of pairwise distances between all sequences,
e.g. using the UPGMA [23] or the Neighbour-Joining [24]
method. Performing all pairwise comparisons has quad-
ratic complexity, and hence this step tends to dominate
the running time of most progressive methods when
aligning many sequences. Performing all pairwise align-
ments is slow but gives better distance estimates than
approximate techniques, e.g. the k-tuple method
employed optionally by ClustalW. In Kalign, sequence
distances are estimated based on a novel method employ-
ing the Wu-Manber approximate string-matching algo-
rithm. This strategy enables Kalign to estimate sequence
distances more accurately but as fast as the k-tuple
method. We will first discuss the Wu-Manber algorithm in

some detail and then explain how it is incorporated into
Kalign.

Wu-Manber algorithm
The Wu-Manber algorithm is an extension to the exact
Baeza-Yates-Gonnet algorithm [25] that allows string-
matching with mismatches. The distance between two
strings is measured by the Levenshtein edit distance. Two
strings A and B have an edit distance d if A can be trans-
formed into B by applying d mismatches, insertions or
deletions. The Wu-Manber algorithm has a complexity of
O(tk) where t is the length of the text string and k the
number of errors allowed. Previously, protein sequences
were commonly searched with patterns 2–3 long [7,9,10],
and hence we choose to search with likewise short, three-
residue patterns as well, allowing only one error. Since the
maximum number of patterns under these setting is 8000
and only one error is allowed, all input sequences can be
searched efficiently. A minor modification of the standard
algorithm [22] allows us to search the sequences with 10
patterns at once, which speeds up this step. The benefit of
using approximate string-matching when comparing pro-
tein sequences is obvious in two scenarios. Firstly, if
sequences have an even degree of similarity along their
entire length rather than patches of high identity, the
standard k-tuple method fails to detect the similarity. For
example, imagine comparing two sequences 'AAAAAA'
and 'AALAAL'. Even though the sequences are 66% iden-
tical, the standard k-tuple method (with a word length of
3) finds no common patterns between the two sequences
while the Wu-Manber algorithm finds 67 common patters
('AAA' matches sequence 1 with a mismatch and sequence
2 exactly, etc.). Similarly, sequences 'AAAAAA' and 'ALA-
LAL' (50% sequence identity) share no exact patterns, yet
25 patterns with mismatches. Secondly, sequences that
are less than 30% identical often share few, if any strings
of length 3, so the resolution of the k-tuple methods starts
to fail. However, shared mismatch patterns can still be
readily found and enable the Wu-Manber algorithm to
report meaningful distances even between highly diver-
gent sequences. A drawback of using pattern matching for
distance estimation is that many spurious matches are
reported. Kalign overcomes this problem by considering
the locality of the matches found as well as their total
number. All matches add a score (16 if the pattern
matches both sequences exactly, 8 if one has a mismatch,
and 1 if both sequences have a mismatch) to the diagonal
on the dynamic programming matrix on which they
occur. In similar sequences one diagonal will get a very
high score compared to the rest since many matches occur
on the same diagonal. However, in distantly related
sequences the distribution of scores is less clear and many
diagonals will receive relatively low scores. Therefore, the
sequence similarity in Kalign is defined as the sum of the
three highest scoring diagonals found. By including three
Page 2 of 9
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:298 http://www.biomedcentral.com/1471-2105/6/298
diagonals, only matches that are likely to be part of the
final alignment are considered when estimating similar-
ity, while many spurious matches are excluded. Although
this method is marginally slower than the standard k-
tuple counting method, it is much faster than performing
all pairwise alignments. The pairwise similarity scores
computed in this way are used by the UPGMA clustering
method to construct the guide tree.

Progressive alignment
At each internal node of the guide tree two sequences, two
profiles or one sequence and one profile are aligned.
Optionally, Kalign can use Wu-Manber matches as anchor
points during the alignment phase, which requires two
extra steps in addition to the dynamic programming. This
option is intended to improve accuracy in cases of discon-
tinuous alignments, e.g. if a domain has been inserted or
deleted. It speeds up the dynamic programming, but the
gain is cancelled out by the time to perform the extra
steps.

