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Adult hippocampal neurogenesis is highly variable and heritable
among laboratory strains of mice. Adult neurogenesis is also
remarkably plastic and can be modulated by environment and
activity. Here, we provide a systematic quantitative analysis of
adult hippocampal neurogenesis in two large genetic reference
panels of recombinant inbred strains (BXD and AXB�BXA, n � 52
strains). We combined data on variation in neurogenesis with a
new transcriptome database to extract a set of 190 genes with
expression patterns that are also highly variable and that covary
with rates of (i) cell proliferation, (ii) cell survival, or the numbers
of surviving (iii) new neurons, and (iv) astrocytes. Expression of a
subset of these neurogenesis-associated transcripts was controlled
in cis across the BXD set. These self-modulating genes are partic-
ularly interesting candidates to control neurogenesis. Among
these were musashi (Msi1h) and prominin1�CD133 (Prom1), both
of which are linked to stem-cell maintenance and division. Twelve
neurogenesis-associated transcripts had significant cis-acting
quantitative trait loci, and, of these, six had plausible biological
association with adult neurogenesis (Prom1, Ssbp2, Kcnq2, Ndufs2,
Camk4, and Kcnj9). Only one cis-acting candidate was linked to
both neurogenesis and gliogenesis, Rapgef6, a downstream target
of ras signaling. The use of genetic reference panels coupled with
phenotyping and global transcriptome profiling thus allowed insight
into the complexity of the genetic control of adult neurogenesis.
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Neurogenesis in adult mammals is modulated by complex
interactions among genetic and environmental factors. Our

goal is to use a systems genetics approach to determine how the
development of new neurons and glia is modulated by gene
polymorphisms, activity, and environmental stimuli. A first step
toward this goal is to analyze natural variation and genetic
covariance among key neurogenesis parameters such as prolif-
eration, survival, and differentiation of new cells. We have shown
that natural variation is substantial among different strains of
mice (1–3). The normal range of variation often exceeds the
effects of single gene mutations in engineered lines of mice.

In this study, we extended this analysis of normal variation and
applied a systems genetics approach to study the covariance struc-
ture of four key parameters of adult hippocampal neurogenesis
across two large genetic reference populations consisting of a total
of 52 recombinant inbred strains. This approach allowed us to
exploit covariance of diverse traits to demonstrate biological link-
age and pleiotropy (4, 5). The analysis, however, extends beyond a
correlative approach. Both of the genetic reference populations
used, the BXD and AXB�BXA sets, are standard mapping panels,
making it possible to search for gene loci, so-called quantitative trait
loci (QTL), that produce common variation and pleiotropy among
traits linked to adult hippocampal neurogenesis.

Adult hippocampal neurogenesis originates from proliferating
neural-precursor cells in the adult dentate gyrus and proceeds over
a number of identifiable stages to the long-term survival of a new
granule cell (6–8). In the course of this development, two key
phases can be distinguished: an expansion phase, in which the

number of immature postmitotic neurons is increased, followed by
a phase of selective, long-lasting survival (9, 10).

Strain differences in adult hippocampal neurogenesis in mice are
observed in cell proliferation and survival (3), the distribution of
phenotypes among the newly generated cells (1, 2), and how
different stages of neuronal development are activated by stimuli
that induce adult neurogenesis (11). Strains DBA�2J and A�J show
particularly large differences in adult neurogenesis from the ca-
nonical mouse strain, C57BL�6J (1). In this study, we explored
natural variation in adult hippocampal neurogenesis in two com-
plementary sets of recombinant inbred (RI) strains of mice (BXD
and AXB�BXD), which represent inbred progeny of F2 crosses
from C57BL�6J and DBA�2J (BXD), and C57BL�6J and A�J
(AXB�BXA) (12–14). On average, and in large panels, each RI
strain shows an �50:50 pattern of genome inherited from the
parental strains and is homologous at every locus. The GeneNet-
work (www.genenetwork.org) is an open-access resource that con-
tains genomic and phenotypic information on RI strains (15).
Complex traits like neuronal development are likely to show
associations with many gene loci. The high number of candidate
genes and the lack of sufficiently large breeding panels to increase
mapping precision still limit the use of RI strains for the direct
identification of quantitative trait genes (16, 17). The combination
of expression genetics with classical linkage analysis, however,
allows the in silico identification of candidate genes controlling
polygenic phenotypes as complex as adult neurogenesis and, at the
same time, reveals insights into regulatory transcriptional networks
underlying such phenotypes (18).

