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ABSTRACT The exchange kinetics of the slowest exchanging BPTI ,8-sheet protons are
complex compared to model peptides; the activation energy, E0, and the pH dependence are
temperature dependent. We have measured the exchange kinetics in the range pH 1-11,
33-710C, particularly the temperature dependence. The data are fit to a model in which
exchange of each proton is determined by two discrete dynamical processes, one with Ea -65
kcal/mol and less than first order dependence on catalyst ion, and one with Ea 20-30 kcal/mol
and approaching first order in catalyst ion. The low activation energy process is the mechanism
of interest in in the native conformation of globular proteins and involves low energy, small
amplitude fluctuations; the high activation energy process involves major unfolding. The
model is simple, has a precedent in the hydrogen exchange literature, and explains quantita-
tively the complex feature of the exchange kinetics of single protons in BPTI, including the
following. For the slowest exchanging protons, in the range 360-680C, Ea is -65 kcal/mol at
pH -4, 20-30 kcal/mol at pH > 10, and rises to -65 kcal/mol with increasing temperature at
pH 6-10; the Arrhenius plots converge around 70°C; the pH of minimum rate, pH,W,,,,, is >1
pH unit higher at 680C than for model compounds; and at high pH, the pH-rate profiles shift
to steeper slope; the exchange rates around pHW,n are correlated to the thermal unfolding
temperature in BPTI derivatives (Wagner and Wuithrich, 1979, J. Mol. Biol. 130:3 1). For the
more rapidly exchanging protons in BPTI the model accounts for the observation of normal
pHmin and Ea of 20-30 kcal/mol at all pH's. The important results of our analysis are (a) rates
for exchange from the folded state of proteins are not correlated to thermal lability, as
proposed by Wuthrich et al. (1979, J. Mol. Biol. 134:75); (b) the unfolding rate for the BPTI
cooperative thermal transition is equal to the observed exchange rates of the slowest
exchanging protons between pH 8.4-9.6, 51oC; (c) the rates for exchange of single protons
from folded BPTI are consistent with our previous hydrogen-tritium exchange results and with
a penetration model of the dynamic processes limiting hydrogen exchange.

INTRODUCTION

The hydrogen isotope exchange kinetics of peptide amide protons in proteins is a measure of
the accessibility of solvent to the buried regions of the polypetide backbone. Over twenty years
ago Hvidt and Linderstrom-Lang noted that although the exchange in native proteins is many
orders of magnitude slower than in unfolded polypeptides, most of the buried peptide amide
protons in folded native proteins do exchange with finite rates (Hvidt and Linderstrom-Lang,
1954). They concluded that although the interior amide protons are shielded from solvent, the
measurable exchange of buried backbone protons is due to protein conformational motility.
This remains the qualitative conclusion of hydrogen isotope exchange kinetics; given the tight
packing of interior atoms in folded proteins, the exposure of backbone atoms in the native
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protein matrix to solvent immediately implies internal motions involving equilibrium transi-
tons between conformational substates of the folded protein. For over a decade hydrogen-
isotope exchange in proteins was the only direct experimental evidence for the dynamic
dimension of protein structure, but the observations remained peripheral to the dominate
paradigm of a rigid protein conformation that accrued from the static x-ray crystal structures
and oil-drop models.

This arose partly from the formidable analytical difficulties in the interpretation of the
complicated kinetics of hydrogen isotope exchange experiments where all labile protons are
measured simultaneously. Some of the difficulties have been overcome by the recent
introduction of more sophisticated treatment of the data by distribution functions (Knox and
Rosenberg, 1980) and by high precision partial labeling techniques (Rosa and Richards,
1979; Englander et al., this volume). Instead we have approached the problem by the study of
individual protons by nuclear magnetic resonance (NMR) spectroscopy.