Dynamic programming
Kalign employs the global dynamic programming
method using affine gap penalties as described in Durbin
et al. [26]. Residues are assigned to three states (aligned,
gap in sequence a, or gap in sequence b) which are inter-
connected by arrows representing transitions. The model
has been modified to disallow a gap in one sequence to be
immediately followed by a gap in the other sequences.
Normally, three matrices of size (m + 1) (n + 1) are used
to represent these states. When these 'state-matrices' are
filled, the final cell contains the maximum alignment
score, and a traceback procedure (requiring these matri-
ces) is used to retrieve the actual alignment. To reduce the
amount of memory required we combined two known
strategies. Firstly, an additional matrix size (n + 1) (m + 1)
is used to store which transition occurs in every cell of the
dynamic programming matrix [27]. By doing so, the opti-
mal alignment can be read off this 'trace-matrix' by look-
ing at which transitions lead from the final cell to the first
cell. Secondly, since the three 'state-matrices' are no longer
needed to perform the traceback procedure, they can be
reduced into one-dimensional arrays because each cell in
the dynamic programming matrix only depends on values
from the previous column. Thus, instead of using 3 ((n +
1) (m + 1)) memory we now only need 3 (n + 1) + ((n +
1) (m + 1)) memory. In practice, this translates into a ten-
fold reduction in memory requirement. The reduction in
memory reduces the number of cache-misses and makes
the dynamic programming substantially faster. To our
knowledge, the combination of these two methods has
not been previously described. If the user wishes to use the
option of including Wu-Manber matches as anchor points
during the alignment phase, two additional steps are per-
formed:

1. Consistency check
The task of the consistency check is to sieve through the
thousands of matches found between two sequences and
find the largest set of matches that can be included into an
alignment. For example: a pattern matching at position
100 in both sequences is inconsistent with a pattern that
matches sequence A at position 20 and sequence B at posi-
tion 150. Matches found in both sequences (or profiles)
are plotted at the corresponding position into the
dynamic programming matrix. Since it is possible for sev-
eral patterns to match at the same position the number of
matching patterns is recorded. The filled matrix is analo-
gous to a homology matrix containing substitution scores
in standard sequence alignment. A modified version of
the Needleman-Wunsch algorithm is then used to find the
path through the dynamic programming matrix that con-
tains the highest number of consistent patters. Because we
are interested in local matches here, no gap penalties are
used. Finally, all shared matches that occur on too short
diagonals are considered spurious and are excluded. We
found that a cutoff of 22 residues long diagonals worked
well.

2. Updating of pattern match positions
Including matches in initial pairwise alignments involv-
ing regular sequences is relatively trivial. However, deeper
into the guide tree, profiles are aligned both to each other
and to sequences. The updating step adjusts the absolute
position of matches found within sequences to their rela-
tive positions within the profiles generated by the
dynamic programming step. For example, a match at posi-
tion 50 in sequence A can end up in the 55th column in a
profile, if 5 gaps were inserted anywhere in sequence A
before position 50. The matches initially 'tied' to individ-
ual sequences are thus assigned to matches within profiles
and can be used in the next pairwise alignment step.

Scoring system
Like other alignment programs based on dynamic pro-
gramming, Kalign uses a substitution matrix and affine
gap penalties. The choice of matrix and gap penalties has
been the subject of previous studies [28]. The most com-
monly used substitution matrices are BLOSUM [29] and
PAM [30]. A common idea is that similar sequences
should be aligned with 'hard' matrices like PAM50 or
BLOSUM80 while more distantly related sequences align
better using 'soft' matrices like PAM250 or BLOSUM40.
For instance, the commonly used program ClustalW
adjusts the choice of substitution matrix accordingly.
However, in agreement with Vogt et al. [28], we found no
significant difference in alignment quality when using a
soft matrix instead of a hard matrix on similar sequences.
However, in the case of more distantly related sequences,
hard matrices generally produce worse results than soft
ones. Simply put, similar sequences are easy to align and
Page 3 of 9
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:298 http://www.biomedcentral.com/1471-2105/6/298
the choice of substitution matrix does not noticeably
affect the alignment quality. However, the correct align-
ment of dissimilar sequences requires using 'soft' matri-
ces. Therefore we decided not to implement a complicated
scheme that adjusts the choice of matrix but use a single
soft matrix in all cases. We found little difference in align-
ment quality between using the BLOSUM50, PAM250 or
GONNET250 [31] matrices and arbitrarily chose the
GONNET250 matrix in combination with the parameters
reported by Vogt et al. [28].