Genetic polymorphisms influence systems-level phenotypes
through a network of genes. The small molecular variation is a
naturally occurring perturbation of this network that can reveal the
genes that comprise it. Discovering this network and the conse-
quences of this variation are facilitated by the use of genetic
reference populations. This systems-genetics approach allows one
to relate gene-expression data to phenotypes across biological scale.
Adult neurogenesis is a phenotype that is particularly amenable to
this type of dissection. Fig. 1 outlines the experimental design and
the rationale for our study.

Results
Strain Differences in Adult Neurogenesis. We quantified adult hip-
pocampal neurogenesis in 29 BXD and 23 AXB�BXA strains and
in the three parental strains, C57BL�6J, DBA�2J, and A�J (see
Table 2, which is published as supporting information on the PNAS
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web site). Proliferation (PROL) was assessed by the absolute
number of Ki67-positive cells in the subgranular zone of the dentate
gyrus. Neurogenesis was measured by determining the fraction of
cells among the number of surviving cells that expressed neuronal
marker NeuN 4 weeks after labeling with the proliferation marker
BrdUrd. We found large strain differences in both PROL (Fig. 2A)
and the number of new neurons (NEUR) (Fig. 2C) as well as in
surviving (SURV) and the number of new astrocytes (ASTR) (see
Fig. 5, which is published as supporting information on the PNAS
web site). Because age is a strong negative regulator of adult
hippocampal neurogenesis (19, 20), all data were corrected for age
effects (Figs. 2 B and D and 5). A general linear model fitting age
was run for each phenotype, and residuals were obtained. Each
residual distribution was assessed for normality (Kolmogorov–
Smirnov’s D, n � 174, P � 0.01). Data were transformed, and
modeling was rerun where necessary to satisfy assumptions of
normality. Cell counts of SURV, NEUR, and ASTR were log
transformed. PROL numbers were square-root transformed. Re-
sidual diagnostics revealed homoscedastic residuals to be normally
distributed about 0 and uncorrelated with age (Fig. 2 B and D).

Assessing the Predictive Power of BrdUrd-Based Numbers. We had
proposed that proliferation in the subgranular zone is a poor
predictor of net neurogenesis (2). There was a significant
correlation between PROL and NEUR (P � 0.0019) with a
coefficient of determination (R2) of 0.19 (Fig. 1E). Thus, PROL
explained only 20% of the variance in NEUR. The correlation
between SURV and NEUR was stronger (R2 � 0.85). At 4 weeks
after BrdUrd, 85% of the variance in NEUR was explained by
different rates of survival, and only 15% was explained by other
factors. This same link did not exist for ASTR (P � 0.58; R2 �
0.005; Figs. 2G and 5).

Heritability of Variation in Adult Hippocampal Neurogenesis. We
hypothesized that regulation of adult hippocampal neurogenesis
has a strong heritable component (3). If heritability is high, the
likelihood that a genetic source of variation can be identified will be
increased. Heritability was calculated as the ratio of between-strain

variance to total variance (between-strain variance plus within-
strain variance) for each of the four phenotypes. Heritability for
PROL was 0.53 � 0.06 (T � standard error), for SURV 0.68 � 0.05,
for NEUR 0.70 � 0.05, and for ASTR 0.23 � 0.04. These data
indicate that �70% of the variation in neurogenesis in the hip-
pocampus is accounted for by heritable traits, compared with only
23% of the variation in gliogenesis.

Genome-Wide Interval Mapping for Neurogenesis Phenotypes. We
generated genome-wide linkage maps for residuals of PROL,
SURV, NEUR, and ASTR with WebQTL (Fig. 3). In this study, we
did not pursue the identification of QTL associated with adult
neurogenesis but focused on phenotypic covariance. The similari-
ties and dissimilarities of the four curves reflect the genetic covari-
ance associated with the phenotypic covariance. As expected, the
curve for ASTR differed the most from the other three, whereas
SURV and NEUR showed a large overlap. The overall pattern with
many overlapping peaks implies that there will not be strong QTL
with independent effects specific to, for example, only PROL or
only SURV. Rather, the interaction between many shared loci and
many shared genes will determine the phenotypes. The distinct
histological phenotypes are closely linked genetically. By using a
‘‘forward genetics’’ approach that allows us to relate gene-
expression data to measured phenotypes, we next tried to elucidate
the molecular bases underlying phenotypic covariance.