Analytical difficulties notwithstanding, studies of total hydrogen-tritium and hydrogen-
deuterium exchange kinetics have provided a semiquantitative picture of solvent accessibility
in globular proteins. The most important findings are that native proteins exchange with a
distribution of exchange rates 4-8 orders of magnitude broader than the distribution of rates
for the equivalent unfolded peptide, with the fastest rates on the order of those of unfolded
protein; 85-90% of the amide protons exchange from the folded conformation with no
contribution from unfolding; under certain conditions of pH and temperature, the major
unfolding transition may contribute to, or dominate, the observed exchange kinetics; the
activation energy for the conformational contributions to exchange in native proteins is
typically 0-15 kcal/mol; denaturing cosolvents, at concentrations below those inducing
unfolding, do not affect hydrogen exchange rates from the native conformation; ligand
binding or covalent modification may increase, decrease, or not affect hydrogen exchange
rates; protons at the protein-protein interface of protein complexes exchange with the same
mechanism as protons in the buried regions of globular proteins; (Woodward and Hilton,
1979; Hilton and Woodward, 1979, and references therein). Recently, it has been shown that
the exchange kinetics for lysozyme are the same for the crystalline protein as for the protein in
solution (Tuchsen and Ottesen, 1979).

For the types of internal motions responsible for the accessibility of buried protein atoms to
solvent, two limiting types of model have been proposed. In one type, we propose that the
exchange event occurs inside the protein which is fluctuating between conformations that
approximate, within tenths to several A, the x-ray crystal structure. This, we propose, occurs
after penetration of solvent species into the protein via numerous small atomic motions, each
too small to accomodate solvent molecules or ions, but with a finite probability of collecting as
holes or pathways for solvent (Woodward and Hilton, 1979, and references therein). A more
specific mechanism of mobile defects, created by rearrangements of hydrogen bonds, has been
proposed by Lumry and Rosenberg (Lumry and Rosenberg, 1975; Lumry, 1979). Richards
(1979) has suggested that protein packing defects may contribute to such mobile defects. In
the second type of model, exchange occurs in bulk solvent after the protein has undergone
large amplitude motions that expose a segment of the protein to solvent (Englander, 1975;
Hvidt, 1973; Nakanishi et al., 1973). The relative merits of these two types of model have
recently been reviewed (Woodward and Hilton, 1979; Gurd and Rothgeb, 1979; McCammon
and Karplus, 1980; Englander and Englander, 1978).

The hydrogen-deuterium exchange rates of single peptide amide protons of proteins can be
followed by the decay of the proton NMR resonance in deuterium solvent. We began with
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bovine pancreatic trypsin inhibitor (BPTI) which offers a number of advantages, e.g., well
resolved peptide amide proton NMR resonances, an unusually wide range of pH and
temperatures for the native conformation, and well characterized x-ray crystal structural
(Huber et al., 1971) and NMR spectral (Wuithrich and Wagner, 1979) characteristics. Also,
BPTI is the model protein for the dynamical calculations of Karplus, McCammon, and
coworkers (McCammon and Karplus, 1980).

The slowest exchanging and most clearly resolved proton resonances in the BPTI NMR
spectrum have been assigned to peptide protons in the 3-sheet core (Dubs et al., 1979). The
exchange rates of these protons over the temperature range 22°-790C and pH range 1-12
have been reported (Hilton and Woodward, 1978; Richarz et al., 1979; Hilton and
Woodward, 1979). The initial expectation that the measure of single protons would simplify
the kinetics was not realized. Instead, the exchange kinetics of each of the slowest exchanging
protons have complex pH and temperature dependencies.
We have advanced a simple model to explain these complex kinetics, that there are two

exchange processes that differ in temperature and pH dependence (Hilton and Woodward,
1979). One process is proposed to correspond to low activation energy motions of the folded,
native conformation; the other to major unfolding. Alternatively, Wagner and Wiuthrich
(1979a) have proposed a multistate model to explain the same data. This paper further
examines the consistency of our model with the available data, the hypotheses generated for
future experiments, and the implications for the physical nature of the two conformational
processes.