Implementation
The Kalign algorithm was implemented in standard C.

Methods
To compare Kalign to other MSA programs, the following
test sets were used: the Balibase 2.01 [32,33] test set, Pre-
fab 3.0 [19] and a new large test set.

Balibase
The Balibase test set is a collection of alignments derived
from structural databases or from manual alignments in
the literature. We used the first five categories in Balibase
version 2.01, containing 141 alignments. Each category
represents some characteristic such as long or short
sequences, high or low sequence identity, or large N/C ter-
minal deletions or extensions. Reference alignments in
Balibase contain only few, on average 10, and partial
sequences. As noted before [17], this unnatural bias in the
test set favours certain methods. We believe the real chal-
lenge lies in aligning large numbers of full-length
sequences, which is currently not covered in Balibase. The
diversity of the test set is further reduced because several
sequences appear in more than one reference alignment.

Prefab
Prefab exploits the abundance of pairwise structural align-
ment to create a multiple alignment test set. Each case in
Prefab consists of a pairwise reference alignment and a set
of sequences containing the two reference sequences plus
48 additional sequences that were obtained by querying a
database with the reference sequences. To perform a test,
the set of 50 sequences are aligned, the pairwise alignment
of the two reference sequences is extracted from the result-
ing MSA, and is compared against the pairwise reference
alignment. Prefab version 3 contains 1932 individual test

cases, each based on a single pairwise alignment. Com-
pared to the 141 test cases in Balibase this seems impres-
sive, but each Balibase test case is an alignment of more
than two sequences and in effect Balibase contains 8053
pairwise alignments.

A drawback of both Balibase and Prefab is that sequence-
based MSA methods strive to give evolutionarily moti-
vated alignments that are inherently distinct from the
structurally motivated reference alignments in the data-
bases. In structural alignments, residues are assigned to
the same column if they are considered structurally equiv-
alent. In evolutionary alignments, aligned residues are
thought to have originated from the same residue in a
common ancestor. Although these two interpretations of
the data often overlap, it is not always the case. Consider
the Balibase alignment in Figure 1. Clearly, the sequences
are very dissimilar from each other (the average sequence
identity is 16%) and it is virtually impossible for any
sequence-based alignment algorithm to even remotely
reproduce this alignment. Even given structural informa-
tion this alignment seems to be difficult since the corre-
sponding reference alignment in Balibase 1.0 differs by
75% from the one shown in Figure 1. Comparing struc-
tural and sequence-based alignments can thus be prob-
lematic.

Large testset
As Balibase and Prefab alignments are relatively small (10
and 50 sequences), we felt the need to examine perform-
ance on larger alignments. Since no real testset with large
alignments exists, we were forced to use simulations to
create this dataset. We used Rose version 1.3 [34], a pro-
gram that simulates the evolution of sequences in a prob-
abilistic fashion. Given a specified number of sequences
and a target average evolutionary distance between them,
Rose constructs a random phylogenetic tree, a random
ancestor sequence at the root, and simulates evolution by
applying substitutions, insertions, and deletions to create
the sequences along the edges. As all the events in the his-
tory of the sequences are known, the true alignment is
known and is recorded. Although some aspects of the sim-
ulation may be artificial, it is the only method that pro-
vides 100% knowledge of the true alignment. Obviously,
alignments and sequences cannot be simulated perfectly
by an evolutionary model. For example, two sequences

Balibase 2.01 reference alignment 1tvxA ref1 viewed by Belvu [37], showing conservation by "average similarity by BLOSUM62"Figure 1
Balibase 2.01 reference alignment 1tvxA ref1 viewed by Belvu [37], showing conservation by "average similarity by
BLOSUM62".
Page 4 of 9
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:298 http://www.biomedcentral.com/1471-2105/6/298
modelled at a PAM distance of 200 might resemble real
sequences at a PAM250 more closely than at PAM200.
However, it is undeniable that also simulated sequences
will become more and more difficult to align with increas-
ing PAM distances. Alignment programs will align distant
sequences differently, and based on this a meaningful and
informative comparison between the programs can be
made. A large test set such as this offers the opportunity to
analyze the running times of alignment methods in
depth.

