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ABSTRACT Osmotic shrinkage of giant egg-lecithin vesicles was observed by phase-contrast
microscopy. The vesicles remained or became spherical when shrinking. Small and thick-
walled vesicles formed visible fingers attached to the sphere. The water permeability of the
single bilayer was found to be 41 um/s. A variety of observations indicate that osmosis induces
a parallel lipid flow between the monolayers of the bilayer, leading to a strong positive
spontaneous curvature. They also suggest the formation of mostly submicroscopic daughter
vesicles. The estimated coupling constant, 2 - 107 mol/mol, is large enough to be biologically
significant.

INTRODUCTION

Osmotic experiments on black lipid membranes of various materials, among them egg
lecithin, were reviewed by Tien (1). The most recent measurements on egg lecithin are those
of Fettiplace (2). Black films have the disadvantage of lateral tension (1) and residual organic
solvents in the hydrocarbon region of the bilayer (3, 4), both of which may influence the
permeability.

Studies of osmotically induced water permeation through vesicle walls have been rare.
Reeves and Dowben (5) qualitatively described the behavior of thin-walled giant vesicles
under osmotic shrinkage, noting that the spherical shape was maintained. They also measured
the permeation of water and solute molecules via turbidity changes of vesicle suspensions (6).
More recently, Blok et al. (7) studied the effect of cholesterol on the water permeation
through liposomal lecithin walls determining the activation energy from the temperature
dependence of the turbidity decay. Even if the number of lamellas composing the walls were
known, evaluating permeabilities from turbidity changes does not seem unambiguous as the
amount of scattered light depends both on the difference between the indices of refraction
inside and outside a vesicle and on the distribution of the vesicles in size and shape.

In the following we report extensive studies of the osmotic shrinkage of giant lecithin
vesicles which were individually observed under a phase contrast microscope. Most of the
measurements were done on vesicles of minimum contour strength which were most likely
unilamellar (8). A value for the permeability of the single bilayer to water is extracted from
the data. This is possible because the vesicles remained or became spherical during osmotic
shrinkage and their radii decreased linearly with time.

The thin-walled vesicles displayed recurrent destabilizations of the spherical shape when
shrinking, but only if the radii were above a certain limit. In additional, qualitative studies we
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found small thick-walled vesicles to develop finger-like protuberances under osmotic shrink-
age.

These and further observations are discussed in terms of a model which seems to explain
them all consistently. It involves an intralamellar flow of lecithin molecules parallel to the flow
of permeating water, a positive spontaneous curvature of the bilayer due to the resulting lipid
imbalance, and the creation of visible protuberances or invisibly small daughter vesicles
through the spontaneous curvature.

We think that our experiments are the first to show that water permeation through a lipid
membrane induces lipid flow. From the limiting radius of destabilization and the assumption
that the curvature of the daughters cannot be larger than that of sonicated vesicles we
estimate the lipid-water coupling constant. A compatible lower limit of this quantity is more
directly obtained from the visible deformations of thick-walled vesicles.

EXPERIMENTAL

Egg lecithin was purchased from Merck, D6100 Darmstadt, West Germany, and used without further
purification. Large thin-walled vesicles with radii mostly between 5 and 50 um were prepared by simple
swelling as described elsewhere (9, 10). Subsequently, they were allowed to stand for several days. As
the flip-flop time of the common lecithins in the fluid phase is of the order of 10 h (11-13) we could
expect any lipid imbalance to vanish (14). To induce osmosis the external water was replaced by NaCl or
glucose solutions of concentrations between 1.5 and 20 mM.

