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ABSTRACT Tension strands are introduced to represent active myocardial fibers. They create
one body force proportional to the divergence of the tension-direction vector, and a second
equal to the tension divided by the radius of curvature. Explicit solutions to isotropic linearly
elastic tensor equations with these body forces are found for the radially-symmetric, linearly-
isotropic, elastic spherical heart with arbitrary radial body force. They confirm experiments
showing supraluminal intramural pressures. Such pressures may affect coronary perfusion. A
tension strand model which is a reasonable compromise between actual myofibrillar geometry
and analytical simplicity is the iso-oblique, terminating, nonintersecting model. The body force
from that or any other axially symmetric body force can be the forcing term for equations in
which the heart is modeled as a thin, ellipsoidal, elastic membrane.

I. INTRODUCTION

The gross mechanical basis for the pumping action of the heart is a difficult and intriguing
problem. Because of the inherent difficulty of the subject, many different models can be
devised which make one aspect of the problem realistic and which simplify other aspects to the
point of tractability. For example, the series and parallel components of force and displace-
ment in the direction of local myocardial fibers can be preserved, and even made nonlinear, if
the three-dimensional heart is simplified into a lumped equivalent mechanical model. On the
other hand, the three-dimensionality can be realistically preserved and the model simplified
by assuming linearity, isotropy, and no systolic forces.
The purpose of this paper is to develop a mechanical model of the heart which is most

suitable for investigating how the mechanical stresses and strains in the heart interact with the
heart's vascular system in both systole and diastole. This particular application requir"-s that
the three-dimensionality of the heart and elastic stresses and strains in all directions be
preserved. It requires specific inclusion of the effects of systolic forces. To keep the problem
tractable, a linear, isotropic model will be made for the myocardial tissue. Systolic action will
be accounted for through the computation and use of body forces arising from tension in the
myocardial filaments. To the author's knowledge, the computation and use of such body
forces is novel.

II. PREVIOUS RELATED WORK

Elastic Analyses
A number of authors have developed two- or three-dimensional elastic models for a dead or
diastolic heart. Mirsky (1974) has provided a recent review of these theories. He states that in
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the models the myocardium "acts as a passive medium" and the theories "do not account for
muscle contraction." Some of the important such papers include those of Burton (1957),
Mirsky (1969, 1973), Sandler and Dodge (1963), Wong and Rautaharju (1968), Hood et al.
(1969), Mirsky and Parmley (1973), and Rankin et al. (1977). Kane et al. (1976) add an
elastic stability analysis.
One of the special types of three-dimensional analysis is the finite element technique which

has been applied to the heart by Gould et al. (1972), Pao et al. (1974), and others. These
analyses appear not to involve systolic contractions.

It has long been recognized that a lumped equivalent model for the heart would be useful in
describing input/output properties. References to lumped models involving both a myocardial
skeleton and contractile elements can be found in Ghista (1974) and Braunwald et al. (1976).
This area continues to be active (Good et al., 1974).
Only three approaches have been made which preserve both the three-dimensional aspect of

the heart and which specifically include systolic effects. They are those of Streeter et al.
(1970), Ghista and Sandler (1969), and the present paper.

Streeter et al. (1970) assumed zero tension orthogonal to myocardial filaments, and only
sufficient contractile tensions to satisfy Laplace's law, thereby avoiding an elastic analysis of
the heart. There are three possible errors in their formulation: (a) There may be extra tension
in the middle of the cardiac wall which is offset by compressive elastic forces in the inner wall.
(b) There may be extra tension in the direction parallel to the myocardial filaments which is
offset by negative tension in the orthogonal circumferential direction. (c) The use of Laplace's
law accounts for radial forces only. Tangential forces arising from the termination of
filaments were not included.

Ghista and Sandler (1969) developed a three-dimensional elastic model in which systolic
forces were accounted for by introducing a dilation in the strain solution. See also the review
by Ghista (1974). Their approach is probably more suited to computations, and less suited to
insight, than the present paper. It is not clear to the author whether both radial forces (from
filament curvature) and tangential forces (from filament termination) were included in this
work.
The present paper handles systolic effects by deriving body forces from the tensions

generated, and solves the elastic equations with these body forces. This approach gives more
insight than the dilation approach, enabling some new features of the solution to be developed.
Since the two methods appear to be complementary, it is desirable to have both available.

Pressure

The natural mathematics for mechanical stresses in the heart is solid mechanics. Pressure is
not defined in solid mechanics because there are no equations in which such a definition would
appear. Consequently, it is best not to try to borrow a definition of pressure in the heart from
the inapplicable field of fluid mechanics, but rather to simply accept that the heart is a solid
undergoing tensor stress components for which a single scalar is an inadequate description.

"Intramyocardial pressure" is a term which has become established through previous
publications. In this paper this term will be taken generically to mean the study of any or all of
the tensor stress components. Following previous usage, it will also be used to mean a specific
stress component which is obvious from the context. Most often the stress component implied
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will be the component normal to the surface, which for spherical coordinates is the radial
component. The normal component is continuous at the surface, which is an important and
intuitively-expected property. The other components are not continuous at the surface.

Previous literature relevant to the stress components studied here includes papers which
discuss any or all of the three stress components; these authors have not always been precise
about either nomenclature or substance. An author, for example, may measure the compres-
sive stress component normal to a surface, compare it (as if it were the same quantity) to
another author's measurement with an important contribution tangential to the surface, and
call both measurements "intramyocardial pressure." In the review which follows, the original
author's nomenclature has been used. Those papers in which it is self-evident which
components were actually measured are of course the most valuable papers. Pancake-shaped
chambers with flat faces generally parallel to wall edges will contain a hydrostatic pressure
generally equal to the stress component normal to the wall. Tunnels will be occluded by the
larger of the two stress components normal to the tunnel. The liquids in flexible vessels will
likewise be compressed into approximate equilibrium with the larger of the two stress
components normal to the vessel. If this changes along the course of the vessel, flow will occur
and equilibrium will be a complicated function of the liquid volume enclosed by the vessel, the
stresses and mechanical compliances along the vessel and in the vessel wall, and the hydraulic
impedance of the cannula-monitor system connected to the vessel. Equilibrium cannot occur,
however, at a higher pressure than a stress component normal to some part of the vessel wall.
Large spherical chambers will introduce new boundary conditions into the problem and will
be difficult to interpret.