THE MODEL

Exchange of each amide proton may proceed by either of two parallel processes, a or b,
represented schematically in Fig. 1. For process b, the observed rate for exchange from the
native protein, k,,b = k. For process a, k, and k2 are the unfolding/folding rate constants
and k, is the chemical exchange rate for the amide freely exposed to solvent, and the observed
rate for exchange from the native protein is kn,a When kcx << k, + k2, k,,n = kk.kcx/(k, +
k2+ kCX). Whenk>> kI + k2, kna =kl (Hvidt, 1973). The activation energy for k,b ranges
from 20-35 kcal/mol, while the activation energy for kma is -60 kcal/mol. The pH
dependence of knb approaches first order in [OH-] dependence while kna is significantly less
than first order in [OH-] dependence. The pH and temperature dependence of the observed
exchange rate, koSs for the native protein will depend on the relative magnitude of kna and kn,b

PROCESS A

eC~~~~~~~~C

PROCESS 8

Figure 1 Illustration of the two pathways for exchange for a single proton in BPTI. See text for details.
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under those conditions of pH and temperature, as

kobS = kn,a + kn,b (1)

THE FIT OF THE MODEL TO AVAILABLE DATA

Exchange rates for 13 individual, assigned peptide amide protons have been measured for
BPTI as a function of pH and temperature (Richarz et al., 1979; Hilton and Woodward,
1978; Hilton and Woodward, 1979). The rates of the slowest exchanging protons group
together at pH -4; these are also the most down-shifted of the resonances in the PMR spectra.
Their complete pH-rate profiles from 20-680C have been reported. These include the NH's of
Tyr 23, Phe 45, Phe 22, Phe 33, Tyr 21, Gln 31, Arg 20. For the purposes of this discussion,
we refer to this group below as the "slowest exchanging protons." Some additional
well-resolved NH resonances have been studied; they have faster exchange rates which vary
over a larger range of times, and for which there are less complete data than the first group.
These include the NH's of Tyr 35, Met 52, Gly 36, Cys 55, Ile 18, and an unassigned
resonance at 8.31 ppm No. 13 (Richarz et al., 1979). We refer to this group below as the
"more rapidly exchanging protons." A drawing of the ,B-sheet region of BPTI is shown in Fig.
2. The hydrogen bonds of most of the protons under study are shown by dashed lines, and each
is labeled at the backbone-NH position.

Exchange of peptide amide protons is both acid and base catalyzed. For model amides, the
exchange for the chemical step, k,., is given by

kcx= kH[H+] + koH[OHi1 + kH2o (2)

where kH and koH are the rate constants for acid and base catalyzed exchange. These are
sensitive to nearest neighbor inductive effects. kH2O is the rate for direct exchange with water,
and generally is considered negligible. The pH-kcx profile shows a characteristic pH of
minimum rate, pH,,,, , on the basic side of which exchange is OH- catalyzed, and vice versa.
For polypeptides freely exposed to solvent, kcx for each peptide NH can be calculated from
empirical nearest neighbor rules (Molday et al., 1972).

The pH rate profile for seven of the slowest exchanging protons is shown in Fig. 3. At 680C,
rates that span the pHmin are observable. The dashed lines in Fig. 3 show the pH-rate profile'SX~~~~~3

Figure 2 Computer projection of the x-ray crystal structure of BPTI showing the ,-sheet region
containing assigned exchangable protons. Hydrogen bonds are shown as dashed lines. Assigned peptide
amide protons are indicated at the backbone -NH position. (Drawing provided by Dr. Richard Feldmann,
National Institutes of Health.)
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Figure 3 The pH dependence of exchange rates of single protons in BPTI. The assignments are from
Dubs et al. (1979). The circles are data of Hilton and Woodward; triangles are from Wuithrich and
Wagner (1979) and Brown et al. (1978) extrapolated from 550C or from 600C using activation energies
determined at pH* 7.7. The solid curves are fits of the pH* proile at 680C to the equation k = k2[H+]o8'
+ k2[H+]--°51 + k3. Dashed lines are calculated model compound rates at 680C (x 10-4) from the rules of
Molday et al. (1972). (Reprinted from Hilton and Woodward, 1979, with permission from Biochemis-
try.