Two experimental procedures were used to study thin-walled vesicles. The first allowed observation
during the onset of osmosis, thus enabling us to detect any sudden changes in shape and size or damage
of the vesicle wall. The sample chamber consisted of a stainless steel cylinder 2 mm high, 15 mm in
diameter, and covered with glass slides on top and bottom for microscopic observation. Two reservoirs
were connected with the chamber, one containing distilled water and the other an aqueous solution of
known concentration. The aqueous medium in the chamber could be replaced by raising or lowering a
reservoir. It was verified by means of colored salt solutions that the exchange was practically complete.
On the other hand, a few of the freely floating vesicles generally were not carried away during the
exchange, but remained available for examination. As no particular phenomena were found to be
associated with the onset of osmosis, a less tedious method was used for systematic observations. Lecithin
vesicles were prepared by swelling in a test tube. After applying the osmotic gradient by adding salt or
glucose solutions, a few microliters of the vesicle suspension were put between glass slides and observed
under the microscope. Quantitative measurements of the shrinking process were then made on suitable
vesicles either by direct observation of the radius of the vesicle through the ocular or by taking a
sequence of microphotographs as shown in Figs. 1, 3, and 4. Thick-walled vesicles were prepared by
shaking water and a little lecithin in a test tube. They were mainly spherical, the radii being only a few
um. The osmotic experiments were done a few days afterwards. Only the second method of applying the
osmotic gradient was used. All samples were prepared and all experiments performed at room
temperature.

RESULTS

Most of our investigations were done with large thin-walled vesicles. Specimens for observa-
tion were selected by looking for vesicle contours of minimum contrast which, on the basis of
earlier work (8), indicate that the wall consists of a single bilayer. Unilamellarity was
confirmed by the nearly equal permeabilities to water calculated for most of these vesicles (see
below).

The vesicles preserved their spherical shape during shrinkage, as already noted by Reeves
and Dowben (5), or became spherical. Shrinkage was followed over ranges covering up to 60%
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FIGURE 1 Osmotic shrinkage of a thin-walled spherical vesicle induced by a concentration difference of
Ac = 15 mM. The shapes represent an initial spherical state (¢ = 0), an unstable state (¢ = 8 min), and
another spherical state (¢ = 15 min).

of the initial radius. As a rule, we found a linear decrease of vesicle radius with time. Above a
limiting radius of ~10 um the vesicles exhibited periods of shape instability during osmotic
shrinkage. The destabilization was gradual with increasing fluctuations around the spherical
shape and culminated in marked deviations from the sphere that usually were not rotationally
symmetric but irregular. The spherical shape was then reestablished. Fig. 1 shows a sequence
of shapes of a vesicle, representing a spherical, an unstable, and again a spherical phase. A
plot of vesicle radius vs. time together with a linear fit is shown in Fig. 2. The destabilizations
were in general recurrent. The periods of shape instability were always shorter than the
intervals of shrinkage in the spherical phase. Usually they did not noticeably disrupt the linear
dependence of vesicle radius on time, as illustrated by Fig. 2. The decrease in radius during a
period of instability was always <10%.

Sometimes daughter vesicles much smaller than the mother, but well resolvable, were seen
to be formed during an unstable phase. They seemed to remain attached to the mother.
However, the nature of the connection, if any, could not be made out. Daughter vesicles were
seen only around mothers whose initial radii were above the limiting value of 10 um, which

.again suggests that destabilization was necessary for their formation.
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FIGURE 2 Radii of an osmotically shrinking spherical vesicle as a function of time. The drawn line
represents a linear fit, the dotted portion indicating a period of shape instability.
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FIGURE 3  (a) Multilamellar vesicles as prepared in pure water and (b) after 30 min of osmotic shrinkage
in 10 mM NaCl solution.

A few vesicles were observed which after an unstable phase displayed a smaller slope of
radius vs. time than before. This indicates an increase of the solute concentration inside the
vesicle, probably due to transitory pores which may be associated with shape destabilization.
Occasionally, thin-walled vesicles exhibited no shrinkage at all or stopped it minutes after
starting. The cessation of shrinking indicates the presence of long-lived or permanent holes.
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These may be pores in a single bilayer or passages in a bilamellar wall (15). Osmotically
inactive vesicles were always spherical, which in conjunction with holes implies the absence of
strong spontaneous curvature.

The typical effect of osmotic shrinkage on the small thick-walled vesicles is demonstrated in
Fig. 3. Very small vesicles ~1 um in diameter transformed into simple tubes. Because of the
limit of resolution of the microscope it could not be completely ruled out that a few of them
were unilamellar. Thick-walled vesicles with diameters up to S um were found to develop well
discernible fingers which grew out of the shrinking sphere. As osmosis went on the fingers
became thinner and longer at the same time. An example is shown in Fig. 4. In cases where
more than one finger were created, their diameters appeared to be equal. A few vesicles whose
walls were particularly thick had radii >10 um. They also displayed finger-like protuberances
and, sometimes, temporary deviations from the spherical shape. The dimensions of the tubes
seemed to increase with wall thickness. However, the osmotic shrinkage of thick-walled
vesicles has not been investigated systematically.

