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ABSTRACT The relations among membrane structure, mechanical properties, and cell shape
have been investigated. The fluid mosaic membrane model used contains several components
that move freely in the membrane plane. These components interact with each other and
determine properties of the membrane such as curvature and elasticity. A free energy equation
is postulated for such a multicomponent membrane and the condition of free energy minimum
is used to obtain differential equations relating the distribution of membrane components and
the local membrane curvature. The force that moves membrane components along the
membrane in a variable curvature field is calculated. A change in the intramembrane
interactions can bring about phase separation or particle clustering. This, in turn, may strongly
affect the local curvature. The numerical solution of the set of equations for the two-
dimensional case allows determination of the cell shape and the component distribution along
the membrane. The model has been applied to describe certain erythrocyte shape transforma-
tions.

INTRODUCTION

In recent years the relation of membrane composition and lateral organization to mechanical
properties and shapes has been the object of keen interest. This problem is important because
any one of the above characteristics may strongly affect the functioning of the whole cell or its
parts.

Investigations of cell shape are often done with special reference to erythrocytes. The
various hypotheses so far advanced have ranged from the elastic inner matrix concept to the
liquid-filled flexible membrane shell (1). According to current thinking (2-22), properties of
an erythrocyte membrane are uniform throughout and the membrane is not divided into
independent regions. Membrane components move freely laterally, so that forces acting in the
membrane plane can easily redistribute them. Another point of view treats the erythrocyte
membrane as a superelastic shell (10-16). The curvature elasticity may be due either to
charge interaction on the membrane (23-26) or to simple compression and tension on its
opposite sides (22, 27). Canham (28) was one of the first authors to give close attention to the
hypothesis of the effect of membrane curvature elasticity on the erythrocyte shape. Since the
bending energy of an elastic shell depends on its shape, the equilibrium shape should be
attained at minimum energy.
A more detailed study, however, showed that two cell forms exist that correspond to the

bending energy minimum: an oblate shape (biconcave disk) and a prolate shape (dumb-bells)
(29). To overcome this contradiction, Helfrich alone (30, 31) and with Deuling (32, 33)
suggested a spontaneous membrane curvature. In this case, in the absence of stresses, the
surface is curved and not planar. As a result, Helfrich and Deuling (33, 34) succeeded in
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obtaining good agreement between the calculated and observed cell outlines, especially for
discocytes. The experimental studies of Evans et al. (20, 21, 35) have usually been used as a
standard reference against which to check the calculated contours. The work of Jenkins
(36, 37) follows the same line.
The reason for the spontaneous membrane curvature may be an asymmetry of membrane

molecules (38), asymmetric molecular distribution between the inner and outer monolayers
(39), or both. Another interesting approach to erythrocyte stability and the transformation
problem has been suggested by Glaser and Leitmannova (40). It is based on a "fluid mosaic"
membrane model (41), where the cell shape is controlled by the state of contractile proteins
and their aggregation on the interior surface of the membrane.

In the present paper we deal with the relation between membrane composition and cell
shape. We investigate this concept in terms of the fluid mosaic model. The fluid mosaic model
reflects many important features of erythrocytes. For this reason erythrocytes as well as
lymphocytes and lipid vesicles will be used to illustrate the general conclusions.

PROBLEM FORMULATION

We will assume that the cell membrane is a liquid crystal shell; that is, it consists of individual
elements which move comparatively easily (relative to each other) in the lateral direction.
Generally speaking, the membrane components may have an asymmetric (for instance,
conical) shape which is responsible for the spontaneous membrane curvature. The geometric
membrane curvature does not always coincide with the spontaneous curvature. It is when they
are different that stresses arise in the membrane. The curvature is not only characterized by
its absolute value but also by a sign. We shall assume the curvature of a sphere to be positive;
protrusions on the cell surface will also have a positive curvature and invaginations a negative
one. Accordingly, the membrane component asymmetry (i.e., intrinsic spontaneous curva-
ture) will be either positive or negative. The distribution of components in the membrane is
assumed to be initially uniform. The membrane maintains a constant surface area but can be
bent by external forces; the bending curvature depends on the bending moment applied.
Correspondingly, the bending energy is a quadratic function of curvature:

(D/2) (K-Ks)2

where D is curvature elasticity; K is total geometric curvature of the membrane equal to the
sum of the reciprocals of major curvature radii; and K, is the spontaneous, i.e., unstressed,
curvature (30). Not to overburden the analysis, we confine the treatment to the case of a
two-component membrane. Its composition can then be characterized by only one variable:
the concentration of one of the components, c.
The free energy formula will contain the usual terms:

F, = bc + kTclnc

where k is the Boltzmann constant, T the absolute temperature, and b is a constant. Assuming
that the membrane component concentration has an upper bound cm, the free energy formula
must further include the term

F2 = kT(cm- c) ln (cm- c).
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The components may also interact with each other producing an additional contribution to the
energy F3 = wc2. The equation for free energy per unit membrane surface area then takes the
form:

F = - (K- Ks)2 + bc + kTc In c + kT(cm- c) ln (cm- c) + wc2. (1)
2

The local membrane properties, i.e., the parameters D and K., will depend on the
membrane component concentration which, in turn, will vary over the membrane as a
function of the local curvature and will thus depend on the membrane shape. The problem of
determining the membrane shape, therefore, involves determining the particle distribution
pattern over the membrane. The total membrane free energy is obtained by integrating Eq. 1
over the entire surface:

Ftot Fds. (2)

In the equilibrium state Ft.t is a minimum, subject to the following three limitations: a fixed
cell volume, a fixed cell surface, and a fixed total number of membrane elements. Using the
Lagrange method of undetermined multipliers we obtain

G = f Fds - pf dv - XI fds - X2fcds (3)

whose first variation in the equilibrium state must be zero:

bG = 0. (4)

From this condition, the equations determining the cell membrane shape can be obtained.
For the sake of clarity we first consider a two-dimensional case, in which the problem

reduces to a consideration of the shape of an elastic ring (i.e. a uniform cylinder) with variable
properties around the contour. It is convenient to use the curvilinear coordinate running along
the ring. The contour shape will be defined by an angle between the tangent to the contour
and some arbitrary axis; curvature K is defined by

K=d- (5)dl'
Applying Eq. 4 we obtain a set of two equations containing the unknown functions p(l) and
C(l):

\dl _Ks + P (X2 + y2) + A = 0 (6)

c (d~ dp \2
yc+ In - pI-- K, + (l - Ksl + B = 0. (7)

1 -c \dl / dl /

Here c is a normalized value c/cm; A and B are integration constants; and x and y are
Cartesian contour coordinates:

x = xO + fcos f (t)dt;

y = Yo + I sin p (t)dt. (8)
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The coefficients of the second equations are

2wcm D dKs 1 dD
y kT; P kT dC; 2kT dc (9)

The dimensionless coefficient -y describes the direct interaction intensity between membrane
particles in kT units. The coefficients p and v are, generally speaking, functions of the
concentration, the first of these having the dimension of length and the second of area.

Eqs. 6 and 7 have a rather simple physical meaning. Eq. 6 reflects mechanical equilibrium
of the membrane. The left-hand-side of Eq. 7 corresponds to the chemical potential of the
membrane particles; this equation implies that the chemical potential of particles must be
constant over the whole membrane.

It is now assumed that the spontaneous curvature may be expressed in the form

Ks =4 Ic +42 (1 -c) =4c + Ko. (10)

41 and 42 are the "intrinsic" spontaneous curvatures of the individual components, Ko = 42 iS
the membrane curvature in the absence of a second component, and 4 is the variation due to
membrane particles.
An analysis of the equilibrium relationships in the membrane shows that the curvature

elasticity can be written in the form

1 c (1 - c) (11)
D DI D2

where DI and D2 are elasticities of individual components.
Using Eqs. 10 and 11 it is possible to express the parameters p and v

D DID2 (DI - D2) (12)
kT 2 kT [c(D2 - DI) + DIf 12

We are now in position to carry out a more detailed treatment of Eq. 7, which determines
the membrane component distribution in a field of given curvature. The presence of a
logarithmic term is known to produce more than one solution with respect to c. When the
coefficient of the linear term is < - 4, the system can experience a phase transition resulting in
coexisting phases: a "condensed" phase and an "expanded" phase.