Quality measure
The alignment quality of each method was determined by
calculating the sum-of-pairs score (SP) according to
Thompson et al. [14]. This score reflects the percentage of
correctly aligned residues determined by comparison to a
reference alignment, and has little in common with the
likewise called sum-of-pairs score often used as an objec-
tive function. We do not use the column score (CS) [14]
as we feel this score is inadequate and does not reflect the
biological correctness of alignments. For example, even if
99% of the sequences are correctly aligned, the column
score can become zero due to a single misaligned
sequence. In practice, the CS score gives lower accuracies
than the SP score, but the ranking of the methods remains
the same (results not shown).

Alignment programs
We compared our method Kalign (with the default
parameters) to Mafft version 3.85 [18], Muscle version 3.0
[19], ClustalW version 1.83 [35], Dialign version 2.2.1
[13] and T-Coffee version 1.37 [16]. A comprehensive
review of the individual programs and their options is

beyond this paper. Unless otherwise stated, we used the
programs tested here in their highest accuracy mode. In
the case of Mafft, four different scripts govern whether Fast
Fourier Transform (FFT) and iterative refinement are used
or not. Our experience in using Mafft revealed only small
differences in quality and speed between the scripts using
FFT or not (results not shown). We used the FFTNSI script
throughout because it is slightly faster than the corre-
sponding NWNSI (lacking FFT) script. The Muscle pro-
gram, similar to the NWNSI script of Mafft, was run using
all of the available refinement options.

Results and Discussion
Balibase
The average sum-of-pairs score was calculated for each cat-
egory in Balibase and the results are shown in Table 1.
Importantly, only conserved blocks in the Balibase align-
ments were used for evaluation. On this test set, Kalign
performs slightly worse on average than Mafft and Muscle.
We do not believe that these differences are meaningful
due to the small size of alignments (on average 10
sequences) in Balibase and due to the fact that there are so
few of them (141). Unfortunately, some of the methods
tested here were developed using Balibase making com-
parisons to other methods problematic. For example,
both ClustalW and Muscle were trained on Balibase [36].
Given that we did not make an attempt to train on Bali-
base we believe Kalign performs considerably well in gen-
eral, and especially well in category 2 and 3.

Prefab
Due to the large number of test cases in Prefab we limited
this analysis to ClustalW, Kalign, Muscle and Mafft. The
results (Table 2) agree with the results obtained from Bali-
base, with Kalign being approximately as accurate as Mus-
cle and Mafft. It is worth noting that in 644 out of the
1932 cases Kalign produced better alignments than Mus-
cle and in 702 cases better alignments than Mafft. In 1238
alignments the difference in accuracy between Kalign and
Muscle was less than 1%. Similarly, there were 1232 align-
ments in which the difference between Kalign and Mafft
was less than 1%. Based on this we conclude that Muscle,

Table 1: Balibase results. Categories ("Cat.") refer to the five Balibase categories. Average 1 is the average sum-of-pairs score over all
141 alignments, while average 2 is the average across all five categories.

Method CPU time
(sec.)

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Average 1 Average 2

Kalign 27 0.85 0.92 0.79 0.88 0.92 0.86 0.87
ClustalW 75 0.85 0.93 0.75 0.85 0.86 0.86 0.85
Muscle 75 0.88 0.93 0.82 0.88 0.97 0.89 0.89
Mafft 100 0.86 0.92 0.78 0.91 0.96 0.88 0.89
Dialign 234 0.80 0.89 0.68 0.90 0.94 0.83 0.84
T-Coffee 1286 0.86 0.93 0.78 0.92 0.96 0.88 0.89

Table 2: Prefab results

Method CPU time (sec.) Average

Kalign 1743 0.63
ClustalW 12404 0.59
Muscle 8824 0.63
Mafft 7653 0.64
Page 5 of 9
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:298 http://www.biomedcentral.com/1471-2105/6/298
Mafft and Kalign are equally accurate on Prefab, and that
all three methods are more accurate than ClustalW. Kalign
was between 4 and 7 times faster than the other methods
in completing all 1932 alignments.