DISCUSSION

Derivation of the Permeability to Water
The osmotic flow of water through a membrane is generally described by the law (1):

j=—PAc. )

Here j is the molar flux density and Ac the difference of molar concentrations between the
aqueous solutions. The material constant P is called permeability and has the dimension of
velocity. Eq. 1 applies if no osmotic pressure difference is built up between the solutions. Since
in the present case osmosis acts on vesicles swollen in pure water, Ac is identical to the
concentration of the osmotic solutes (Na*, Cl-, and glucose) in the medium outside the
vesicle. For a spherical vesicle of radius R we can write

%1; = —aPAc, 2)
a being the molar volume of water, if we identify the instantaneous spherical surface area as
seen under the micorscope with the osmotically active area. Eq. 2 describes a linear decrease
of R with time, in agreement with our observations.

The data of some shrunken vesicles and the permeability calculated by means of Eq. 2 are
listed in Table I. Except the values of the last two rows, they are grouped around a mean value
of P = 41 um/s. Since the thinnest-walled vesicles, as judged from the optical contrast of the
contour, were selected for these experiments, we believe that this is the permeability of the
single bilayer. The last two values, obtained from somewhat thicker-walled vesicles, are about
half that of the single bilayer, so it seems likely that they belong to bilamellar walls. -

The permeabilities measured on black films of egg lecithin quoted in the literature range
from 17 to 100 um/s at 36°C (1). Fettiplace (2) recently obtained 37 um/s at 25°C. He
suggested that part of the large scatter of the permeability of egg lecithin to water is due to
differences in chemical composition. In the light of this assumption the good agreement of our
result with his may be fortuitous.
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FIGURE 4 Tubular protuberance growing out of a multilamellar spherical vesicle under osmotic
shrinking with a concentration difference of Ac = 10 mM.
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TABLE 1
PERMEABILITIES P AS DETERMINED FROM THE LINEAR TIME DEPENDENCE OF THE
RADIUS R(r) OF OSMOTICALLY SHRINKING THIN-WALLED VESICLES.

mol um
Ry/um A- 103/.— AR/R, P/—
liter s
52 12.0 0.30 46 + 5
39 5.6 0.31 42=+5
35 5.8 0.13 35+8
34 5.8 0.19 39+5
28 10.0 0.3 42 +2
28 5.6 0.49 41 + 3
26 5.8 0.04 40 + 8
25 5.6 0.24 34+8
25 22.1 0.55 47 =+ 8
24 5.8 0.31 34+5
23 5.8 0.35 42 +5
6.0 1.5 0.27 . 42 +10
5.5 1.5 0.13 50 + 10
30 8.3 0.60 18+3
25 -5.8 0.14 17+ 5

The first two columns give the initial values of vesicle radius R, and osmotic concentration difference Ac. The relative
decrease of vesicle radius A R/R, is related to the time of observation and does not necessarily indicate the radius at
which shrinking stopped. All values of P except the last two are assigned to unilamellar vesicles. The last two probably
refer to vesicle walls consisting of two lamellas.

Explanation of the Decrease of Vesicle Surface Area

As osmotic shrinkage of thin-walled vesicles is described by Eq. 2 we must conclude that a loss
of active wall area takes place during osmosis. It could be brought about by the dissolving of
lipid molecules in the outer aqueous medium. However, the minute solubility of the common
lecithins in water which is of the order 10~'° M (16) can be shown to seriously hamper lipid
transport of the required magnitude through water. While we do not preclude the possibility
of lecithin molecules passing into solution and forming new, submicroscopic vesicles, we do not
think this effect to be important.

A more likely mechanism that also explains the observation of protuberances is the direct
formation of daughter vesicles from the wall of the mother. In the case of thin-walled vesicles,
the daughters would normally have to be smaller than the resolving power of the microscope
since visible new vesicles developed only during periods of instability. Any daughter vesicles
must first be protuberances grown from, but still connected to, the mother. In the following we
consider some geometric and elastic problems of the formation of protuberances and daughter
vesicles under the action of spontaneous curvature. The origin of the spontaneous curvature is
treated in the next subsection. The calculations apply to unilamellar walls.

