Abstract
We analyze an increasingly popular NMR method analogous to the black lipid membrane (BLM) isotopic tracer experiment for the study of mediated cation transport but involving the preparation of vesicles with an environment asymmetric in that paramagnetic metal ions are present only outside the vesicles. This asymmetry is manifest in the NMR spectrum as two distinct resonances for magnetic nuclei in outside and inside lipid headgroups. As mediated transport begins and for the paramagnetic metal ions enter the vesicles, the inner headgroup resonance line shifts and changes shape with a time course containing much information on the actual ion transport mechanism. Processes by which the ions enter the vesicles one or a few at a time (such as via a diffusive carrier) are easily distinguishable from those by which the ions enter in large bursts (such as by pore activation). The limiting case where intervesicular mediator exchange is slow relative to cation transport (the situation for integral membrane proteins) is treated analytically. Computer simulated curves indicate conditions necessary for certain changes in the line shape which are analogous to the "current jumps" observed in BLM conductance studies. The theory derived allows estimates of the average number of ions entering the first few bursts, how often the bursts occur, and how they depend on the concentration of the mediating species in the vesicular membrane. Preliminary experimental spectra illustrating some of the various possible line shape behaviors are presented.
Full text
PDF


























Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bergel'son L. D., Barsukov L. I., Dubrovina N. I., Bystrov V. F. Differentsiatsiia vnutrennei i n ruzhnoi storon fosfolipidnykh metodom spektroskopii I.a.M.R. Dokl Akad Nauk SSSR. 1970;194(3):708–710. [PubMed] [Google Scholar]
- Chrzeszczyk A., Wishnia A., Springer C. S., Jr The intrinsic structural asymmetry of highly curved phospholipid bilayer membranes. Biochim Biophys Acta. 1977 Oct 17;470(2):161–169. doi: 10.1016/0005-2736(77)90097-9. [DOI] [PubMed] [Google Scholar]
- Degani H., Elgavish G. A. Ionic permeabilities of membranes. Na and Li NMR studies of ion transport across the membrane of phosphatidylcholine vesicles. FEBS Lett. 1978 Jun 15;90(2):357–360. doi: 10.1016/0014-5793(78)80404-9. [DOI] [PubMed] [Google Scholar]
- Degani H., Lenkinski R. E. Ionophoric properties of angiotensin II peptides. Nuclear magnetic resonance kinetic studies of the hormone-mediated transport of manganese ions across phosphatidylcholine bilayers. Biochemistry. 1980 Jul 22;19(15):3430–3434. doi: 10.1021/bi00556a004. [DOI] [PubMed] [Google Scholar]
- Degani H. NMR kinetic studies of the ionophore X-537A-mediated transport of manganous ions across phospholipid bilayers. Biochim Biophys Acta. 1978 Apr 4;508(2):364–369. doi: 10.1016/0005-2736(78)90338-3. [DOI] [PubMed] [Google Scholar]
- Eisenman G., Sandblom J., Neher E. Interactions in cation permeation through the gramicidin channel. Cs, Rb, K, Na, Li, Tl, H, and effects of anion binding. Biophys J. 1978 May;22(2):307–340. doi: 10.1016/S0006-3495(78)85491-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ermishkin L. N., Kasumov K. M., Potzeluyev V. M. Single ionic channels induced in lipid bilayers by polyene antibiotics amphotericin B and nystatine. Nature. 1976 Aug 19;262(5570):698–699. doi: 10.1038/262698a0. [DOI] [PubMed] [Google Scholar]
- Fernández M. S., Célis H., Montal M. Proton magnetic resonance detection of ionophor mediated transport of praseodymium ions across phospholipid membranes. Biochim Biophys Acta. 1973 Nov 16;323(4):600–605. doi: 10.1016/0005-2736(73)90168-5. [DOI] [PubMed] [Google Scholar]
- Gent M. P., Prestegard J. H. Interaction of the polyene antibiotics with lipid bilayer vesicles containing cholesterol. Biochim Biophys Acta. 1976 Feb 19;426(1):17–30. doi: 10.1016/0005-2736(76)90425-9. [DOI] [PubMed] [Google Scholar]