Large testset
To further evaluate the quality and speed of multiple
alignment methods, we used our own large testset with up
to 400 sequences per alignment, and up to an evolution-
ary distance of 400 PAM. T-Coffee and Dialign were
excluded from these tests due to computational limita-
tions. To investigate the effect of the Wu-Manber algo-
rithm, we generated a series of alignments with Rose, each
containing 50 sequences with an average evolutionary dis-
tance ranging from 0 – 400 (Figure 2). We tested the
Kalign algorithm with the Wu-Manber string matching
enabled (Kalign-default) and disabled (Kalign-ktuple). To
make a fair comparison with other methods, we included

versions of Mafft and Muscle with the iterative refinement
disabled (FFTNSI and Muscle with the '-maxiters 1'
option) and ClustalW run with the '-quicktree' option. In
accordance with the results obtained on the Balibase and
Prefab test set, ClustalW-quicktree is least accurate
method. The alignment procedures used in Kalign-ktuple,
Muscle-fast and Mafft-fast are comparable and as expected
these methods are equally accurate. The default Kalign
algorithm using the Wu-Manber algorithm becomes more
accurate than the k-tuple based methods at high evolu-
tionary distances. This confirms that the Wu-Manber
method is superior to the k-tuple method traditionally
used to estimate sequence distances and that both Mafft
and Muscle could potentially benefit from using it. In
order to examine the effects of evolutionary distance and
number of sequences, we generated a test set containing
300 alignments. The evolutionary distance was varied in
steps of 20 up to 400 and the number of sequences was

Analysis of the contribution to alignment accuracy made by different algorithmic variantsFigure 2
Analysis of the contribution to alignment accuracy made by different algorithmic variants. Kalign-default uses Wu-Manber
approximate string matching, while Kalign-ktuple, Mafft-fast, Muscle-fast, and ClustalW-quicktree use exact k-tuple matching.
The default Kalign Wu-Manber based algorithm becomes more accurate than other methods at high evolutionary distances.
The alignments consisted of 50 simulated sequences.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250 300 350 400

S
u
m
-
o
f
-
p
a
i
r
s

s
c
o
r
e

Average Evolutionary Distance

Kalign-default
Kalign-ktuple

Mafft-fast
Muscle-fast

ClustalW-quicktree
Page 6 of 9
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:298 http://www.biomedcentral.com/1471-2105/6/298
gradually increased from 20 to 300 sequences. For each
individual alignment in this test the winner, i.e. the pro-
gram with the highest score, was determined (Figure 3).
Kalign (shown in red) generally wins in difficult cases of
high evolutionary distance and in cases with many
sequences. The cases where Kalign does not win are align-
ments with few and highly similar sequences. Since these
are relatively easy alignments the differences to Kalign are
insignificant. As shown in Figure 2b, if a margin of 2% is
required to call a winner, Kalign wins all the non-tied
cases with only three exceptions that are won by Muscle.
To further demonstrate the differences in accuracy and to
analyze the running time in detail, we focused on one row
and one column in Figure 3. The row was taken at 300
sequences, varying the evolutionary distance (Figure 4),
and the column at an evolutionary distance of 300, vary-
ing the number of sequences (Figure 5). In contrast to Fig-
ure 3, the tests were repeated three times and the average
scores are plotted with error bars. Figure 4a reveals that
there is little difference in terms of quality between the
methods at low evolutionary distances. However, at high
evolutionary distances, Kalign is superior to Mafft and
Muscle. In comparison to the other methods, ClustalW
performs very poorly in this test. The analysis of the run-