A daughter vesicle must be separated from the mother at least by volume, though the two
could still share the outer monolayer. This “semifission” may be expected to result in a narrow
“neck” between mother and daughter and then to be followed by total separation, i.c., fission.
The possibility of semifission will be mostly ignored. We do not know the shape of the
postulated submicroscropic daughter vesicles. As to protuberances, two extreme forms can be
imagined: the sphere and the cylinder. Spheres may also be lined up to form a string of pearls.
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The elastic theory of infinite cylinders, strings of pearls, and intermediate infinite shapes has
been dealt with previously in a different context (17).

The water going into the protuberances and daughter vesicles should come from the
mother. This requires a correction of Eq. 2 that depends on shape. If a single cylindrical
protuberance of constant radius 7 is formed (one is enough as its length is unlimited) we may
write

d Vosmolic d Vmolher dR

r
@ " a ¥R Q)

r/2 being the ratio of volume to surface area of the cylinder. Expressing Eq. 2 in the form

AV i
—omotle _ _ 4 xR*aPAC, 4
dt
we obtain
dR r

It is assumed in the derivation that the osmotically active area is identical to the area of the
spherical mother vesicle. We could imagine a very narrow cylinder that breaks off from time
to time to satisfy, at least approximately, this constraint imposed by the experimental results.
In the case of continuous formation and separation of spherical daughter vesicles of constant
radius r, the equivalent of Eq. 3 reads

dVosmolic deother 4n 3 dN
ad At 3 ar ©

where dNV = 87 RdR /4xr’ represents the differential of the number N of daughters. Insertion
of Eq. 4 now leads to
dR 2r
— |1 - -—=])= - aPAC. 7
dt (1 3 R) « 7
For r < R, the corrected Eqgs. 5 and 7 differ immeasurably from the original Eq. 2, which
justifies the use of the latter in calculating the permeabilities. However, the small difference
between Eqgs. 5 and 7 has other consequences (see below).

Turning to elasticity, we start from the formula for the curvature-elastic energy per unit
area, g, of fluid membranes (18). It may be written as

g="he(c,+ ¢, — C‘o)z + Kk 16y ®)

where ¢, and c, are the two principal curvatures, ¢, is the spontaneous curvature, and « and k
are elastic moduli, the dimension of which is energy. We assume the spontaneous curvature to
be due solely to a lipid imbalance. It is then uniform throughout the membrane.

If water permeation produces little or no spontaneous curvature one would expect a sphere
to become an ellipsoid after a small loss of volume (19). However, this was not observed in our
experiments except during periods of shape instability. If on the other hand a small volume
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change is sufficient to produce a large positive spontaneous curvature ¢, » 2/ R, the formation
of cylindrical or spherical protuberances whose sum of curvatures ¢, + ¢, roughly equals ¢,
should be energetically favored. (Curvature like that of the sphere is counted positive.)

Goint into detail, we write down the total curvature-elastic energy G. Integration of Eq. 8
yields for a spherical mother vesicle of radius R:

2 2 _
G = 21I'KR2(-E - co) + 47k, )
The second term is known to be independent of shape. If the mother vesicle shrinks and a

cylindrical protuberance of radius r is formed from the freed area, the time derivative of G is
given to a good approximation for 7 « R by

O anat(2- )220 182 (L G)] ao

dt R dt 2%dr [\R

where A4 = 4w R* is the surface area of the mother. Eq. 10 is based on the assumption that the
lateral compressibilty of the membrane is negligible. Its first term accounts for the change of
curvature around the mother, the second for the transition of material into the cylinder. The
derivation of ¢, does not enter because work is transferred only by changes of the actual
curvatures ¢, and c,. The radius of the cylindrical protuberance will be such as to maximize
the release of elastic energy. This is the case for

l——-Co. (11)
r

The result may have been intuitively anticipated and justifies the omission of terms containing
dr/dt in Eq. 10. For r « R there remains only one dominant term in Eq. 10, namely

G 1 ,da

Ezixcoa. (12)