Intramyocardial Pressure

Whether intramural pressure can exceed left ventricular pressure has long been recognized as
an important question, whose answer is disputable. Johnson and DiPalma (1939) used arteries
imbedded in the heart in two pressure measuring nodes, one as an end-terminal of a pressure
catheter and the other in an occluding mode. They concluded that peak intramural pressure
always exceeds intraluminal pressure. Gregg and Ekstein (1941) repeated these measure-
ments, but performed experiments leading them to believe that experimental artifacts were
present. They established that flowing blood impinging upon sensing arteries could create
falsely high readings. These were reduced by enclosing the arteries with fenestered covers.
They discovered that a fluid-filled space within the beating left ventricle has a pulse pressure
which becomes larger than the luminal pulse pressure as the resting pressure in the space is
increased. These experiments show that pressures measured in fluid-filled spaces of nonzero
resting pressure cannot be considered to equal pressures which would have occurred in the
absence of the artificial space, and that all data from fluid-filled spaces of zero resting
pressure may not equal undisturbed pressures. They did not offer any explanation for this
observed phenomenon, however, even though this might be a significant property of the live
heart.

I suspect that these excessive pulse pressures observed by Gregg and Ekstein (1941) may
have in fact reflected actual hydrostatic pressures in the experimentally-disturbed myocar-
dium. The law of Laplace would cause the small radii of curvature around the fluid-filled
spaces to produce larger pressures for a given wall tension than produced in the lumen with its
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larger radii of curvature. It is even possible that a feedback mechanism controlling the
strength of contraction near the fluid-filled space was activated to produce higher pulse
pressures because of the higher resting pressure.

Salisbury et al. (1962) observed a similar "inotropic" effect on the whole heart squeezed
externally by gauze. They used an imbedded arterial catheter and found that the time-course
of intramural pressure was M-shaped, with a second and larger peak at the end of systole.
This effect was not present in isovolumic contractions. They observed intramyocardial
pressures in excess of systolic pressures only below -45 ml of left ventricular volume.

D'Silva et al. (1963) found a slight supraluminal pressure in some rabbits, and not in
others, using a small latex balloon connected to a pressure transducer. They state that their
device sometimes produced EKG evidence of infarction, so possibly the device could have
produced local myocardial mechanical dysfunction sufficient to raise doubts about whether
the measured pressures would have been the same in regions remote from the transducer.

Dieudonne (1967a,b) used a similar device in dog hearts, but obtained an electronically-
subtracted difference pressure, which he had taken care to ensure was a true difference in the
significant frequency range. His results show that middle-layer, left-ventricle, myocardial
pressure exceeds luminal pressure by -20 mm Hg early in systole, is 15 mm Hg less than
luminal pressure late in systole, and has zero difference in mid-systole and in diastole.

Kirk and Honig (1964) used a hollow, curved needle with filed-away notch where local
tissue pressure could force local tissue to occlude the path of the fluid flowing through the
needle. They found that systolic intramyocardial pressure divided by systolic blood pressure
was <1 in the outer part of the myocardium, but exceeded 1.4 in the inner part of the
myocardium. They also made a theoretical analysis, which under their assumptions showed
that the longitudinal pressures in a cylindrical heart model exceeded the radial pressures.
Their Eq. 13 showed that their model had a radial pressure which did not exceed the luminal
pressure.

Kirk and Honig (1964) realized that theoretical considerations require that local supralu-
minal intramyocardial pressures can occur only after the local tissue has contracted. (This is
an important point, and will be discussed further in section IV.) They also noted experimental
evidence that the supraluminal pressures occur during isovolumic contraction. They recon-
ciled this with the theory by assuming that distortions of the cardiac shape during the
isovolumic part of systole allowed the necessary contraction to occur. Their reconciliation may
be workable, but I prefer an alternative. Namely, that during the time when the lumen of the
ventricle is isovolumic, the heart itself is not, because it is allowing blood stored in the
capillaries to flow out through the cardiac veins. The reduced cardiac volume produced by
emptying of the capillaries would allow the contraction required by theory.

Baird et al. (1970) used both an occluding artery and an occluding vein with an internal
strengthening structure. All their data gave intramural pressures below ventricular pressures.
They also repeated the technique of Kirk and Honig (1964) and initially verified their own
data. Later runs did show supraluminal pressures, which they attributed to edema. They also
pointed out an unaccounted for venturi effect, but did not calculate its magnitude.

Brandi and McGregor (1969) observed intramyocardial pressures only below those of the
lumen. They used a constant flow rate into their fluid spaces in the myocardium, presumably
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because the injected fluid was leaking somewhere. The leakage may affect the validity of their
conclusions.

van der Meer et al. (1970) used an imbedded segment of vein operating in a flow-occluding
mode. They found that systolic intramyocardial press;ure exceeded ventricular pressure by up
to 50%. They also discovered that a large artery as transducer gave different results from
those of a small vein. In addition to properties of the vessel used, they suspected effects of
trauma to the myocardium.
Armour and Randall (1971) used a small pressure transducer imbedded in the myocardial

wall. They found that peak deep intramyocardial pressure exceeded luminal pressure by about
one-fifth. They also noted that epicardial intramyocardial pressure rose before deep pressure.
(The latter is interesting because the depolarization wave of the action potential goes from
endocardium to epicardium.) I infer that Armour and Randall (1971) used hydrostatic
pressure to calibrate their device. The transducer's location and structure may have tended to
measure mostly radial pressure ,, upon two opposite sides only. Since they do not report
calibrating the device with lateral force, the exact significance of their data is uncertain. Their
lead II EKG showed slight ST elevation and gross T-wave inversion, which suggests that their
device may have produced local ischemic changes in the myocardium.

Gregg (1950, Fig. 45), showed that a ligated coronary vein had a substantial excess of
pressure over that of the aorta. An experiment by Pifarre (1968) showed that a vein graph
originating in the aorta and implanted into the left ventricular wall had from 60 to 100 mm
Hg more peak pressure than the aorta. Backflow through the graph was prevented by a
functioning valve in the implanted vein segment. These two experiments are important
because the measurement of a hydraulic pressure in blood is much less subject to artifactual
error than measurements in a moving solid undergoing tensor stresses.