ning times (Figure 4b), reveals a strong tendency of Mafft
and Muscle to run increasingly slower with increasing
evolutionary distances. In contrast, Kalign's complexity is
not affected by evolutionary distance and is consistently
faster than the other methods tested. ClustalW on the
other hand, which starts off as the slowest method,
becomes slightly faster with increased evolutionary dis-
tance and is in fact faster than both Mafft and Muscle at
400 PAM. The number of input sequences has a big effect
on the running time of each method as the complexity of
all alignment algorithms depend on it. Conversely, the
more sequences that are used in an alignment, the better
an alignment algorithm should perform. To our surprise,
the quality of all methods except for Kalign decreased
when the number of input sequences was increased (Fig-
ure 5a). The difference in alignment quality between
Kalign and the next best method Muscle reaches 15% at
400 sequences. The analysis of running time versus
increased number of sequences reveals a clear advantage
of the Kalign algorithm over other methods (Figure 5b).
Again Muscle is the slowest program; above 100
sequences it is on average four times slower than the sec-
ond slowest program, ClustalW. Kalign takes 5 minutes to
align 500 sequences while the same alignment takes 90

A 2D plot indicating in which situations different methods perform better on the large testsetFigure 3
A 2D plot indicating in which situations different methods perform better on the large testset. The accuracy of the most accu-
rate versions of Kalign, Muscle, and Mafft was measured for each combination of average evolutionary distance (in PAM units)
and number of sequences. The cells were colored according to the most accurate program as: Kalign:red; Muscle:blue;
Mafft:yellow. If there was a tie between two or more methods the cell is black. In (a) it is enough to win by the smallest margin,
whereas in (b) the program must win by a margin of 2%. Up to 200 PAM no program stands out as a clear winner while above
this distance Kalign dominates.

0 100 200 300 400

0
50

10
0

15
0

20
0

25
0

30
0

Average evolutionary distance

N
um

be
r

of
 s

eq
ue

nc
es

A

0 100 200 300 400

0
50

10
0

15
0

20
0

25
0

30
0

Average evolutionary distance

N
um

be
r

of
 s

eq
ue

nc
es

B

Page 7 of 9
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:298 http://www.biomedcentral.com/1471-2105/6/298
minutes using Muscle. Although we consider alignment
quality to be the more important than speed, it is clearly
advantageous in practice to have a fast alignment method.

Conclusion
In this paper we present Kalign, a novel multiple sequence
alignment algorithm based on Wu-Manber approximate
pattern matching that combines high quality with high
speed. Compared to existing programs, Kalign performed
much more robustly when aligning large amounts of
sequences or distant sequences in a large-scale benchmark
of generated alignments. In terms of computational effi-

ciency, Kalign is superior to the other methods, and read-
ily aligns hundreds of sequences in minutes on a normal
desktop computer. Coupled with the fact that Kalign gives
very accurate alignments, this makes Kalign a very attrac-
tive overall method. The high accuracy of Kalign is due to
the innovative use of the approximate Wu-Manber string-
matching algorithm. This allows sequence distances to be
accurately estimated even in difficult cases. Precise
sequence distances generate good quality guide trees that,
in turn, lead to good alignments. At the same time, Wu-
Manber string-matching is very fast and dramatically cuts
down the time required for the distance estimation step

Plots of the accuracy (a) and speed (b) achieved by of Kalign, Mafft (FFTNSI), Muscle, and ClustalW on the large testset with increasing average evolutionary distanceFigure 4
Plots of the accuracy (a) and speed (b) achieved by of Kalign, Mafft (FFTNSI), Muscle, and ClustalW on the large testset with
increasing average evolutionary distance. The number of sequences (300) and the average sequence length (500 residues) are
kept constant.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

S
u
m
-
o
f
-
p
a
i
r
s

s
c
o
r
e

Average evolutionary distance

A

Kalign
Muscle
Mafft

ClustalW

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50 100 150 200 250 300 350 400

C
P
U

t
i
m
e

(
s
e
c
.
)

Average evolutionary distance

B

Kalign
Muscle
Mafft

ClustalW

Plots of the accuracy (a) and speed (b) achieved by of Kalign, Mafft (FFTNSI), Muscle, and ClustalW on the large testset with increasing number of sequencesFigure 5
Plots of the accuracy (a) and speed (b) achieved by of Kalign, Mafft (FFTNSI), Muscle, and ClustalW on the large testset with
increasing number of sequences. The evolutionary distance (300 PAM) and the average sequence length (500 residues) are kept
constant.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