According to the theory of elasticity of fluid membranes (18) the lateral tension due to
curvature, which can be anisotropic, is given by

on =1k (e + ¢ — )= + & — ) + A, (13)

for the force along the first principal axes acting on a section along the second. (Interchanging
the subscripts 1 and 2 gives ¢,,.) The term A represents a uniform and isotropic contribution.
The tensions around the sphere and around the cylindrical protuberance are easily found to
be

1 2
OR = —EK(ﬁ—Co)Co (14a)
and
o, =\, (14b)

both being isotropic. The pressures produced by these tensions must be equal as long as the
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enclosed volumes are connected, i.e.,
20r/R =ga,/r. (15)

It follows that for r « Rand r ~ 1 /¢,
or ~ YhKcy, g, ~0. (16)

The lateral tension in the membrane around the mother may be substantial as will be
discussed below.

If the continuous production of spherical protuberances instead of the growth of a single
cylinder is considered, 1/r has to be replaced by 2/r in Egs. 10-15. No extra term is needed in
the energy balance Eq. 10 for the supposedly narrow connection between mother and
daughter. At least in theory this passage can be constructed such that (¢; + ¢, — ¢,) vanishes
everywhere in it (17). The change of elastic energy associated with the generation of one
spherical protuberance, AG,, is readily found to be

AG, ~ — 8m«k. 17)

At first sight it seems to make no difference for the decrease of elastic energy whether
cylindrical or spherical protuberances are formed. However, assuming 1/r = ¢, for cylinders
and 2/r = ¢, for spheres, we deduce from Eqs. 5 and 7, that the volume going into
protuberances of equal membrane area is slightly larger with spheres or strings of pearls than
with cylinders. This volume could be entirely neglected in calculating dR /dt. Nevertheless, it
causes an additional shrinkage of the mother, thus permitting a relatively very small
additional growth to the protuberances. The difference of the correction factors of d4/ds
determines the apparent difference of the energy per unit area between spheres and cylinders,
which is
- 3LR% kel (18)

to first order in r/R. As an example we may think of transforming a string of pearls into a
cylindrical protuberance. If ¢, + ¢, of the protuberance and the total enclosed volume are kept
constant in this process, part of the protruded area has to be forced back into the membrane
around the mother.

The extra energy per pearl if a string of pearls is transformed into a cylinder is found from
Eqgs. 17 and 18 to be

3—;- 8. (19)
Inserting «k = 2 - 10~'? erg, as measured for the egg-lecithin bilayer (9), and assuming R = 10
um and 7 = 100 A (see below), one computes 2 - 10~'* erg. The result seems interesting as it
tells us that thermally accessible energies can probably open the constriction between two
pearls or between a spherical protuberance and the mother.
It has been assumed from the beginning that the protuberances separate quickly from the
mother, at least by volume, to form daughter vesicles. In the case of complete separation, i.e.,
fission, we have to add per daughter vesicle the “topological” energy 4wx. While this
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contribution becomes negligible for long enough cylinders, it may matter in the case of
spheres. Considering the total curvature-elastic energy of spherical daughters, one obtains

% - co/(l + 5'_‘;) (20)

for the radius of maximum release of elastic energy. The modulus « is unknown, but 0 < k <«
may be expected to hold for egg lecithin (15). Therefore, the effect of x could be to favor the
separation of strings of pearls rather than single spheres.

We have just presented a reason why spheres or strings of pearls should be preferred over
cylinders in the generation of daughter vesicles. The associated constrictions can be a first step
towards the separation of daughter vesicles. Nothing can be said about fission (or semifission)
itself. It probably requires a certain activation energy. Moreover, dynamical aspects may have
to be included in dealing with both the growth of protuberances and the separation of
vesicles.