Archie (1975) has offered a theoretical analysis in which supraluminal pressures were
inferred from a constant-resistance, no-capitance model of coronary blood flow. His analysis
may be incorrect because of capacitive effects of the large capillary bed, which expands
substantially in diastole (Tillmanns et al., 1974).
The analysis in section IV of this paper appears to be the first to solve a stress-strain model

which produces a radial pressure component exceeding luminal pressure, the second (after
Kirk and Honig, 1964) to produce a tangential pressure component exceeding the luminal
pressure, and the first to use a noncylindrical model to conclude that both orthogonal
tangential components of pressure exceed luminal pressure.

III. GENERAL TENSION STRANDS AND THEIR BODY FORCES

Conceptual Contextfor Myocardial Body Forces
In the classical mechanics of elastic media, provision is made for electrostatic, electromagnet-
ic, gravitational, and Coriolis forces which act upon the substance of the elastic medium.
These are called body forces, and provision is made for their inclusion when the sum of all the
forces upon a differential body element is equated to zero.

In this paper, the effect of the contraction of a muscle strand will be derived to be some new
term which enters the differential equations in the same place as a traditional body force. The
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mathematical structure of how a term enters the differential equations is more important than
traditional limitations upon the physical origin of these forces, so the new forces will also be
called body forces.

Symbolsfor Section III
Spatial position of the ends of the ith tension strand.
Elemental area normal to continuous tension strands.
Total body force density for continuous tension strands.
Acceleration body force created by curvature of continuous tension strands.
Terminal body force for continuous tension strands.
Unit vector in strand direction at the A, terminal of a discrete tension strand.
Unit vector in strand direction at the Bj terminal of a discrete tension strand.
Length of ith discrete tension strand.
Vector such that dp is an incremental vector in the s(r) direction.
Fractional distance along discrete tension strand.
The unit directions of the terminal forces of a discrete tension strand at Ai and Bj,
respectively.
Vector position in myocardium.
Direction of continuous tension strands at point r.
Peak tension in the ith discrete tension strand.
Peak tension per area normal to direction of continuous tension strands at position r.
Fractional distance along discrete tension, zero at A, end.
Infinitesimal operator.
Three-dimensional Dirac delta function.
Radius of great circle followed by s(r).
Cardiac cycle variable, 0 in diastole and 1 in full systole.

Discrete Simple Tension Strands

Assume that the myocardial contractile elements develop a set of forces which can be
represented as follows. The ith such element begins in location (before displacement) A,, has
tension r T,, (r = 0 in diastole, T = 1 in full systole), has length Li, and travels along path

Strand I Tension r Tl

a=O

a=O

Position along strand
q.(a)-

"\ I

T2 Bl

\XPosition along strand
'B2a=l q2(a)

2

FIGURE I Geometric definitions for discrete tension strands. Strand 1 begins (for a - 0) at position Al,
has an arc length LI and position q, (a) at the fractional position a along the arc, and ends at B, (where
a- 1).
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qi(a), where a is a scalar length which varies between 0 and Li and qi(a) is a vector function of
this scalar. The ith tension strand is assumed to end at B,, so that q1(O) = A, and qi(Li) = Bi.
The function qi(a) will be assumed to have three bounded derivatives with respect to a. The
geometry is illustrated in Fig. 1. The tension strand represents the active part of a myocardial
cell. It will be assumed that there are no tangential forces exerted by the tension strand, but
normal and end forces will be allowed.

There will be two types of body force developed by the ith such contractile element. One
type will be forces at the end points Ai and B1. (When the path is closed loop, however, A, will
equal B1 and there will be no end-point force.) The second type of force will be due to
accelerations in qi(a).
The acceleration force on the interval qi(a - ba) to qi(a + ba) can be found by considering

the tension at qi(a -ba) to be in the unit direction -dqi(a -ba)/da and the tension at qi(a
+ ba) to be in the unit direction dqi(a + ba)/da. Evaluating dqi(a ± ba)/da by a two-term
Taylor series, noting that the length of the segment is 2baLi, and using the fact that the sum of
the end forces gives the net force of the tension strand upon the medium gives

d2qi(a) (3-1)T ida2 31

for the acceleration force per length.
The unit direction of the terminal force at A, is

dl,(a) dl,(a)(32
da da a() (3-2)

evaluated at a = 0, while the direction of the terminal force at Bi will be the negative of the
above evaluated at a = Li.
The total force density will therefore be

F(r) = E rTi{i(O)6(r - Ai) - li(Li)5(r - B,) + fL d4(2 6 [r - lIj(a)]d}, (3-3)

where 6 denotes the Dirac delta function of three-dimensional argument. In the above, note
that T1 is assumed to be an independent variable which does not depend upon the displaced
positions and lengths, and Li is the length of the ith strand after any displacement may have
occurred.

Continuous Simple Tension Strands
Simple tension strands will be defined to be tension strands which do not cross each other,
except at isolated singular points. Let the direction of the tension strands at point r be the unit
magnitude vector s(r), which may be defined to be positive in either of the two opposite
directions in which the strands run. Let the force in a differential area dA normal to s(r) be
rT(r) dA. The magnitude of the density of the terminal body force will be the divergence of
the tension-direction product. The direction will be -s(r) if the divergence is positive, and s(r)
if the divergence is negative. In both cases the terminal force density will be

Fterm = s(r) div [TT(r) s(r)]. (3-4)
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The acceleration force per volume at r will be

FaCei = rT(r) dp2' (35)

where dp is in the s(r) direction. If s(r) were a great circle on a spherical surface of radius p,
then the above force density would have magnitude

rT(r) (3-6)

p

and would be directed toward the center of the sphere. Combining the terminal and
acceleration force densities gives

F(r) = -s(r) div [rT(r)] + rT(r) d2S(r) (3-7)
dp2

Comments
The preceding approach could be extended by considering the T, of the discrete analysis or the
T(r) of the continuous analysis to be the sum of a contractile tension and an elastic tension.
The elastic tension could be an appropriate dependent function of length and the contractile
history.
The deductive exposition here begins with assumed known tensions, and infers body forces.

The inductive problem of working from forces to tension strands is not well understood. As
pointed out in section II, Laplace's law alone cannot provide uniqueness to the inductive
problem without invoking arbitrary assumptions which may or may not be reasonable.
Integrating both the terminal and acceleration forces in the inductive problem is especially
difficult. Streeter et al. ( 1970) apparently avoided this difficulty by not including the terminal
forces. Since the terminal body forces are circumferential rather than radial, this omission
may not be serious.