Covariance of mRNA Expression in the Brain. The GeneNetwork
database contains data from a microarray analysis of whole brain
in which mRNA levels were treated as quantitative traits (4). We
correlated our four phenotypes with mRNA-expression data in a
new expression database referred to as ‘‘INIA Brain mRNA M430
(Apr05) RMA.’’ Above a correlation threshold of 0.5 (Pearson), we
found the expression of 190 genes correlated with two or more of
our phenotypes (see Table 3, which is published as supporting
information on the PNAS web site).

Cis-acting genes are self-regulating genes and tend to have a
large, often monogenic, effect on trait variation. We performed
interval mapping for all 190 transcripts and found a total of 21 to
be cis-acting (Table 1). The criterion for cis action was whether, in
genome-wide linkage analysis, a peak with a likelihood ratio
statistic (LRS) score above 8.0 was found within 10 Mb of the
physical location of the probe set.

The influence of trans-acting genes on a trait is indirect and more
difficult to assess. The list of trans-acting genes whose expression
correlated with adult neurogenesis parameters contained a number
of interesting candidates, such as CD36, Spry1, Dock1, Snap25,
Chrna2, NT3 (Ntf3), netrin G1 (Netng1), Nedd8, Unc5c, Akt1, and
others. There were only four transcripts that linked gliogenesis with
neurogenesis (with R � 0.5), one of which (Rapgef6) was cis-acting.
All four transcripts showed an inverse link with neuro- and glio-
genesis: if positively correlated with one, they were negatively
correlated with the other.

We focused on the cis-acting genes and searched for QTL
associated with the expression of these genes. The peak associations
of 12 of these transcripts were significant at the site of the physical
location of the gene in the genome (boldface type in Table 1).

Two of the cis-acting genes, Msi1h (LRS not significant, see Fig.
2) and prominin1�CD133 (Prom1, significant), have well established
functions in neural stem-cell activity. The LRS peaks of both genes
fall into regions with a high density of SNP (data not shown). We
used the information about SNP density in the physical mapping
tool of WebQTL and found that all 21 cis-acting genes were located
in SNP-rich regions of the genome.

Discussion
In this study, we demonstrate how information can be obtained
from cumulative knowledge in a public database about genetics
of adult neurogenesis in relation to the patterns of gene expres-

Fig. 1. Flow-chart diagram of the experimental design and the underlying
rationale. The study combines a classical linkage study with expression genet-
ics, that is, the genetics of how genes control genes. At the end of the present
experiment stands a number of genes whose variation in expression across the
BXD breeding panel is correlated with adult hippocampal neurogenesis.
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sion in the adult brain. Our study linked the classical analysis of
a physiological quantitative trait with the concept of ‘‘expression
genetics’’ (21), that is, the genetics of how genes control other
genes. The linkage analysis for our four phenotypes (Fig. 3)
revealed that a very large number of gene loci are associated with
adult neurogenesis, making it unlikely that one QTL with
dominating influence on the phenotype will be identifiable. By
investigating F1 generations, so-called recombinant intercrosses
(22), or congenic lines (23), the search for master regulatory
QTL for adult neurogenesis could, in principal, be refined. The
need for very large breeding panels to achieve the precision
required to confirm single loci makes this approach problematic.
This method has been successfully exploited in only relatively few
cases (24). Despite the general relevance of direct QTL mapping,
the strategy to study associations across physiological and ex-

pression phenotypes adds an entirely different dimension to the
genetic analysis of complex traits. The goal is not so much to
describe the function of isolated genes (as would be the case in
classical QTL mapping) but rather to understand the contribu-
tion of regulatory networks to a given phenotype. Irrespective of
this, the sensitivity of QTL mapping depends on the precision
with which the quantitative trait can be defined and measured.
With the identification of further specified subphenotypes in
adult neurogenesis (e.g., the dynamics of particular stages of
development), the identification of narrow QTLs will become
possible.