Suppose that the Eqs. 6 and 7 can be solved separately, i.e., KS is constant. This is the
situation when the coefficients p and v in Eq. 7 are zero, which occurs at an elevated
temperature, or when the membrane component curvatures are identical, i.e., 4 = 0. We car:
then solve Eq. 6 separately.

d- + qr2+
A _ Ks = O

(13)dl D ;

where q = p/2D is reduced pressure with a dimension of centimeter-3; r is the distance from a
given contour point to the origin; and A is an unknown constant.

In this limiting case the problem reduces to that of an elastic ring eqvilibrium under a
pressure differential. For the case of circular ring this problem was considered back in 1913
(42, 43) in connection with the problem of underwater pipe collapse, and has often been

BIOPHYSICAL JOURNAL VOLUME 36 19814



referred to since (44-46). Interest in this problem has recently been renewed in connection
with blood vessel statics and dynamics (47-49).

From the solution of Eq. 13, it follows that the deformation of elastic ring can begin only
after the pressure differential has exceeded a certain threshold value. The absolute value of
the threshold depends on the membrane elasticity D and ring radius ro; and can be expressed
as qth = - 3/2ro. The negative sign means that inside pressure must be less than outside. This
threshold value is however quite independent of the constant spontaneous membrane
curvature.

A Membrane Consisting ofParticles with the Same Elasticity but Different
Spontaneous Curvatures

Because the set of Eqs. 6 and 7 is rather complex, we shall try to deal with the effects of
different elasticities and different spontaneous curvatures of membrane components separate-
ly. We begin with the case where the membrane components have equal elasticities DI =
D2= D but differing spontaneous curvatures, and put 42 = 0. Then

D3 OP=T . (14)

FIGURE I The cross-sectional area variation of a zero spontaneous curvature elastic ring as function of
pressure difference: (I) > - 1.5; (2) - .55; (3) - 1.6; (4) -2. 1; (5) -2.2; (6) - 2.3. Only the right half of
the symmetric contour is shown. The minus sign means that the pressure in the interior of the ring is
smaller than on the exterior. A further pressure reduction inside the ring rapidly leads to contour
self-intersection, i.e. a contact between the opposite sides of the membranes.
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The set of the fundamental equations can be rewritten as

d9 -{c + q (X2 + y2) + A =0 (15)
dl

c (do ) O

Here A and B are the unknown constants; q is reduced pressure; all the other coefficients are
also constant. The contour coordinates x(l) and y(l) are found via the Eq. 8. Eqs. 15 and 16
were solved numerically by computer. In what follows, the initial radius of the circle was
rO= 1.
We shall first consider the contour properties in the absence of asymmetric membrane

particles, that is, we put c = 0. In Fig. 1 we show how the cell shape varies with the pressure
differential. The results agree closely with those published previously, in particular the
threshold pressure happened to be qth = - 1.5. We now introduce the membrane particles and
consider how the shape is affected by the particle symmetry, i.e. by (. Let us now assign fixed
values to all the other parameters, for instance q = -2.1, y = 0, p = 1.0, and the average
concentration c = 0.1.
We shall be concerned not only with the cell form but also with the distribution of the

membrane component. Fig. 2 shows both the membrane shape and particle concentration in
the membrane. In Fig. 2 b the coordinate I is taken along the contour shown in Fig. 2 a. Since
only one half of the membrane is shown (the second half being symmetric), Fig. 2 b shows
only half of the distribution. The figures contain three curves each, corresponding to t values
from 0.1 to 3. It is readily seen that as the particle asymmetry increases in the membrane, the
cell undergoes a stronger deformation: the particles tend to accumulate in the equatorial
portion of the membrane and promote its strong bending. In this case the distribution of more
asymmetric particles appears to be sharper.