IV. A SYMMETRICAL, SPHERICAL HEART WITH BODY FORCES

The following heart model will be analyzed in this section: (a) The heart is assumed to be a
thick spherical shell of inner radius r, and outer radius ro. (b) The body forces are radially
symmetric and directed toward the center of the heart. (c) The heart consists of an elastic
skeleton which is linear and isotropic, upon which body forces (generated by contractile
tensions) are applied. (d) The heart will be analyzed under conditions of static equilibrium, so
that inertial forces are ignored.

Each of these assumptions is only a rough approximation to an actual heart ventricle, and
better simplifications could be made. Unfortunately, their mathematical solution would be
extremely difficult, and would tend to obscure some important qualitative points which can be
better made with a simple model. The simple model outlined above will be analyzed in this
section to develop insight into the biophysical phenomena involved.

Symbolsfor Section IV
a, Maximum body force coefficient of r' (see Eq. 4-1).

A, B Respective arbitrary coefficients of r and r-2 in homogeneous solution.
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e,, ea, e, Unit vectors in respective dr, dO, do spherical coordinate directions.
f(r) Forced solution for U(r') given by Eq. 4-5.
g(r) Forced solution for r,,(r?) given by Eq. 4-8.
h(r) Forced solution for o,4(r') given by Eq. 4-12b.
K Hydraulic compliance of systemic arterial system, having units of volume per

pressure.
P Left ventricular luminal pressure.

PO, PI Respective outer and inner pressures on left ventricle.
Piso v Luminal pressure under isovolumic contraction.
Q Function defined by Eq. 4-17a.
r Radial position, units of length.
r Normalized radial position, 'r = r/r,.

ro, r, Respective outer and inner radii of spherical left ventricle.
R Radial body force per mass (R = R).

U(r) Radial position of heart location initially at radius r before contraction, units of
length.

UQ) Normalized radial position of heart location initially at radius of 'r before contraction,
U(ri) = U(r/rl)/rl, no units.

V Left ventricular stroke volume.
Vstroke P-O Left ventricular stroke volume when aortic pressure is zero.

W Function defined by Eq. 4-17b.
y Constant defined by Eq. 4-15a.
a Small increment, also defined by ii = 1 + 5.
e Constant defined by. Eq. 4-1 Sc.
0 Spherical coordinate.
K Constant defined by Eq. 4-15b.
X Elastic constant of myocardium.
,u Elastic constant of myocardium.
v Ratio of outer to inner left ventricular radii, ro/rl.
X 3.1416.
p Specific gravity of myocardium.

r,,, aoo, ao, a,, Compressive stress components, where c denotes any circumferential direction.
T Cardiac cycle variable, 0 in diastole and 1 in full systole.
4 Spherical coordinate.

Notation

Spherical coordinates r, 0, and X will be used, centered at the center of a heart which is a shell
bounded by two spheres of radius r, and ro, with r, < ro. If the radial coordinate of position of
an unstressed point in the heart is r, then its position after stress will be in the same radial
direction at radius U(r). The stress components will be ,,,uq,ao,,O, ae, ar,*,and a4. The unit
direction vectors in the r, 0, and X directions will be denoted by e,, ea, and e,. Normalized
variables will be used, defined by 'r = r/rl, UQ) = U(r)/rl. X and ,u are the usual isotropic
elastic constants (Love, 1927). The tension strands will be assumed to be a set of symmetric,
randomly-oriented great circles, resembling the windings of a golf-ball core. Eq. 3-7, by the
assumed symmetry, will reduce to a general radial body force which can be defined to be the
power series

pR = -r E air'

pR = pR = -T Z air',

(4-1)

(4-2)
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where p is the mass per volume, and ai = air'. It is convenient, but not necessary, to think of i
as having integer values.

General Solution
Love (1927) has shown that the general equation for static equilibrium under this model is

(X + 2) d|
a(r)

+ 2
U(r

+ pR = O * (4-3)Olr arOr

The normalized version of this equation is the same with U, r, and R replaced by U, rI, R,
respectively. The general solution to this equation is the forced solution plus the homogeneous
solution. It is easily verified that the homogeneous solution is Uhomo = Ar + Br-2. The forced
solution to pR =-rair can be found by assuming that it is an unknown constant times an
unknown power of 'r. The resulting formula gives the homogeneous solution when i equals -1
or - 4, in which case the forced solution is a constant times a power of r times In r. The general
solution can be written compactly as

u = [rr - r) (4-4)

where

=m +~in&1 (4-5)
3(X + 2AL) 32(X+ 2A) + E (X + 2A)(i + 1)(i + 4) (

The radial stress ,rr is given by (Love, p. 142)

Olu u
Jrr = (A + 2g) d+ 2A-.u(4-6)O9r r

Note that U and r can replace U and r, respectively. Substituting Eqs. 4-4 and 4-5 in 4-6,
carrying out the differentiations, and rearranging gives

r ~ °,r1 ] B g r
07 "M A

0, 4,IU + (4-7)

where

g(i) = (X + 2g)f'(Q) + 2Xf() (4-8)

Let ro/rl = v. Note that P > 1. Equating ,,(r1) to -P, and cr,r(ro) to -PO gives the matrix
equation

L -p01[P1OI 3] [3X + 2 0[B] + [g(l)
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Solving for the vector ofA over B, and substituting in Eqs. 4-7 and 4-4 gives

-[1;3] 3, 1 1[po +

() rr(r) I 3 [P3, -3J [P o+ ( +g Qv ) (4-10

4u 4,'

The circumferential tension acO = ,g,,= vcr, equals XOLJ/Or + 2(X + ,u)U/r (Love, p. 142). This
evaluates to

[i,=3 J [v3 13][p +g(l)] + (4-12a)

where

hr=r f () + 2(X +u)f2'g. (4-12b)

The transient solution, in which g(r) = 0 andJf) = 0, is well known (Love, 1927). When
P, > 0 and P0 = 0, the transient begins at its maximum at r = 1 and decreases monotonically
to zero.