We show that PROL has a low predictive power (�19%) for
NEUR, despite the fact that both traits are correlated and causally
related. Similarly, we found that ASTR is quantitatively indepen-
dent of NEUR. The finding that the genetic determinants of SURV

Fig. 2. PROL and number of new NEUR in BXD and AXB�BXA strains of mice. (A) The raw data as assessed by Ki67 immunohistochemistry in the subgranular
zone of the dentate gyrus. (B) The residuals after correction for age effects (square transformation). (C) The raw data as assessed by BrdUrd and NeuN
immunohistochemistry in the subgranular zone of the dentate gyrus, 4 weeks after the BrdUrd injections. (D) The residuals after correction for age effects (log
transformation). The analogous information for SURV and ASTR is found in Fig. 5. (E–G), Predictive power of PROL and SURV for NEUR and ASTR. Regression
analysis of the residuals was performed. (E) Cell proliferation was significantly correlated with the number of new NEUR (P � 0.0006), but r2 � 0.193. (F) SURV,
as assessed by the total number of BrdUrd-labeled cells, irrespective of their phenotype, was also significantly correlated with the number of new NEUR (P �
0.001), but, here, r2 � 0.847, indicating a high predictive power of SURV for NEUR. (G) This link was not apparent for ASTR, where SURV was not correlated with
NEUR (P � 0.5628; r2 � 0.005).
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explained 85% of the variance in NEUR supports our hypothesis
that quantitative regulation of neurogenesis occurs on the level of
a postmitotic selection process (9). The aligned linkage curves (Fig.
3) reveal how the phenotypic covariance and correlation relate to
covariance on a genetic level. We currently lack the tools to directly
interpret differences in the LRS score between traits for many loci
simultaneously and to extract which regulatory principles link
phenotypes (Fig. 4).

The correlation of the traits PROL, SURV, NEUR, and ASTR
with gene-expression data yielded a total of 756 genes correlated
with one of the traits above a threshold of R � 0.5 (data not shown).

Focusing on intersecting associations between related phenotypes
reduced the number of candidates to 190, 169 of which were
trans-acting. The identification of transcript QTL associated with
the potential QTL for adult neurogenesis (Fig. 3) allows the
identification of plausible candidates within a given interval. The
association is not evidence of causality, but transcript QTL with
high correlations are stronger candidates (18). This feature is
particularly true for cis-acting genes.

Among the cis-acting genes whose expression correlated with
measures of adult hippocampal neurogenesis were two candidates,
musashi (Msi1h) and prominin1�CD133 (Prom1), which have been

Fig. 3. Interval mapping for PROL, SURV, NEUR, and ASTR. Age-corrected residuals for the three phenotypes were analyzed in WebQTL. The entire genome
is depicted from the first base of chromosome 1 on the left to the last base on chromosome X on the right. The colored lines indicate the LRS score at each genome
segment. Below are interval mappings for five of the cis-acting candidates with significant QTL colocalizing with peaks in the linkage curves for the neurogenesis
phenotypes. The yellow bars are results of a bootstrap analysis; higher bars indicate higher stability of the LRS score against random permutations of the data.
LRS levels of significance (P � 0.05) were determined for the individual data sets and marked by the dashed lines. The thin red line shows additive effects: Negative
values indicate an influence of the C57 allele, positive values of DBA.
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related to stem-cell activity in the developing and adult brain. Both
appear to play a major role in the control of stem-cell maintenance
(self renewal) and asymmetric stem-cell divisions (25, 26). Msi1h
showed the second highest of all correlations and was correlated to
PROL, SURV, and NEUR.

Another stem-cell gene not previously related to neural stem
cells is Camk4, which is a maintenance factor for hematopoietic
stem cells (27). Camk4 is expressed in the adult brain; deletion of
Camk4 causes a cerebellar defect (28). A role of Camk4 is assumed
in the consolidation of long-term memory, a centrally hippocampal
function (29). In ganglionic neurons, Camk4 promoted survival and
axonal growth (30). We found an association with SURV and
NEUR, which might hint at a similar role in the context of
hippocampal neurogenesis.

Ndufs2 mutations are part of complex I deficiency disorders such
as Leigh disease and mitochondrial diseases that include enceph-
alopathies (31). A particular hippocampal function has not yet been
reported, but in a rat model of depression, NADH dehydrogenase
was up-regulated in the hippocampus (32), and a role for NADH

dehydrogenases has been suggested in the context of neurodegen-
erative disorders (33). Ndufs2 was inversely related to the adult-
neurogenesis phenotypes, consistent with the idea of neurogenesis
being down-regulated in depression and neurodegeneration.

Ssbp2 is a tumor-suppressor gene whose overexpression in he-
matopoietic stem cells is accompanied by C-myc down-regulation
(34). Ssbp2 was positively correlated with SURV and NEUR,
suggesting that, as in myeloid cells, Ssbp2 might be linked to growth
arrest and cellular differentiation (35).