calculated for Tyr 23, Phe 45 NH, and Gln 31 NH, assuming no configurational shielding
(Molday et al., 1972). The unusu-a-l-features of these-data are: (a) the rates-at 680C in the
region of the pH.i,, are about the same for all these protons; (b) the pHn,,n is - 1.2 pH units
higher than for model compounds; (c) the slope of the base catalyzed limb of the pH-log k
profile is < I at high temperature and - I at low temperature; (d) the exchange rates of Phe 22
NH and Tyr 21 NH at 51°OC are pH independent between pH 8.4 and 9.6.

The model is suggested by the variation of the pH dependence with temperature, Fig. 3,
and by the striking Arrhenius plots for exchange at pH* 7.8 which are curved and which
extrapolate to a common rate at high temperature (Hilton and Woodward, 1979). The fit of
the model to the data can be tested by calculation of the pH rate profile for k,,, and k0, for
each proton at constant temperature, Fig. 4. The expected rate at specified pH and
temperature, dashed line, is determined by the relative magnitude of k,,, and knb, Fig. 4. The
pH-rate profile for k,,,, is generated from the data at 680C using the activation energy for
process a for each proton listed in Table I and the pH dependence observed at 680C. Similarly,
the pH-rate profile for k.,b is generated from the experimental data at low temperature using
an activation energy of process b for each proton listed in Table I and the pH dependence
observed at low temperature. The calculated pH-rate profiles fit the data from our laboratory
(circles) as well as from Wulthrich and coworkers (triangles), Fig. 4 and Hilton and Woodard
(1979).

The model also fits the pH dependence of the activation energies of all of the exchange
rates measured. Over the temperature range 22f-680C for slowest exchangivg protons, process
a will dominate around the pHin, and process b will dominate at pH's far away frompHk,nH
Fortcalculat fo T2, Phe5activation energy should be constant and 60kcoal/mol; at pH >I
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Figure 4 Model for the temperature dependence of the pH* profile of 1 Tyr 23 NH exchange rates.
Kinetics for process a or b are shown as solid curves; dashed curves are observed exchange kinetics
predicted by the model. Curves for process a are derived from the 680C data using an activation energy of
57 kcal/mol; curves for process b are derived from a linear fit to the data at 330C and an activation energy
of 30 kcal/mol. Circles are data from Hilton and Woodward; triangles are from Wuithrich and Wagner
(1979) and Brown et al. (1978). For the latter the 330C and 680C points were extrapolated from 360C and
600C data using an activation energy of 57 kcal/mol. (Reprinted from Hilton and Woodward, 1979, with
permission from Biochemistry.

the activation energy should be constant and 20-30 kcal/mol; and at pH -8 the Arrhenius
plots will be curved. There is quantitative agreement between the expected and the observed
pH dependence of the activation energies of the slowest exchanging protons, Fig. 5 and Hilton
and Woodward (1979).
A further prediction is that at 450C around pHwn, the activation energy of the more rapidly

exchanging protons should be constant and 20-30 kcal/.mol. This is because for these
protons knb»>> kna at all temperatures <600C. This is borne out; the exchange rates of the
more rapidly exchanging protons for which the observed rates are faster than the calculated
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Figure 5 The temperature dependence of exchange rates of BPTI amide protons Phe 33 and Gln 31.
Circles are data of Hilton and Woodward (1978; 1979). Triangles are data of Richarz et al. (1979). Data
in some instances are extrapolated over small intervals of pH and temperature.
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Figure 6 pH dependence of three more rapidly exchanging protons of BPTI at 450C. Data are from
Richarz et al. (1979). Lines are first order dependencies in [OH-] and (H ]. The lower dashed line is the
predicted curve for process a using 60 kcal/mol and the data at 68°C.

kna at temperatures >200C, Fig. 6. For these the activation energy between 220C and 450C is
17-38 kcal/mol over the range pH 1-7, Table I.