Single Power Forced Solution

If pR = -&,r' where i is any integer or fraction except -1 or -4, then the forced solution for
arrcan be evaluated, as follows. Eqs. 4-5 and 4-8 give

f(r) = aiyi2(4-13)

r(r) 3&ri+' h(3) = a+Kr'+ (4-14)

where

= r[(X + 2,u)(i + 1)(i + 4)]-' (4-15a)

K =AXy(i + 2) + 2(X +,u)fr (4-15b)

T = (i + l)(i +4) [i+a2n+r x +2w] (4-15c)

If it is assumed that P0 = , then substitution of Eq. 4-14 into 4-10, and 4-12 and separation of
the terms multiplied by P, from those multipled bye plead to the following:

(v3 - 1)UrQf)= P1 (1 - v3i3] + &eQ(r, V, i) (4-16a)

(V3- 1)oSC¢() = P1 [1-0.5v2323] +/A&W(i, v, i), (4-16b)
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where

Q , i) = 1-p4 + r-3(vi+4 -V3) + -i+l(v3 - 1) (4-17a)

v(r,IJ, i) = 4[1-Vi+4 + O.5i~3(vi+4 -_ 3)] + ,41l(v3 -1). (4-17b)

The bracketed terms in (4-16a) and (4-16b) are proportional to the previously-known
homogeneous solution. The QQ(, v, i) and W(r, v, i) terms in (4-16a) and (4-16b) are of special
interest because they are new and because they may produce supraluminal stresses. Direct
evaluation shows that

Q(1, , i) = 0 = Q(v, v, i) (4-18)

IQ(rl, IV, i 3 4(vEi+4 -v3) + (i + 1)r'(v3-1) (4-19)

a2Q(I" ,v,) 5p4I-iI3r = [12r-5(v'+4-V3)] + [i(i + r)i'(v3 1)] (4-20)

If i 2 0, the first bracketed term in (4-20) is positive, and the second is nonnegative, so that
the second derivative is positive. Consequently, for i 2 0, Q(r, v, i) starts at 0 for P = 1,
descends to a unique minimum somewhere in the interval 1 < r < v, and then rises to 0 at
r= v. If the radial pressure is defined as -cr1(Qj, then the radial pressure of the forced solution
starts at zero at r = 1, rises to a unique maximum somewhere in the interval, and then falls to
zero at 'r = P. Equating the derivative, Eq. 4-19, to zero and solving gives

3(vi+4 _ v3) 11/(4+i) (4-21)

rforcd peak = (i + 1)(3 - 1 )

Q forcd i) 1 4 [(i + 1)(V - 1
QMin("~ ~ ~ ~ L3(v v3)j

[3 (v'+4 v3) 1i+1)/(i+4) 3

(P - VP) + (i + 1)(V3 - 1)1 (V - 1). (4-22)

The special case of constant force per mass, given by i = 0, gives

3=[ ;(v4P3)1'/4
rforced pek

P
V3 i

Qmin(rrorced peak, V, 0) = 1 - V4 + ['4 ]3)](V4 - V3) + [3( V)](V3 - 1) (4-23)

Further simplification can be made by assuming that v = 1 + 6, where 6 << 1, so that

rforced1peak + (4-24)

Q(1 + I + a)°= 2 + termsoforder64 (4-25)
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(rr( 3 + PI+4 + terms of order 2]

+ a4 2 + terms of order54]}. (4-26)

Note that the forced term will be about twice the homogeneous term at 'r - 1 + 5/2 provided
that

2PI
a,=-2.1 (4-27)

The important qualitative conclusion from this analysis is that so long as QQ(, v, i) is negative
(for which nonnegative i is a sufficient condition) then the forced solution for -a,, can be
arbitrarily large if ai becomes large enough, which simply means that the body force is large
enough.

Single Power Incompressible Solutions
For incompressible tissues, X is infinite, which implies that y = 0, f(r) = O, K = Tr/(i + 1) =
g(r) = a'rri+'(i + 1)-' = hQ). Therefore,

ri~ Pt 1 ]Po +&1av'r'(i + i)1
=rr (v3 - 1) | 3 -v3J[P + a T(i + 1)-' ] + a&i+rr(i + 1)-' (4-28)

(p [VJ 0PI + ajTi'r1(i + ] + &ir +'(i + 1)X (4-29)

V3
=4Mcc(3I3-1) [P1- P0- (i + ) a(viT'- 1)]. (4-30)

Figs. 2 and 3 are plots of Eqs. 4-28 and 4-29 for P0 = 0, P1 = 100 mm Hg, i = 0, and v =
1.3. Eq. 4-30 shows that there is no displacement for &0r - 333%/, but that there is inward
displacement for larger values of &0r. Note that values of &0r less than 333',4 would not be
sufficient to generate 100 mm Hg of pressure, while larger values generate a contraction such
that compressive forces resisting thse contraction resist part of the applied body force. These
figures clearly illustrate that theoretical possibility of intramural pressures exceeding luminal
pressures after systolic ejection has begun. Nothing in this paper or in the references cited
suggests that supraluminal pressures are created by passive filling of the heart.

Pressure and Volume Performance ofSystolic Elastic
Radially Symmetric Hearts

It has been well known to engineers and physicists that the two-terminal, current-voltage
properties of a linear device can be fully characterized by the open-circuit voltage and the
closed-circuit current. From this data, both Thevenin and Norton equivalent circuits can be
established. If the heart is to be analyzed on a beat-by-beat basis, then the appropriate analogs
of the open-circuit voltage is the isovolumic pressure, and the appropriate analog of the
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FIGURE 2 Radial stress, -a,,, in the thick radially-symmetric, concentric, spherical, linearly-elastic,
heart model with radially-symmetric constant body forces. The normalized body force is the labeled value
at &Or. Note that because of the active systolic force, there is no unique radial stress for a given luminal
pressure. The higher body forces in the tissue have created compressive stresses in the inner layers of the
heart model.

short-circuit current is the volume pumped out in the heart if the heart were emptying into an
aorta at zero pressure. The isovolumic pressure and zero-pressure stroke volume would
completely characterize the output of a linear elastic heart. The purpose of this subsection is
to derive expressions of these parameters for a spherical, linearly elastic heart with a radially
symmetric body force which follows a power law.