Consider now the effect of the parameter p (the reciprocal of temperature 1/ T) on the
membrane shape. Let p decrease from 1 to 0. The remaining parameters have the following
values: q = -2.1, t = 1, y =O, c = 0.1 (Fig. 3).
The larger numbers of the curves in these figures correspond to higher temperatures. Since

the asymmetry of membrane particles is small (Q and c are small), their effect on cell shape is
insignificant, and therefore, temperature variations have little effect on the cell shape. At the
same time, the particle distribution along the contour changes radically. The higher thet ~~~~~~~~~~~~~~C i. b

L~~~~~~~~~~~~~~~~~~~~~D

FIGURE 2 Variations of contour shape (a) and membrane component distribution (b) as function of t (for
spontaneously curved components). The system parameters are: q = -2.1, 'y = 0, p = 1, = 0.1. t can take
values of (I) 0. 1; (2) 1.0; (3) 3.0.
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FIGURE 3 The effect of p running through the values: (1) 1.0, (2) 0.5, (3) 0.25, (4) 0.0 on the contour
shape (a) and the membranes component distribution (b). The constant system parameters are q - - 2. 1,
t - 1.0,- -0,andc=-O.1.

temperature, the more uniform is the distribution. At very high temperatures Curve 4 tends to
a constant. This indicates that the spontaneous curvature remains constant along the contour
and, for this reason, has no effect whatsoever on the shape. The cell outlines shown in Fig. 3 a,
Curve 4, therefore coincide with the contour (Fig. 1, Curve 4) of a cell with no asymmetric
membrane particles.

Consider now the cell shape variation with pressure in the presence of membrane particles.
With parameters t = 10, y = 0, p = 1, c = 0.1, and the pressure q varying between 0

,. ... -~~~~~~~~~~~~~~~7f. o l' ''. .l'~~~~~~~~~~~~~~~~~~~~
FIGURE 4 Effect of pressure differential on the shape in the presence of membrane components with
spontaneous curvature. The constant system parameters are t - 10, 'y = 0, p - 1, and c = 0.1. The pressure
q takes the following values: (1) -0.70, (2) -0.75, (3) -0.8, (4) -0.9, (5) -1.0, and (6) -1.2.
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and -2.1, Fig. 4 again shows that a gradual flattening of the cell occurs, although in a
different manner than before (i.e., in the absence of symmetric particles). In particular, the
threshold pressure at which deformation starts is found here to be -0.7 instead of -1.5 as in
the case of a constant spontaneous curvature. The reason is that the asymmetric membrane
particles move towards higher curvature regions and thereby contribute to a further bending.
The result is that the deformation begins at a lower differential pressure.
We shall now investigate the role of one of the most important parameters, the membrane

component interaction energy y, with the remaining coefficients fixed at q = -2. 1, t = 0.001,
p = 1, -c= 0.1. The interaction parameter will vary from 0 to -6 (Fig. 5). The degree of
asymmetry, t, is small here and the presence of membrane particles has little effect on the
membrane shape. The curves in Fig. 5 finally merge into a single curve; but the membrane
particle distribution changes in a radical way as the interaction changes. The interaction
energy changes between Curve 1 and Curve 2 of Fig. 5 b from 0 to - 3, i.e., attraction between
the particles begins to manifest itself. As a result, the distribution curve becomes narrower
and higher.
The critical value of the interaction parameter y is - 4. Beyond this point a phase transition

will be possible in the system. Indeed, Curve 3, corresponding to e = - 5, is discontinuous. The
particle concentration given by this curve is small along the major portion of cell contour, and
only on a short segment near the cell "equator" does it attain very high, almost limiting,
values. A lateral phase separation has occurred in the system: over a major portion of the
membrane the membrane component in question is in the expanded state, while near the
equator a cluster or a condensed-state domain is formed. Curve 4 corresponds to y = -6.
Here, too, there are two phases: expanded and condensed, the separation being even more
pronounced. Thus, a domain has been formed on the membrane whose properties are
drastically different from those of the surrounding regions. This sharp point, a small
membrane portion having a very high spontaneous curvature, may give rise to a spicule.