S
u
m
-
o
f
-
p
a
i
r
s

s
c
o
r
e

Number of sequences

A

Kalign
Muscle
Mafft

ClustalW

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50 100 150 200 250 300 350 400

C
P
U

t
i
m
e

(
s
e
c
.
)

Number of sequences

B

Kalign
Muscle
Mafft

ClustalW
Page 8 of 9
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:298 http://www.biomedcentral.com/1471-2105/6/298
that dominates the running time of most alignment pro-
grams. The strategy detailed here can, in principle, be
applied to any other progressive alignment method. Even
when disregarding the results on the new large testset,
Kalign's performance on Balibase and Prefab is impressive
especially when considering that unlike other methods
Kalign was not trained on either test set, and that other
methods with similar performance are much slower.

Availability and requirements
The Kalign program and a Kalign server are freely available
at http://msa.cgb.ki.se or by request from the authors.

Authors' contributions
TL had the idea of using a fuzzy-string matching algorithm
in multiple sequence alignments, implemented the
method and carried out the evaluation. ELLS supervised
the work. All authors read and approved the final manu-
script.

Acknowledgements
We would like to thank Alistair Chalk for many useful discussions and Rob-
ert Edgar for help with the Prefab testset.

References
1. Notredame C: Recent progress in multiple sequence align-

ment: a survey. Pharmacogenomics 2002, 3:131-144.
2. Felsenstein J: PHYLIP – Phylogeny Inference Package (Version

3.2). Cladistics 1989, 5:164-166.
3. Sjolander K: Phylogenomic inference of protein molecular

function: advances and challenges. Bioinformatics 2004,
20(2):170-179.

4. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S,
Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ,
Yeats C, Eddy SR: The Pfam protein families database. Nucleic
Acids Res 2004:138-141.

5. Needleman SB, Wunsch CD: A general method applicable to
the search for similarities in the amino acid sequence of two
proteins. J Mol Biol 1970, 48(3):443-453.

6. Smith TF, Waterman MS: Identification of common molecular
subsequences. J Mol Biol 1981, 147:195-197.

7. Pearson WR, Lipman DJ: Improved tools for biological sequence
comparison. Proc Natl Acad Sci USA 1988, 85(8):2444-2448.

8. Pearson WR: Rapid and sensitive sequence comparison with
FASTP and FASTA. Methods Enzymol 1990, 183:63-98.

9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool. J Mol Biol 1990, 215(3):403-410.

10. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res 1997,
25(17):3389-3402.

11. Lee C, Grasso C, Sharlow MF: Multiple sequence alignment
using partial order graphs. Bioinformatics 2002, 18(3):452-464.

12. Morgenstern B, Dress A, Werner T: Multiple DNA and protein
sequence alignment based on segment-to-segment compar-
ison. Proc Natl Acad Sci USA 1996, 93(22):12098-12103.

13. Morgenstern B: DIALIGN 2: improvement of the segment-to-
segment approach to multiple sequence alignment. Bioinfor-
matics 1999, 15(3):211-218.

14. Thompson JD, Plewniak F, Poch O: A comprehensive compari-
son of multiple sequence alignment programs. Nucleic Acids
Res 1999, 27(13):2682-2690.

15. Lassmann T, Sonnhammer ELL: Quality assessment of multiple
alignment programs. FEBS Lett 2002, 529:126-130.

16. Notredame C, Higgins DG, Heringa J: T-Coffee: A novel method
for fast and accurate multiple sequence alignment. J Mol Biol
2000, 302:205-217.

17. Karplus K, Hu B: Evaluation of protein multiple alignments by
SAM-T99 using the BAliBASE multiple alignment test set.
Bioinformatics 2001, 17(8):713-720.

18. Katoh K, Misawa K, Kuma Ki, Miyata T: MAFFT: a novel method
for rapid multiple sequence alignment based on fast Fourier
transform. Nucleic Acids Res 2002, 30(14):3059-3066.

19. Edgar RC: MUSCLE: multiple sequence alignment with high
accuracy and high throughput. Nucleic Acids Res 2004,
32(5):1792-1797.

20. Lecompte O, Thompson JD, Plewniak F, Thierry J, Poch O: Multiple
alignment of complete sequences (MACS) in the post-
genomic era. Gene 2001, 270(1–2):17-30.