Mutation of Kcnq2 is associated with benign familial neonatal
convulsions, a self-remitting developmental disorder. A role in
neuronal maturation has been hypothesized, because Kcnq2 might
mediate inhibitory action during that phase of development of
glutamatergic neurons in which GABAergic interneurons provide
a transient excitatory input to the new cells (36). A transient
GABAergic innervation has also been found in hippocampal
progenitor cells in vivo (37). A short splice variant of Kcnq2 is
detectable in undifferentiated neuronal cells (38).

Kcnj9 has been identified as the likely quantitative trait gene
controlling basal locomotor behavior (39). Kcnj9 is highly expressed
in strains with low basal locomotor activity. Physical activity induces
and maintains adult neurogenesis (40). We found a negative
correlation between Kcnj9 expression and adult neurogenesis.

Five of the cis-acting transcripts did not suggest any known link
to neuronal development. Of all these transcripts, Brdt showed the
strongest, albeit negative, association with adult neurogenesis (R �
�0.8). Brdt was considered to be specifically expressed in mid- to
late spermatocytes (41), but is also expressed during brain devel-
opment (42). Polymorphisms in Soat1 (ACAT1) have been iden-
tified as risk factors in Alzheimer’s disease (43). The function of
Hars lies in protein biosynthesis; a negative correlation with adult
neurogenesis is not very plausible based on the currently available
information. Two transcripts were related to the Golgi system.
Galnt11 is a calcium-binding protein of the Golgi membrane.

Table 1. Cis-acting transcripts covarying with adult neurogenesis

Name Symbol Description Ch. Position PROL SURV NEUR

PROL, SURV, NEUR
1 1444667�at�B Brdt bromodomain, testis-specific 5 106.44 �0.6146 �0.7413 �0.8008

11 1444306�at�B Msi1h Musashi homologue 1(Drosophila) 5 114.56 0.5342 0.6618 0.6387
39 1449435�at�A B4galt3 UDP-Gal:betaGlcNAc � 1,4-galactosyltransferase, polypeptide 3 1 171.21 0.5123 0.5405 0.5667

SURV, NEUR
2 1434933�at�B 5730557L09Rik RIKEN cDNA 5730557L09 gene 1 160.88 0.7043 0.6278

16 1417024�at�A Hars histidyl-tRNA synthetase 18 36.99 �0.5944 �0.5821
26 1429951�at�B Ssbp2 single-stranded DNA binding protein 2 13 87.70 0.5576 0.5871
32 1453170�at�B 2610206C24Rik RIKEN cDNA 2610206C24 gene 18 32.15 �0.5677 �0.5614
37 1420800�a�at�A Kcnq2 potassium voltage-gated channel, subfamily Q, 2 2 180.83 0.5795 0.5346
52 1451096�at�A Ndufs2 NADH dehydrogen, (ubiquinone) Fe-S protei 2 1 171.16 �0.5561 �0.5364
58 1439843�at�B Camk4 calcium�calmodulin-dependent protein kinase IV 18 33.42 0.5136 0.5708
70 1459001�at�B Vps33a vacuolar protein sorting 33A (yeast) 5 122.73 0.5426 0.5328
73 1417697�at�A Soat1 sterol O-acyltransferase 1 1 156.34 0.5382 0.5341
78 1450712�at�A Kcnj9 potassium inwardly-rectifying channel, J, 9 1 172.39 �0.5280 �0.5375
84 1433690�at�A 2210016L21Rik RIKEN cDNA 2210016L21 gene 5 114.06 �0.5465 �0.5132
90 1431493�at�B 9530046B11Rik RIKEN cDNA 9530046B11 gene 5 116.25 �0.5176 �0.5350
94 1424748�at�A Galnt11 UDP-N-acetyl-�-D-galactosamine 5 23.73 �0.5369 �0.5112
97 1418839�at�A Glmn glomulin, FKBP associated protein 5 106.62 �0.5268 �0.5185

PROL, NEUR
13 1433646�at�B Mrps27 mitochondrial ribosomal protein S27 13 95.60 0.5569 0.5198
25 1460175�at�A Rps23 ribosomal protein S23 13 87.06 �0.5041 �0.5029

PROL, SURV
2 1419700�a�at�A Prom1 prominin 1 5 42.75 �0.6526 �0.5097

NEUR, ASTR
1 1427412�s�at�A Rapgef6 Rap guanine nucleotide exchange factor (GEF) 6 11 54.45 �0.6026 0.6251

Cis-acting transcripts whose expression is correlated with two or more of the four neurogenesis phenotypes. Transcripts with significant QTL at the site of their
physical location are in boldface type.