Our model explains why, in a number of derivatives and homologues of BPTI, the
exchange rates of the slowest exchanging protons in each protein are correlated with the
thermal stability of that protein (Wagner and Wiuthrich, 1979). At temperatures >200C, in
the region of the pHw , the slowest exchanging protons exchange by process a, which involves
thermal unfolding. Likewise, the model predicts that exchange rates will not be correlated
with thermal stability under conditions where exchange is dominated by process b, i.e., at high
pH for the slowest exchanging protons and at all pH's for the more rapidly exchanging
protons. Also urea or other denaturants are expected to accelerate exchange rates when
process a dominates, and to have little or no effect when process b dominates. This is presently
being tested.

The model is consistent with the value of the pH,i,,, for the slowest exchanging protons at
>1 pH unit higher than that of model compounds, Fig. 2 and Table I. If in the native protein
the acid catalysis term is greater than the base catalysis term, as compared to the relative
values of the acid and base catalysis terms of the model compounds, Eq. 2, then this has the
effect of raising the pH at which the acid and base catalysis terms are equal, i.e., of raising
the pHmin in the native protein as compared to model compounds. Thermal unfolding studies
for BPTI', show that between pH 3 and 4, the temperature of the midpoint of the unfolding
increases 10°C. Thus the model predicts that for process a, the acid catalyzed exchange will
be accelerated relative to the base catalyzed exchange due to increased thermal lability, and
the pHmin will be shifted to higher pH's, as observed for the slowest exchanging protons, Fig. 2.

'Thermal unfolding of BPTI has been measured by the change in ellipticity at 225 nm in the circular dichroism
spectra in 0.3 M KC1 and in 8 M urea (Hilton, et al., manuscript in preparation). In both solvents, the transition
midpoint temperature increases -1°OOC between pH 3 and 4. In 0.3 M KCI, unfolding is not detected at temperature
<800C, and only a portion of the melting curve is observed; in urea the entire unfolding curve can be measured.
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For process b, which is independent of thermal unfolding the pHmin is expected to be normal
and approximately that of model compounds, around pH 2.5-3. The exchange rates for all of
the more rapidly exchanging protons reported by Richarz et al., (1979) lie above the pH rate
profile calculated for kna shown by the dashed line in Fig. 6. The data for three of these
protons are shown in Fig. 6, and fit to curves with first order dependence on [OH-] and [H+]
ion. As seen, for these three, and for the other more rapidly exchanging protons reported by
Richarz et al., (1979) pHmin is around pH 2-3. In summary, as predicted by the model,
protons that exchange with low activation energy around pHmin have normal values of pHmin,
Table I.

The model explains the pH-independent plateau of the exchange rates of Phe 22 NH and
Tyr 21 NH between pH 8.4-9.6, 51°C, Fig. 2. The leveling off of the rates at pH 8.4, 51°C is
because at these conditions k, >> k1 + k2 for process a, exchange is limited by the unfolding
rate, and ko^3 = k,.a = kj. At 51°C, in the pH-independent region, kob. = 5 x 10-2 h'-. The rise
in the pH-rate profile at pH >9.6 is due to the entry of process b. A test of this idea is the
temperature dependence of the effect; if correct, then the pH at which the pH-rate profile
levels off would be lower at lower temperatures. If the effect is due to titration of an ionizable
group, the opposite relationship between temperature and the break in the pH-rate curve is
expected. Exchange data at 450C support the model (Hilton and Woodward, 1979).
Similarly, we expect that if urea is added to the protein at 51 OC, the curve for process a will be