Shape Destabilization and the Strength of Lipid-Water Flow Coupling

In our model the spontaneous curvature is thought to be caused by a lipid imbalance between
the monolayers. Adopting a linear approximation we may write

Co = n(A”lot - A”eq)/yo’ (21)

where »; is the mean density of molecules per unit area and Av the difference between the
densities in the outer monolayer and the inner one, all taken at the center plane between the
monolayers. A, is an equilibrium value proportional to the local sum of curvatures (¢, + ¢;)
of the membrane. The total density difference Ay, contains in addition any lipid imbalance.
According to an earlier theory (20), the relevant proportionalities are taken to be

(Av) _ g (e + ) (22)
Yo
and
6
=3 (23)

where b is the thickness of the bilayer. We are interested in Ay, as a function of curvatures.
Insertion of Egs. 22 and 23 in Eq. 21 yields

b
Ay = ”0 (cl +6)+vg

2o (24)

In protuberances with ¢, + ¢, = ¢, the first contribution is three times the second.
The lipid imbalance is assumed to be generated by a lipid flow parallel to the osmotic water
flow. The coupling of lipid transport to water permeation may be expressed by

dn,/dt = Kdny,/dt. (25)

Here dny,/dt is the flow of water molecules permeating through the membrane into the outer
medium and dn,/dt the induced flow of lecithin molecules from the inner to the outer
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monolayer. For the permeation of water molecules we may write

%—V= - 4WR2(11_I;%’ (26)
where N, is Avogadro’s number.

It is possible to formulate a dynamic equilibrium of the increase of lipid imbalance by
lipid-water coupling and its simultaneous decrease by the formation of protuberances and,
eventually, daughter vesicles. This is particularly easy if we neglect the second term on the
right hand side of Eq. 24. (Physically, this corresponds to n = «, i.e., lateral incompressibility
of the monolayers.) Then the dynamic equilibrium takes the form:

dn, dA

K- =
K

b
Vo5 (et + ) =0, (27)
where we recall that A is the area of the mother vesicle. The factor 2 in front of K allows for
the fact that the lipid transport lowers the lipid density of the inner monolayer as much as it
raises that of the outer one.

Solving for the coupling constant, we obtain for ¢; + ¢, = 2/r, i.e., spherical protuber-
ances,

voba

" N,R’ (28)

The formula applies to cylinders if the right hand side is multiplied by 's. Establishing a
dynamic equilibrium is slightly more complex in the case of compressible lipids because Av,,
no longer equals Av,,. Assuming 7 ~ 1/R at all times, one calculates on the basis of Eq. 23 the
additional correction factor 4/3 for the right hand side of Eq. 28. It should be noted that in
deriving Eq. 28, especially in using Eq. 26, we again assumed that the protuberances separate
at least by volume from the mother once they are formed.

Eq. 28 shows the dynamic equilibrium to be characterized by a certain r - R. As the radius
r can hardly be smaller than that of sonicated vesicles (21, 22), the radius R should have an
upper limiting value above which dynamic equilibrium cannot exist. It has just been argued
that the daughter vesicles, attached or separate, should be spheres or strings of pearls.
Cylinders seem to be preferred in the case of visible protuberances as demonstrated by the
thick-walled vesicles but this may be a consequence of their small ratio of length to radius.
Other complications might arise in the case of very large spontaneous curvatures near the
limit just mentioned which should also be the limit of Hooke’s law. If one assumes that each
separate principal curvature, rather than the sum of principal curvatures, has an upper
limiting value, spheres could accommodate two times more lipid imbalance than cylinders and
would thus be favored even more.

We are now in a position to propose an explanation for the shape destabilization of vesicles
which also supplies an estimate of the lipid-water coupling constant. The destabilization of
large unilamellar vesicles, which occurred only above a certain size, may be caused by a
growth of ¢y, which can no longer be completely offset by the formation of daughter vesicles.
A continuous buildup of spontaneous curvature will eventually lead to membrane rupture.
Any damage of the bilayer permits a lipid exchange between the constitutive monolayers via
its edges. This could lead to a more or less rapid breakdown of spontaneous curvature which
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would explain the transitory existence of nonspherical shapes, provided rupture is accompa-
nied by an ejection of water (or a regrowth of active membrane area). The loss of water need
not be so large as to be detectable. The pores should close after a while so that ¢, starts to grow
again. Finally, the formation of invisible protuberances (r « R) should be resumed and the
spherical shape reestablished.

Accepting the model, one can estimate the lipid-water flow coupling constant from the
observed R, = 10 um for shrinkage without periods of instability and the known r;, = 100
A of sonicated vesicles (22). Inserting into Eq. 28 these values for R and r, a bilayer thickness
b =40 A, and a molecular area 1/vy = 60 A2, one arrives at

K~2-.107S.