- Gerritsen W. J., van Zoelen E. J., Verkleij A. J., de Kruijff B., van Deenen L. L. A 13C NMR method for determination of the transbilayer distribution of phosphatidylcholine in large, unilamellar, protein-free and protein-containing vesicles. Biochim Biophys Acta. 1979 Mar 8;551(2):248–259. doi: 10.1016/0005-2736(89)90003-5. [DOI] [PubMed] [Google Scholar]
- Hunt G. R. A comparison of triton X-100 and the bile salt taurocholate as micellar ionophores or fusogens in phospholipid vesicular membranes. A 1H NMR method using the lanthanide probe ion Pr3+. FEBS Lett. 1980 Sep 22;119(1):132–136. doi: 10.1016/0014-5793(80)81014-3. [DOI] [PubMed] [Google Scholar]
- Hunt G. R., Jawaharlal K. A 1H-NMR investigation of the mechanism for the ionophore activity of the bile salts in phospholipid vesicular membranes and the effect of cholesterol. Biochim Biophys Acta. 1980 Oct 2;601(3):678–684. doi: 10.1016/0005-2736(80)90568-4. [DOI] [PubMed] [Google Scholar]
- Hunt G. R. Kinetics of ionophore-mediated transport of Pr3+ ions through phospholipid membranes using 1h NMR spectroscopy. FEBS Lett. 1975 Oct 15;58(1):194–196. doi: 10.1016/0014-5793(75)80257-2. [DOI] [PubMed] [Google Scholar]
- Hunt G. R., Tipping L. R. A H NMR study of the effects of metal ions, cholesterol and n-alkanes on phase transitions in the inner and outer monolayers of phospholipid vesicular membranes. Biochim Biophys Acta. 1978 Feb 21;507(2):242–261. doi: 10.1016/0005-2736(78)90420-0. [DOI] [PubMed] [Google Scholar]
- Hunt G. R., Tipping L. R., Belmont M. R. Rate-determining processes in the transport of Pr3+ ions by the ionophore A23187 across phospholipid vesicular membranes. A 1H-MR and theoretical study. Biophys Chem. 1978 Sep;8(4):341–355. doi: 10.1016/0301-4622(78)80016-7. [DOI] [PubMed] [Google Scholar]
- Hutton W. C., Yeagle P. L., Martin R. B. The interaction of lanthanide and calcium salts with phospholipid bilayer vesicles: the validity of the nuclear magnetic resonance method for determination of vesicle bilayer phospholipid surface ratios. Chem Phys Lipids. 1977 Jul;19(3):255–265. doi: 10.1016/0009-3084(77)90047-0. [DOI] [PubMed] [Google Scholar]
- Korenbrot J. I. Ion transport in membranes: incorporation of biological ion-translocating proteins in model membrane systems. Annu Rev Physiol. 1977;39:19–49. doi: 10.1146/annurev.ph.39.030177.000315. [DOI] [PubMed] [Google Scholar]
- Lau A. L., Chan S. I. Alamethicin-mediated fusion of lecithin vesicles. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2170–2174. doi: 10.1073/pnas.72.6.2170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lau A. L., Chan S. I. Voltage-induced formation of alamethicin pores in lecithin bilayer vesicles. Biochemistry. 1976 Jun 15;15(12):2551–2555. doi: 10.1021/bi00657a010. [DOI] [PubMed] [Google Scholar]
- Lawaczeck R., Blackman R., Kainosho M. Ion permeation across the bilayer of annealed phosphatidylcholine vesicles at elevated temperatures. Concentration dependence and the micelle-bilayer dynamic equilibrium. Biochim Biophys Acta. 1977 Aug 1;468(3):411–422. doi: 10.1016/0005-2736(77)90291-7. [DOI] [PubMed] [Google Scholar]
- Lawaczeck R., Kainosho M., Chan S. I. The formation and annealing of structural defects in lipid bilayer vesicles. Biochim Biophys Acta. 1976 Sep 7;443(3):313–330. doi: 10.1016/0005-2736(76)90032-8. [DOI] [PubMed] [Google Scholar]
- Lee Y., Chan S. I. Effect of lysolecithin on the structure and permeability of lecithin bilayer vesicles. Biochemistry. 1977 Apr 5;16(7):1303–1309. doi: 10.1021/bi00626a010. [DOI] [PubMed] [Google Scholar]
- Levitt D. G. Electrostatic calculations for an ion channel. II. Kinetic behavior of the gramicidin A channel. Biophys J. 1978 May;22(2):221–248. doi: 10.1016/S0006-3495(78)85486-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Läuger P. Ion transport through pores: a rate-theory analysis. Biochim Biophys Acta. 1973 Jul 6;311(3):423–441. doi: 10.1016/0005-2736(73)90323-4. [DOI] [PubMed] [Google Scholar]