TABLE I
APPARENT ACTIVATION ENERGIES, E., AND pH* OF MINIMUM RATE, pH*, ns FOR SINGLE

AMIDE PROTONS IN BPTI

E., E.,
Resonance -NH process a§ process b|| pH*mjn1' pH* ,,t

No.* assignmentt (±10%) (±10%) observed calculated

1 Tyr-23 60 kcal/mol 30 kcal/mol 3.7 2.7
2 Phe-45 51 20 3.7 2.7
3 Phe-22 65 38 3.6 2.8
4 Phe-33 63 20 3.3 2.6
5 Tyr-35 - 24 2.9 3.0
6 Tyr-21 62 29 3.8 2.6
7 Gln-31 65 17 3.6 2.5
9 Gly-36 28 2.4 2.5
10 Met-52 30 2.0 2.6
11 Arg-20 64 23 3.2 2.7
13 24 2.8 -
15 Cys-55 <20 2.2 2.2
16 Ile-18 19 3.3 2.7

*Resonances are numbered as in the spectra shown in Richarz et al. (1979). The resonance assigned to Arg 20 is
numbered 11 in Richarz et al. (1979) and 9 in Hilton and Woodward (1978, 1979).
tAssignments are those of Dubs et al. (1979).
§Process a apparent activation energies of the slowest exchanging protons are calculated from the data at pH* 4.2,
22-680C (Hilton and Woodward, 1979).
I|For resonances 1, 3, 4, and 6, process b apparent activation energies are calculated from the data at pH* 10.6,
22-51°C; for resonances 2, 7, and 11, the values listed are the low activation energy terms of a two-term fit to
Arrhenius plots at pH* 8, 22-51OC; for resonances 5, 9, 10, 13, 15, and 16, apparent activation energies are
calculated from data at 220 and 450C over the range pH* 1-7.
liFrom data of Hilton and Woodward (1979) and Richarz et al. (1979). The pH*,w,,,, listed for resonances 1, 2, 3, 4, 6,
7, and 11 are observed at 680C, and for resonances 5, 9, 10, 13, 15, and 16 at 450C.
tpH*,,. values are calculated from the amino acid sequence position of the resonances and the rules of Molday et al.
(1972).
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effectively raised to higher rates, the pH at which k, >> k2 will be higher, and the pH-rate
profile will level off at higher pH's. At high concentrations of urea, there may be no pH
independent region observable before onset of high pH denaturation. The effect of urea on the
pH dependence at 51°C for the Phe 22 NH and Tyr 21 NH is being tested.

PROCESS A IS THERMAL UNFOLDING

All the data suggest that process a involves thermal unfolding. The apparent enthalpy,
assuming 20 kcal/mol activation energy for the chemical step, is on the order of 40 kcal/mol,
as compared to 47 kcal/mol for the carboxamidomethyl derivative of BPTI (Vincent et al.,
1971) and 45 kcal/mol for BPTI in 8 M urea (B. Hilton, K. Russell, and C. Woodward,
manuscript in preparation). A similar contribution from thermal unfolding to hydrogen-
tritium exchange kinetics is observed for other globular proteins (Woodward et al., 1975; Ellis
et al., 1975).