It is also interesting to compute the lateral tension o, in the membrane of the shrinking vesicle
for r = ry,. From Eq. 16 and k = 2 - 10''? erg (9) one obtains 6 ~ 4 dyn cm™' for spherical
daughter vesicles. This seems a fairly high stress, which could indeed give rise to rupture.

Provided our model is correct and the estimated K of the right order of magnitude, one
cannot hope to see protuberances emerge from unilamellar vesicles. For R = 0.5 um, the
smallest resolvable size, one obtains from Rr = R,,7m: the still smaller radius = 0.2 um. In
fact, no protuberances could be found with the smallest visible thin-walled vesicles despite an
exhaustive search.

On the other hand, the small thick-walled vesicles developed resolvable protuberances
under osmosis. The observation surprises in a way, as the number of lamellas should not affect
shape changes except for their speed if the vesicle wall consists of independent bilayers. The
apparent reduction of the lipid-water flow coupling constant could be due to a lipid exchange
preventing the full buildup of lipid imbalance. The exchange might be mediated by resorbed
daughter vesicles as well as by passages or necks connecting adjacent bilayers. It is also
conceivable, though not probable, that the proximity of the bilayers in a wall permits a
substantial flow of lecithin molecules through the intermediate water layers so that the full
lipid imbalance develops only in the two outermost monolayers.

The effective coupling constants of thick-walled vesicles are estimated to be one to two
powers of ten below the value deduced for the single bilayer. They can be estimated for
initially spherical vesicles by inserting the radii of the shrunken mother and the cylindrical
protuberance in Eq. 28. However, the method is rather crude as the conditions of vesicle
separation and r « R are not satisfied. In any event, the protuberances of thick-walled vesicles
clearly confirm that water permeation produces positive spontaneous curvature.

We further note that the well-known flip-flop of lipid molecules which is a relaxation
process may compete with the osmotically induced lipid flow if osmosis is performed very
slowly. Since our experiments took no longer than several hours, whereas the flip-flop time is
known to be of the order ten 10 h (11-13), we have neglected this backflow in our discussion.
Moreover, the water permeability deduced from R(z) did not noticeably depend on the speed
of permeation in the range of concentrations used (see also below).

CONCLUSION

Our experiments show that osmotic shrinkage of giant egg-lecithin vesicles is a suitable
method to measure the bilayer permeability to water. Its apparent independence of vesicle
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radius and osmotic gradient and the rather good agreement with black-film permeabilities (2)
suggest that lateral tension, which we presume to be strong under osmotic shrinkage, has little
or no influence on it.

An exciting result of our studies is the discovery that water permeation induces a
considerable parallel flow of lecithin molecules between the two monolayers of a bilayer. In
the case of large unilamellar vesicles, flow coupling was inferred indirectly, being part of a
consistent model which can explain all observations. The finger-like protuberances developed
by small thick-walled vesicles represent a more direct proof, but there the effective flow
coupling constant comes out smaller by at least a power of ten. Interestingly, the transverse
lipid flow in our experiments was faster than the flip-flop of lecithin molecules in the absence
of osmosis. This is only possible if flip-flop is a process consisting of many steps and involving
many collisions with water molecules.

We also deduced from our data that unilamellar giant vesicles form submicroscopic
daughter vesicles when they shrink osmotically. Daughters of visible size were seen only in a
few cases as a result of transitory shape destabilization. However, the fact that the osmotically
active surface area diminshes together with the visible surface area during shrinkage cannot
be explained but by a continuous loss of membrane material. It is not possible to decide
whether the daughters are spherical or cylindrical or whether they fission completely from the
mother or undergo semifission, i.e., retain a common outer monolayer. Even other mecha-
nisms cannot be entirely excluded, such as the dissolving of lecithin molecules in water, as
discussed above, or the growth of pieces of bilayer or cylindrical micelles from the outer
monolayer. Different experimental methods, for instance electron microscopy, are needed to
settle these questions.

Lipid-water flow coupling of the orders of magnitude estimated from our data could be
biologically significant. Osmotically induced lipid imbalance may well be instrumental in
pinocytosis, i.e., the fission of small daughter vesicles from a plasma membrane. It is
surprising that this process common in the metabolism of cells (23) might be simulated by
simple model membranes.

This work was supported by the Deutsche Forschungsgemeinschaft.
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