In solving for the isovolumic pressure, the interior pressure is a dependent variable. It is
defined as that pressure for which the displacement at the interior radius is equal to zero.
Assuming PO is a known independent variable, and equating U(1) in Eq. (4-1 1) to zero and
solving for P, gives the equation

isoV) = {V34.u[Po + g(V)]- kl1)4A + v3(3X + 4A)[PO + (v)] - v3k(v)
(3X + 4,) - -rf(l)(v3 - 1)(3X + 2,u)4.u}[4,u + v3(3X + 2,)]-'. (4-31)

The stroke volume at zero pressure is (47rr3/3) [1 - U(1)], where PI = 0. The solution is
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FIGURE 3 Circumferential stress, q, in the thick, radially-symmetric, concentric, spherical, linearly-
elastic heart model with constant radially-symmetric body force, labeled as aor.

47rr3
J 3(Po + g(p)] P,() 3(po + g(v)

'(stroke PI-O) 3 (3X + 2 - 1) (3X + 2A)(v3 1) + 4(3-3 1

+
I (1)I 1Y1l (4-32)

4,g(v3 1)I

If the heart were to beat into a compliance of K, then the pressure developed would follow the
simultaneous solution of

V/P = K (4-33)

and

V(stroke Pi-O) V V(stroke PI-O) (434)
P PI iso-V)

This is analogous to crossing the equation for an external resistance with the electrical "load
line" of the source. The solution occurs at

p P(O iso- )V(stroke PI-O) (435)
(stroke P -O) + P(I iso- V)K
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V = PO iso-V) (strokep,-o)K (4-36)
(stroke P -O) + P(I iso V)K

The complexity of the formulas for V(strokep-P0) and P(I iso-v) should not be allowed to confuse
what is a simple conceptual situation. The myofibrillar strands create linear tensions which
produce body forces. If the heart is found to work isovolumically, when it is initially full of
blood at zero pressure, these body forces will cause intraluminal pressure to rise to P(, iso- v).
Elastic stresses will always occur in the myocardial wall at this time. Elastic strains
(distortions) will occur in the outer heart wall, unless the heart is incompressible. (Elastic
incompressibility with finite shearability implies K = oo, X = oo, 1t finite, E = 31t, and a = 1/2.)
If the heart is incompressible, then no elastic distortions (strains) will occur; if it is
compressible, then elastic distortions will occur. If a finite blood volume is allowed to leave the
ventricular chamber, the given body forces will not develop the full P( iso-v) of which they are
capable, but will place the endocardial part of the elastic myocardial skeleton under
compressive forces. Laplace's law, AP = T/R, can be applied to such a heart in systole, but
the tensions calculated by the law will be the sum of the contractile tensions and the elastic
tensions. Thus, both a dead heart and a live systolic heart could be filled to 100 mm Hg in the
ventricular lumen, and both would have the same total pressure tensions. The difference
would be that the dead heart would have zero contractile tensions, while the live systolic heart
would have nonzero contractile tension. It would have zero elastic tension, or positive
compressive elastic tension, if it had pumped no or some blood, respectively. Laplace's law,
quite clearly, gives information only on the sum of contractile and elastic tensions. Additional
information not available in Laplace's law must be used to determine which of the infinite
configurations of contractile and elastic strains is actually present.

V. ELLIPSOIDAL GEOMETRY

The purpose of this section is to define parameters for an ellipsoid of revolution. This geometry
will be used in the next two sections.

Symbolsfor Sections V, VI, VIII

a Minor radius of ellipse.
dA Surface element, element of cross sectional area.
b Major radius of ellipse and axis of rotation.

e,, e, ea, er Unit vectors defined in Fig. 5.
Fa Tension per cross sectional area of continuous strands tension per length in surface

normal to strand direction.
g,, go See Eqs. 5-5 and 5-6.

h Shell thickness of heart.
K Elastic constant.

N,, No Planar elastic stresses obtained by integrating over heart wall thickness by Eqs. 7-3
and 7-4.

p Position on ellipsoidal surface.
q,, qr Components of total force density (systolic body forces plus pressure forces) per area

of middle surface.
r(k) Distance from ellipse surface to axis of revolution.

R1,, Ro See text between Eqs. 5-1 and 5-2.
u, u,, ut Incremental displacement vector of point in myocardial middle surface and its

components.
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Cartesian coordinate, minor axis generating ellipse.
Cartesian coordinate, major axis generating ellipse.
Angle between tension strands and myocardial equator.
Elliptical coordinate (Fig. 4).
Elastic constant.
3.1416.
Elliptical coordinate (Fig. 4).
Number of strands crossing surface of given by 4 equal to the subscripted value.
Constant defined by Eq. 4-1 5a.
Small increment, also defined by v - 1 + &.
Constant defined by Eq. 4-1 5c.
Constant defined by Eq. 4-1 5b.
Elastic constant of myocardium.
Elastic constant of myocardium.
Shell elastic constant.
Specific gravity of myocardium.
Compressive stress components, where c denotes any circumferential direction.
Cardiac cycle variable, 0 in diastole and 1 in full systole.

The Ellipse
Fig. 4 illustrates an ellipse with minor diameter 2a and major diameter 2b which has been
rotated about its major axis. The generating ellipse has equation (x2/a2) + ( y2/b2) = 1. Any

z axis, major diameter
axis of revolution

Y axis,
minor axis

Surface equation
when 6 0
x2+ z2 , 1.a02 b2.

FIGURE 4 Ellipsoid of revolution used as a model for an ellopsoidal thin-shelled heart.
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e; (outward normal/ to surface)

A\ \/X , e,e(in surface)

A

A

eog
FIGURE 5 Local unit vectors around the point P of Fig. 4.

point on the surface will have its unique values of 0 and 0 which specify the point. The distance
from the general surface point to the axis of revolution is defined to be r(O). A straightforward
geometrical analysis will show that

r([=a sin [tan- (tan b tan )+ (tan ] (5-1)

Note that r(ir/2) = a and r(O) = 0 and that in general, 0 < r(O) a. Fig. 5 illustrates a
differential region about a general X, 0 point on the surface. The unit vectors e,, ep, and eo lie in
the surface, while et is directed outward from it. The intersection of the ellipsoidal surface
with the half-plane of constant 0 is a curve which has radius of curvature defined to be RI.
There is a plane which is perpendicular to both the constant 0 plane and the surface. The
intersection of this plane with the surface produces a curve which is defined to have radius of
curvature R0. Seide (1974) shows that these are principal radii, with values

a2r a2 \ 3/2R¢ b-j + -1 )sin¾k (5-2)

Re= b Il +
a _1 )sin'i] (523)

The plane normal to the surface which intersects a surface line of constant 0 and angle d
from ee will have radius of curvature which can be found using Seide's Eq. 1.1.1 3d. Its
reciprocal is

- =-1 sin2f + - Cos2f. (5-4)
Ro R1? RH
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Ifp is a general position on the surface, then let

'3p =,_Ida,¢p,I_ R, (5-5)

ap
g9 =r. (5-6)

These will be useful both in direct analysis here and in correlating equations with those of
Seide, who uses the same definitions.