Arguments that exchange cannot involve major unfolding concern the relative values of k2
and ke. under conditions where the exchange is pH dependent (Wagner and Wuithrich,
1979a). To recapitulate their argument, if the pH dependence of the observed exchange is
approximately that of kC. for model compounds, then k, enters the overall rate expression,
and k, + k2»>> k,. Under native conditions, k, << k2 and the crucial relationship is k2 vs.
kcx. The statement that "exchange follows an EX2 mechanism" means that exchange shows
acid and base catalysis and/or that base catalyzed exchange is approximately first order in
[OH-]. The maximum value of k, and k2 under native conditions can be estimated from the
folded/unfolded interconversion rate at the midpoint in the unfolding transition, Tm, where
Keq = k1/k2 = 1. At pH 1, Tm = 860C, the interconversion rate = k, = k2 < 10 S-' (Wuithrich
et al., 1978). At lower temperatures, k, and k2 are expected to be slower (Pohl, 1969). At pH
11, 450C, the extreme of pH and temperature for the rates of Wagner and Wiithrich (1979a)
kcx = 106 s-1, i.e., kcx >> k2. They conclude that, since exchange follows EX2 over the entire
range of pH and temperatures measured, major unfolding rates do not enter the overall
expression for the observed exchange. However, these relative values of kcx and and k2 are
quite consistent with our model, including major unfolding for process a as follows. At high
pH, 450C, exchange is via process b which is not affected by thermal unfolding. At the same
pH and temperature, process a is limited by k, and the pH-rate profile levels off. This is
observed at 51C for Phe 22 and Tyr 21 before exchange by process b takes over. That is, for
each proton a pH-independent plateau is expected for process a, but whether it is observed
depends on the relative exchange rates by process b.
A further consequence of our model is that for process a at pH's below the pH-independent

region, kob, c Keq kcx; and the value and pH dependence of Keq can be estimated from the
exchange kinetics. Then the deviation of process a from first order dependence [OH-] arises
from the pH dependence of Keq. Over the range pH 4-7, Kq decreases from 5 x 10-4 to 8 x
10-6.

COMPARISON TO THE MODEL OF WAGNER AND WUTHRICH

Wagner and Wuithrich (1979a) have proposed a "global, multi-state model" to explain the
BPTI exchange data. Their model consists of two parts. First they present a general, formal
solution to the ey change kinetics of a proton in a protein in dynamic equilibrium between
conformational form. with exchange possible from each form. If exchange from different
forms have different pH dependencies, for example from the variation of the amide group pK
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in different conformations, one can generate a pH dependence for a single proton that is
different from first order in [OH-] for the overall exchange of that proton. Once the pH
dependence of exchange is allowed to vary with the conformational form, there are enough
parameters to fit any conceivable hydrogen exchange data.

The formal treatment of simultaneous exchange from interconverting substrates does not
speak to the nature of the interconversion transitions. With regard to this, their argument rests
on the observations that (a) proton exchange is correlated with the thermal stability of the
protein, with the rank-order of exchange rates for different amide protons preserved, while (b)
the rotational motions of the aromatic rings are not correlated with the stability of the protein.
Concluding that a penetration model cannot account for this data, they propose that the
transitions consist of intramolecular translational and rotational motions of the intact
hydrophobic clusters relative to each other.

In our model, the correlation of exchange with thermal stability will be observed for
conditions where process a dominates, but this does not reflect internal motions responsible for
exchange from the folded conformation (process b). The conditions under which Wagner and
Wuithrich (1979) measured the correlation with thermal stability, around pH,n 360C, for
eight derivatives and pH 6.5, 550C, for two derivatives, are conditions where process a is
expected to dominate for all the resonances they report except Tyr 35 and Met 52, Table I.
For the latter two resonances the correlation is far less clear than for the other resonances
(Fig. 3 of Wagner and Wuithrich, 1979). The preservation of rank order is expected for all
protons exchanging by process a if the major change is in the relative value of k, and k2, Fig.
1. Thus, any modification, regardless of its location in the protein, that has the effect of
increasing the thermal lability of the protein will affect exchange by process a without
necessarily having an effect on the internal motions of the folded macrostate.

In summary, in our analysis, there is not a correlation between hydrogen exchange rates
and thermal lability unless exchange is measured under conditions of temperature and pH
where the major cooperative thermal transition enters the overall exchange expression. When
exchange is limited by thermal unfolding, it is not surprising that exchange rates are
correlated to thermal stability. The motions of interest in a consideration of the dynamic
structure of the folded state of proteins, process b, are not correlated to thermal unfolding.