21. Feng DF, Doolittle RF: Progressive sequence alignment as a
prerequisite to correct phylogenetic trees. J Mol Biol 1987,
25:351-360.

22. Wu S, Manber U: Fast Text Searching Allowing Errors. Commu-
nications of the ACM 1992, 35:83-91.

23. Sokal RR, Michener CD: A statistical method for evaluating sys-
tematic relationships. Univ Kansas Sci Bul 1 1958, 38:1409-1438.

24. Saitou N, Nei M: The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Mol Biol Evol 1987,
4(4):406-425.

25. Baeza-Yates RA, Gonnet GH: A new approach to text searching.
Proceedings of the 12th International Conference on Research and Devel-
opment in Information Retrieval 1989:168-175 [http://cite
seer.ist.psu.edu/50265.html]. Cambridge, MA: ACM Press

26. Durbin R, Eddy S, Krogh A, Mitchison G: Biological sequence anal-
ysis. Cambridge University Press; 1998.

27. Goad WB, Kanehisa MI: Pattern recognition in nucleic acid
sequences. I. A general method for finding local homologies
and symmetries. Nucleic Acids Res 1982, 10:247-263.

28. Vogt G, Etzold T, Argos P: An assessment of amino acid
exchange matrices in aligning protein sequences: the twi-
light zone revisited. J Mol Biol 1995, 249(4):816-831.

29. Henikoff S, Henikoff JG: Amino acid substitution matrices from
protein blocks. Proc Natl Acad Sci USA 1992, 89(22):10915-10919.

30. Dayhoff MO, Schwartz RM, Orcutt BC: A model of evolutionary
change in proteins. Atlas of protein sequence and structure 1978,
5:345-358. [National biomedical research foundation Washington
DC]

31. Gonnet GH, Cohen MA, Benner SA: Exhaustive matching of the
entire protein sequence database. Science 1992,
256(5062):1443-1445.

32. Bahr A, Thompson JD, Thierry JC, Poch O: BAliBASE (Bench-
mark Alignment dataBASE): enhancements for repeats,
transmembrane sequences and circular permutations.
Nucleic Acids Res 2001, 29:323-326.

33. Thompson JD, Plewniak F, Poch O: BAliBASE: a benchmark
alignment database for the evaluation of multiple alignment
programs. Bioinformatics 1999, 15:87-88.

34. Stoye J, Evers D, Meyer F: Rose: generating sequence families.
Bioinformatics 1998, 14(2):157-163.

35. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res 1994,
22(22):4673-4680.

36. Edgar RC: MUSCLE: Low-complexity multiple sequence
alignment with T-Coffee accuracy [Short Paper]. ISMB/ECCB
2004.

37. Sonnhammer ELL: Belvu. 1999 [http://www.cgb.ki.se/cgb/groups/
sonnhammer/Belvu.html].
Page 9 of 9
(page number not for citation purposes)

http://msa.cgb.ki.se
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11966409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11966409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14734307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14734307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5420325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5420325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5420325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3162770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3162770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2156132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2156132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8901539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8901539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8901539
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10222408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10222408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10373585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10373585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12354624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12354624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10964570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10964570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12136088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12136088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12136088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11403999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11403999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11403999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://citeseer.ist.psu.edu/50265.html
http://citeseer.ist.psu.edu/50265.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6801626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6801626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6801626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7602593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7602593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7602593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1438297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1438297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1604319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1604319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10068696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10068696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10068696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9545448
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.cgb.ki.se/cgb/groups/sonnhammer/Belvu.html
http://www.cgb.ki.se/cgb/groups/sonnhammer/Belvu.html

	Abstract
	Background
	Results
	Conclusion

	Background
	Algorithm
	Alignment strategy
	Distance estimation and tree building
	Wu-Manber algorithm
	Progressive alignment
	Dynamic programming
	1. Consistency check
	2. Updating of pattern match positions

	Scoring system
	Implementation

	Methods
	Balibase
	Prefab
	Large testset
	Quality measure
	Alignment programs

	Results and Discussion
	Balibase
	Prefab
	Large testset

	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