Fig. 4. Conceptual scheme highlighting the relationship between genomic
factors, gene expression, and measured phenotypes of adult neurogenesis.
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Vps33a is involved in the formation of cellular vacuoles and the
trafficking between Golgi and lysosomes (44).

The only cis-acting gene whose expression levels linked neuro-
genesis and astrogenesis was Rapgef6, a downstream target of
m-Ras and, as such, involved in cytoskeleton reorganization. In-
creased Ras in neural stem cells was found to lead to an increase
in gliogenesis (45). Rapgef6 expression was positively linked with
astrogenesis and negatively linked to neurogenesis.

Our study shows that several genes with correlating expression
patterns rather than single master switches control complex phe-
notypes like adult neurogenesis. The structure of the genetic
network built by these genes remains unknown at present. These
data suggest that scientific approaches studying one gene at a time
will not reveal much about the main principles governing the
genetic control of complex phenotypes like adult neurogenesis.

Methods
Animals. Twenty-nine BXD�Ty and 23 AXB�BXA RI strains, and
the three parental strains C57BL�6J, DBA�2J, and A�J were
obtained from The Jackson Laboratory. The BXD strains were
generated by crossing C57BL�6J and DBA�2J mice. BXD strains
are inbred lines derived from brother–sister matings starting from
an F2 cross (12, 13). AXB�BXA are based on reciprocal intercrosses
between C57BL�6J and A�J (14). Animals were kept in conven-
tional laboratory cages with standard food and access to food and
water ad libitum. We studied five animals from each of the parental
strains, three each of the great majority of recombinant inbred
strains, two each of AXB1, AXB2, AXB4, BXA12, BXD2, BXD18,
and BXD35, and one BXA26 animal. The mice were between 36
and 106 days old, but most were close to 70 days (Table 2). All were
females.

Immunohistochemistry. All mice received one daily i.p. injection of
BrdUrd for five consecutive days. Four weeks after the final BrdUrd
injection, the mice were killed and their brains processed as
described in ref. 10. Immunohistochemistry for proliferation
marker Ki67 [polyclonal rabbit antibody, Novocastra (Newcastle
Upon Tyne, U.K.) 1:500], BrdUrd [monoclonal rat, Harlan Sera-lab
(Loughborough, Leicestershire, U.K.) 1:400], neuronal marker

NeuN (monoclonal mouse, Chemicon, 1:100), and astrocytic
marker S100� (polyclonal rabbit, Swant, 1:2,500) was performed
and analyzed quantitatively as described in ref. 10.

Correction for Age Effects. Because age is a strong negative regulator
of adult neurogenesis (19), data were corrected for age effects.
Modeling was performed by using SAS PROC GLM, V 9.0 (SAS
Institute, Cary, NC). Residual diagnostics were performed by using
PROC PLOT, PROC UNIVARIATE, and PROC CORR.

Heritability-Estimation Procedures. For each trait, heritability was
estimated by use of SAS PROC VARCOMP, V 9.0 (SAS Institute).
Variance components were estimated by using the restricted-
maximum-likelihood method. The heritability was calculated as the
ratio of between-strain variance to total (between-strain plus with-
in-strain) variance.

Correlation Comparisons and QTL Analysis. Assessment of phenotypic
covariance and QTL analysis were performed with the GeneNet-
work (www.genenetwork.org). Phenotypes measured in our study
were deposited in the public GeneNetwork database (record IDs
10795–10798). Pearson product-moment correlations for the cor-
rected numerical values were calculated as implemented in
GeneNetwork. Details of the transcript expression data are de-
scribed in ref. 4. Linkage analysis in WebQTL (the mapping module
of the GeneNetwork) is based on a set of �7,482 informative SNPs
(Wellcome-CTC SNP data set) plus 1,500 microsatellite markers
distributed across all autosomes and the X chromosome. Genome-
wide significance levels for assessing confidence in linkage statistics
were estimated by comparing the peak LRS of correctly ordered
data sets with LRS computed for 1,000 or 2,000 permutations.

We thank Irene Thun and Daniela Gast for technical assistance,
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