THE NATURE OF PROCESS B

The presently available exchange data for single protons in BPTI corroborate what was
surmised from tritium-hydrogen exchange experiments. (a) The exchange mechanisms for
exchange from the folded conformation is low energy. Assuming 20 kcal/mol for the chemical
exchange step, the activation energies for different protons vary over the range 0-15 kcal/mol
for the conformational process. The same range was found for a number of proteins from
hydrogen-tritium studies (Woodward et al., 1975; Ellis et al., 1975; Woodward and Hilton,
1979). In general, it appears that the slower exchanging protons have higher activation
energies (Wickett et al., 1974; Woodward, unpublished results). Apparently the activation
energy for a single proton is temperature independent. (b) Exchange from the folded state is
not accelerated by high concentrations of denaturants. At pH 6.5, 350C, 8 M urea does not
affect the tritium-hydrogen exchange rates of uniformly tritiated BPTI (Woodward, unpub-
lished results). Other denaturants also have no effect on low activation energy exchange of
globular proteins (Woodward et al., 1975a; Woodward and Hilton, 1979). These together
with the observation that 95% of the amide protons in crystals of myoglobin exchange with
deuterium after perfusion of the crystals with deuterium solvent (Schonborne et al., 1978),
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that protons at the protein-protein interface of the trypsin-trypsin inhibitor exchange with pH
and temperature dependence characteristic for globular proteins (Woodward, 1977) and that
the exchange kinetics of lysozyme are identical in the crystal and in solution (Tuchsen and
Ottesen, 1979) constitute the strongest argument for our proposal that exchange involves
penetration of solvent species by pathways provided by small amplitude, low energy motions.
We suggest that these data rule unlikely large amplitude motions, such as local unfolding
(Englander, 1975) because such motions would be expected to be high energy, correlated to
unfolding, accelerated by denaturants, and absent at the protein-protein interface and in the
crystal lattice. A penetration model requires that charged solvent species migrate to interior
regions of the protein matrix, a process not intuitively compatible with standard conceptuali-
zations of the protein interior. It has been suggested (Richards, 1979) that this may be
accomplished by OH- transfer through H-bonded water networks.

As we envision them, small amplitude motions, and associated solvent accessibility, may
well be perturbed by events distant in a tightly packed protein structure. Generalized ligand
and covalent modification effects on hydrogen exchange rates are well known (Woodward and
Hilton, 1979). Qualitative examination of the x-ray crystal structure shows that exchange
rates by process b may be identical for two protons hydrogen bonded in adjacent rungs of
pleated sheet (Phe 33 NH and arg 20 NH), or may differ by a factor of -10 for another pair
of protons hydrogen bonded across the same pleated sheet (Phe 22 NH and Gln 31 NH), or
may be identical for hydrogen bonds that are on two successive peptide amide-NH's but
oriented in opposite directions to two different strands of pleated sheet (Phe 22 NH and Tyr
21 NH). On the face of it, these data make local unfolding of peptide segments unlikely. Any
interpretation in terms of a penetration model would have to include consideration of the
packing and dynamical potential of surrounding atoms.
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DISCUSSION
Session Chairman: Hans Frauenfelder Scribe: Joseph J. Rosa

WUTHRICH: Am I correct that for the amide proton of Tyr-23, your mechanism b determines the rate at pH > 6?
If so, you would predict that the exchange rate at pH > 6 would be unaffected by variation of the denaturation
temperature. Is that correct?

WOODWARD: We predict that for any NH proton under conditions where the exchange rate has an activation
energy of 20-30 kcal, exchange is by mechanism b and there is not a correlation of exchange rate with thermal
unfolding temperature.

WUTHRICH: And that would be the case for the amide proton of Tyr-23?

WOODWARD: I cannot say without looking at the temperature dependence. At pH 6 the activation energy for
Tyr-23 varies with temperature; this reflects a change in mechanism.

WUTHRICH: After we read your paper in Biochemistry, we recalled that we once spent 6 months measuring the pH
dependence of the exchange in one of the reduced forms of BPTI. This modified protein has a denaturation
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