VI. TWO SPECIFIC TENSION STRAND MODELS

The Spherical, Nonintersecting, Nonterminating Model
Assume that: (a) The myocardium is a sphere. (b) All strands on a radial line run in the same
direction. (c) No strands cross any other strands. (d) There is a strand which is a great circle
forming angle ,B with the equator of the heart. (e) The number of strands per steradian is
constant everywhere. (f ) No strands terminate; all are closed loops.

These assumptions might initially be believed to produce a realistic model of strand
geometry. The actual geometry, however, implied by these assumptions, is that of strands
which resemble tilted parallels of latitude on the earth, with resulting north and south
pole-like structures somewhere above and below the myocardial equator. Because the
geometry of myocardial strands does not resemble tilted parallels of latitude, assumption f
must be inappropriate. It therefore appears that any model of strand geometry which is
compatible with the known morphology of the heart must have strands which terminate. The
body forces of the myocardial fibers will therefore include both the end forces and
acceleration forces discussed in section III.

The Elliptical, Iso-oblique, Terminating, Nonintersecting Model

The following model is a reasonable oversimplification of the known strand geometry of the
left ventricular myocardium at a constant depth (Streeter et al., 1969). (a) The left
ventricular myocardium is a thin shell whose middle surface (locus of all points equally distant
from the inner and outer walls) is the ellipsoid of revolution shown in Fig. 4. (b) All strands
form an acute angle ,B with the eO. (Streeter et al. [ 1969] observe (3 to vary continuously from
600 on the endocardium to - 600 on the epicardium.) (c) The density of strands per steradian
is constant everywhere. (d) The strands terminate as necessary in order to obey assumption c.
(e) All strands have the same tension at the equator 6 = 7r and each has the same tension
throughout its length. (f ) The number of strands is so large that continuum equations can be
applied. (g) The tension for an area dA on a surface normal to the middle surface and at an
angle : + r/2 to the eO vector is Fa dA. Integrated over the 'e direction, this force will be FLdl,
where dl is the element of length in the direction with angle (3 + 7r/2 from e9. A map of the
strand model is shown in Fig. 6, assuming the major-to-minor axis ratio of the heart is b/a.

Let N,, strands cross the surface perpendicular to the middle surface which intersects it at
the curve k = 00. Nr/2 is the number of strands crossing the equator. Let e = e,, cos 3,B-e, sin
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FIGURE 6 A 6, 4 diagram, resembling a Mercator map, for the strands of myocardial fibers in the
ellipsoidal, iso-oblique, terminating, nonintersecting model of the heart. The diagonal lines represent
myocardial fibers. They terminate at different "latitudes" in the iso-oblique model.

A. Let R, be the radius of curvature of the middle surface in the plane of constant 0, and let RO
be the radius of curvature in the plane of constant 4. Assumption c requires that

No r(4)) r(4))(-1
N/2 r(sr/2) a (6-1)

If the strands were projected into the middle surface, each would occupy an interval along the
equator of 2wx/N,/2 rads at the equator in the eO direction. Off the equator, each would occupy
the same distance in the eO direction by assumption d. The tension of an individual strand, by
assumption g, would be

FL 2ira(sin ,B)/N,,12. (6-2)

The terminal body force per area acting upon the middle surface can be evaluated using
Eqs. 3-4, 6-11, 6-2, and 5-7:

~,FL sin 3O()
Fterm= r(4)R, d (6-3)

If the ellipsoid were a perfect sphere, the above equation would simplify to FLRO ' sin ,B cot 4.
It appears that the above force density becomes infinite at the poles, where its net effect is an
expansion of the pole area, plus (provided ,B = 7r/2) a torque.
The acceleration body force per surface area can be evaluated using Eqs. 3-9, 5-6, and 5-7.

It is

FaC =ec;t =erFL-| sin2, RCos2$ (6-4)Facc R.F6 RF li 1R 2 3]

Note that the force normal to the middle surface in the iso-oblique model is only the above
acceleration force, and that it becomes constant when the ellopsoid becomes a sphere, while
the terminating body force retains its variation in 4.
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VII. THE ELLIPSOIDAL, THIN-SHELLED MODEL WITH AXIALLY
SYMMETRIC BODY FORCES

The purpose of this section is to analyze a heart with systolic body forces under the following
assumptions: (a) The heart is a thin shell of constant thickness h. (b) The middle surface of
the heart is defined as the locus of all points of equal distance from the endocardial and
epicardial surfaces. The middle surface is assumed to be an ellipsoid of revolution of minor
diameters 2a in the lateral and dorsal-ventral direction, and a major diameter of 2b in the
cephalocaudal direction. Fig. 4 shows the ellipsoid for an upright human. (c) The elastic
properties of the heart are linear and transversely isotropic, which means all displacements are
small enough for a first-order elastic theory to be valid. (d) The body forces on the heart have
bounded force per area, have no circumferential components, and are independent of
circumferential position. (e) The membrane shell specifications are applicable. This is
equivalent to assuming that the elastic energy stored in the bending of the heart bent about
either axis in the middle surface is negligible compared with elastic energy stored in tension
and shearing forces whose moments are normal to the middle plane. (f) The analysis will be a
static equalibrium one in which inertial forces are neglected.

These assumptions reduce the general three-dimensional heart into two dimensions by
means of the thin-shell approximation. The lack of circumferential variability of body forces,
and lack of circumferential components of body forces, reduce the problem to one dimension.
The membrane assumption, which is physically quite reasonable, eliminates the need to solve
a difficult fourth-order differential equation whose solutions are not known explicitly.