- Läuger P., Stark G. Kinetics of carrier-mediated ion transport across lipid bilayer membranes. Biochim Biophys Acta. 1970 Sep 15;211(3):458–466. doi: 10.1016/0005-2736(70)90251-8. [DOI] [PubMed] [Google Scholar]
- McLaughlin S., Eisenberg M. Antibiotics and membrane biology. Annu Rev Biophys Bioeng. 1975;4(00):335–366. doi: 10.1146/annurev.bb.04.060175.002003. [DOI] [PubMed] [Google Scholar]
- Michaelson D. M., Horwitz A. F., Klein M. P. Transbilayer asymmetry and surface homogeneity of mixed phospholipids in cosonicated vesicles. Biochemistry. 1973 Jul 3;12(14):2637–2645. doi: 10.1021/bi00738a014. [DOI] [PubMed] [Google Scholar]
- Montal M. Experimental membranes and mechanisms of bioenergy transductions. Annu Rev Biophys Bioeng. 1976;5:119–175. doi: 10.1146/annurev.bb.05.060176.001003. [DOI] [PubMed] [Google Scholar]
- Neher E., Stevens C. F. Conductance fluctuations and ionic pores in membranes. Annu Rev Biophys Bioeng. 1977;6:345–381. doi: 10.1146/annurev.bb.06.060177.002021. [DOI] [PubMed] [Google Scholar]
- O'Brien D. F., Zumbulyadis N., Michaels F. M., Ott R. A. Light-regulated permeability of rhodopsin:egg phosphatidylcholine recombinant membranes. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5222–5226. doi: 10.1073/pnas.74.12.5222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pierce H. D., Jr, Unrau A. M., Oehlschlager A. C. Investigation of polyene macrolide antibiotic-induced permeability changes in vesicles by 31P nuclear magnetic resonance. Can J Biochem. 1978 Aug;56(8):801–807. doi: 10.1139/o78-122. [DOI] [PubMed] [Google Scholar]
- Scott H. L., Cherng S. L. Monte Carlo studies of phospholipid lamellae: effects of proteins, cholesterol, bilayer curvature, and lateral mobility on order parameters. Biochim Biophys Acta. 1978 Jul 4;510(2):209–215. doi: 10.1016/0005-2736(78)90021-4. [DOI] [PubMed] [Google Scholar]
- Shamoo A. E., Goldstein D. A. Isolation of ionophores from ion transport systems and their role in energy transduction. Biochim Biophys Acta. 1977 May 31;472(1):13–53. doi: 10.1016/0304-4157(77)90013-2. [DOI] [PubMed] [Google Scholar]
- Sheetz M. P., Chan S. I. Effect of sonication on the structure of lecithin bilayers. Biochemistry. 1972 Nov 21;11(24):4573–4581. doi: 10.1021/bi00774a024. [DOI] [PubMed] [Google Scholar]
- Stark G., Ketterer B., Benz R., Läuger P. The rate constants of valinomycin-mediated ion transport through thin lipid membranes. Biophys J. 1971 Dec;11(12):981–994. doi: 10.1016/S0006-3495(71)86272-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szoka F., Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508. doi: 10.1146/annurev.bb.09.060180.002343. [DOI] [PubMed] [Google Scholar]
- Waldbillig R. C., Szabo G. Planar bilayer membranes from pure lipids. Biochim Biophys Acta. 1979 Nov 2;557(2):295–305. doi: 10.1016/0005-2736(79)90328-6. [DOI] [PubMed] [Google Scholar]
- White S. H. Formation of "solvent-free" black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. Biophys J. 1978 Sep;23(3):337–347. doi: 10.1016/S0006-3495(78)85453-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White S. H. Studies of the physical chemistry of planar bilayer membranes using high-precision measurements of specific capacitance. Ann N Y Acad Sci. 1977 Dec 30;303:243–265. [PubMed] [Google Scholar]
- de Kruijff B., Demel R. A. Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. 3. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim Biophys Acta. 1974 Feb 26;339(1):57–70. doi: 10.1016/0005-2736(74)90332-0. [DOI] [PubMed] [Google Scholar]
- van Hoogevest P., de Kruijff B. Effect of amphotericin B on cholesterol-containing liposomes of egg phosphatidylcholine and didocosenoyl phosphatidylcholine. A refinement of the model for the formation of pores by amphotericin B in membranes. Biochim Biophys Acta. 1978 Aug 17;511(3):397–407. doi: 10.1016/0005-2736(78)90276-6. [DOI] [PubMed] [Google Scholar]