The General Solution to the Ellipsoidal Model
The solution to the problem as formulated is available from the theory of shells. The
exposition here will be based upon the notation and equations of Seide (1975), except as
noted.
The geometry assumed is shown in Figs. 2 and 3. A point which has surface coordinates
= 0o, 0 = 00, t = 0 before application of body and boundary forces will have coordinates

X = k0 + u,, 0 = 00, r = ut after application of boundary and body forces. (Siede (1975) uses w
where I use u). Note that u,, and ur are functions of 4 only.
The strains are defined by the following functions of displacement vector u:

Ifdu,
* Rf (d) Ur (7-1)

to (ur + uO cot 4). (7-2)
Re

The stresses on the elastic skeleton of the heart will be given by

N, 4ToI( + 0)d= K(,E, + Pee) (7-3)

No - h/2 o (1 + R)d= K(Ce + Veo), (7-4)

where h is the shell thickness and K and v are elastic constants.
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The effects of both true body forces from contractile elements (as formulated in section III)
and hydrostatic pressure on the endocardial and epicardial surfaces will be accounted for by
using a force density per area which is applied to the middle surface. The surface element
described by o0 s4X < 00 + do, 60 < 0 s 60 + dO will have area dA = g,,gdodd and force vector
whose (4, 0, ~) components are (q,, dA, 0, qr dA).
The relationship between the stresses and strains, under the equilibrium and other

assumptions of this section, will be given by

I d
-- (N,,Ro sin 4) -No cos + Rgq,, sin4) = 0 (7-5)
RIO do)

N, + No _ . (7-6)
R Ro

Eq. 7-6 is Laplace's law as applied to thin shells. Note that it alone does not give the solution,
since Eq. 7-5 must also be used for force equilibrium, even when q, is zero. Furthermore q, is
not zero when the strands terminate, and as inferred in section VI, actual strands apparently
terminate.

If the membrane assumptions were not made, it would first be necessary to use equations in
Seide (1975), such as Eqs. 7.1.2f, 7.1.6a, and 7.1.1 la to define and solve for intermediate
variables 0 and U. In the membrane approximation, however, 0 and U are identically zero.
Consequently, the general solution simplifies to the following special case of Seide's Eq.
7.1.13a, which has been rearranged somewhat and given the membrane and geometric
assumptions used here.

d U,, R,ROgr(o) v(2I- 1) (Rx + R -)I-Re (
do lsin - Eh sin X R,Ro sin IJ

1 F2 (Re
u 1 [qRRe - ±) IJ u cot 4 (7-8)

where

I H(o,+) +dX (7-9)
o X~o

H(4),¢) = [| (t) cos- q ,) sin¢ [R )] (7-10)
qr(4)) qr(4) RO(4) Ro(O)) sin2 4

Eqs. 7-7 and 7-8 appear to be singular where sin 4 = 0. However, H(0, 0) = 1, so that for
small 4 and 4 a Taylor series expansion ofH (4', O) about (0, 0) yields

1 4o H 4oaH (-1

2 304 loo 2)0lo,0

This equation implies that (2I- 1)/sin 4 is finite at 4 = 0. As 4 approaches zero, R,
approaches R9, and use of the equations for R,,Ro, and Eq. 7-11 shows that the bracketed
term in Eq. 7-7 approaches
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[R2 +R2OH 31 (712____ir + -- -2
3R,Re iL| o,o 2 fo4 0,0]

so that Eq. 7-7 is not singular. The thin-shell theory has provided Eqs. 7-7 and 7-8, which then
have to be integrated by numerical methods.
The change in volume produced by the given body force is approximately

AV = fCfT u2g0g,dOd4 = f f, u.R,rd0dk. (7-13)

VIII. CONCLUSIONS

There are now three known ways of accounting for systolic forces in a three-dimensional
model of the heart: (a) Tension in one circumferential direction may be assumed to be zero,
negative tensions may be assumed not to exist, and effects of end forces may be neglected,
thereby permitting Laplace's law to be used to solve for the tensions (Streeter et al., 1969). (b)
The tension strand model of this paper can be invoked and the body forces from strand
termination and strand acceleration may be used as forcing terms in the elastic differential
equations. (c) A dilation term may be placed in the elastic strain solution so as to represent the
effects of the stress forces actively generated. (Ghista, 1974).
The second of these approaches has the advantage of total rigor, conceptual clarity, and

explicit evaluation of both terminal and acceleration forces. It has the disadvantage of
increased analytical difficulty.
The analysis of section IV, which was the first to show that all three of the compressive

tensor stresses can be supraluminal, is definite theoretical evidence favoring the hypothesis
that left ventricular capillary pressure can exceed luminal pressure. When this is combined
with the experimental evidence reviewed in section II, I believe that it is reasonable to
conclude that coronary capillary pressure sometimes exceeds luminal pressure.

Direct visual observation of severed coronary veins (Woods, 1892) and phasic tracings of
flow in coronary veins (Gregg, 1950) suggest that practically all of the coronary venous
outflow occurs in systole. Later evidence (Berne and Rubio, 1979, p. 900) includes somewhat
different tracings, which some authorities interpret as indicating that coronary sinus flow is
augmented (in both systole and diastole) by reduced pleural cavity pressure in the respiratory
cycle. The exact reasons for phasic fluctuations in coronary venous outflow are unknown,
although Wiggers (1954) has suggested that the blood is "massaged out" of the heart in
systole. I suggest that supraluminal intramyocardial pressure may be involved in this
"massaging" action, since the supraluminal pressure, like the fastest venous outflow, occurs in
systole.

Kirk and Honig's requirement that supraluminal pressure cannot occur without tissue
compression is straightforward after systolic ejection has begun. During isovolumic contrac-
tion it was extended to include compression secondary to net ejection of blood from the
myocardial vascular system. In effect, middle-wall pressures can exceed luminal pressures if
the endocardium has contracted so that it is under compression. Since myocardial infarctions
usually proceed from endocardium outwards, the relevance of the inferred endocardial
compression should be kept in mind as one possible factor which may make the endocardium
more vulnerable to infarction.
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Having placed systolic supraluminal intramyocardial capillary pressure upon a more solid
theoretical foundation, we can now use it as a working hypothesis in the design of further
experiments and theoretical models.

Receivedfor publication 24 January 1980 and in revisedform 20 October 1980.
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