A Membrane Containing Particles Having the Same Spontaneous Curvature but
Different Elasticities

In a flat membane there are no separate portions where one or another particle species would
be concentrated. However, in a curved membrane, particles with different mechanical

C4
rv

1, -\ 0 'S ' 0~II

........
FIGURE 5 The effect of the interaction energy between the components, y, which takes the following
values (I) 0, (2) -3, (3) -5, (4) -6, on the contour shape (a) and membrane component distribution (b).
The system parameters are q = - 2. 1, t = 0.001, p = 1, and c = 0.1. Because the spontaneous curvature of
the membrane components was small in this case, the contour shape varied very little.
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properties will be displaced towards a greater or smaller curvature. We now calculate the
force causing this movement. The calculations will cover a simple case and the results will be
generalized. In a two-dimensional membrane model only one curvature radius has to be
considered and the problem is to describe an elastic ring incorporating one or more inserts of
another material. Let the elasticity of the whole ring be Do, its initial radius ro and let there be
one portion having a different elasticity Di. For the sake of simplicity we shall neglect the
difference between the internal and external pressure. Then the problem of determining the
shape of such membrane reduces to finding the minimum of the bending energy,

W = /2f DK2dl, (17)

in which K is the local curvature and integration is done along the entire contour. The bending
energy of the deformed ring is obtained as

W = + Ei. (18)

The first term gives the energy of ring having no inserts, while the second term accounts for
the effect of an insert on the total ring energy:

Ei I°(- 0K . (I19)

When the insert is "soft," i.e., Di < Do, the additional energy E, is negative and the total
energy therefore decreases. In case of a "stiff" insert the total energy increases.

Extending the result to a three-dimensional case we use the notation K to denote the total
curvature, and a the particle area. To have some idea of the orders of magnitude involved, we
shall have recourse to a simple estimate. Putting D 10-" erg, a -100 x 100 A, K -10 gI-',
we find E - 10-3 erg - 1 kT. This means that when a cell undergoes deformation, i.e.,
invaginations or spicules are formed, the mechanical energy of a particle is comparable to the
thermal energy. This may cause substantial restructuring.
We see that when the membrane curvature is different from point to point the system

energy depends on the location of the insert. Therefore, a force arises which tends to shift the
particle towards a region of greater or smaller curvature. This force is

F= vEl= aDo(-Do _-I)KvK. (0F E ~~~~Di(o 1 (20)

Thus a soft particle tends to move towards a greater (in absolute value) curvature.
Another reason for movement may be a difference in the spontaneous curvature. If one

considers a particle with the asymmetry (spontaneous curvature) (, taking the spontaneous
curvature of the surrounding membrane as zero, then the energy of bending will be

E = -DfaK. (21)
It is of interest to compare this with Eq. 19. The most striking difference is the different
dependence on curvature. While in Eq. 19 the additional energy was quadratic with respect to

K, in Eq. 21 it is linear. Thus, while the sign of the curvature was of no importance in Eq. 19, it
makes a difference in Eq. 21. The reason is quite obvious. A particle whose elasticity differs
from that of the remaining part of the membrane is "sensitive" only to the absolute value of
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the curvature, whereas an asymmetric particle should of course be expected to be additionally
sensitive to the sign of the curvature. As can be seen from Eq. 21, when the sign of the
asymmetry t is the same as that of the curvature, the additional energy is negative. The reason
is evident. Introduction of a particle having asymmetry of the same sign as the membrane
curvature will reduce the elastic stresses. When, on the other hand, the signs are different, the
elastic stress in the membrane increases, and the additional energy is positive.
Such particles should tend to move towards regions with the greatest positive or the greatest

negative curvature, tending to bring down the energy of the whole system. The force causing
such movement is

F = -vEj = D4avK. (22)

Finally, when the two factors-the differing elasticities and spontaneous curvatures-are
present concurrently, a more complex situation may arise, in which the particles do not move
towards extremal curvature regions but remain in some optimum intermediate position. As an
example, we shall consider a rigid particle with a positive spontaneous curvature. As noted
above, the difference in elasticities causes such a particle to move towards the membrane
region having zero curvature, while its own asymmetry induces it to shift towards the
maximum positive curvature. Since the two energies are different functions of curvature, the
sum of the energies will attain its minimum at some intermediate point. This is actually the
point where the particles in question should tend to collect.

In the preceding section we have shown that when the interaction between some particles is
large enough, domains of different particle concentration may be expected to arise. Obviously,
a similar phenomenon should be expected in the case of particles having different curvature
elasticities. We shall not dwell on the special problem of how the particle separation in the
membrane occurs but proceed to investigate the effect of the resulting domains on cell shape.

Suppose a domain of length 12 and elasticity D2 has been formed on a membrane, while the
rest of the membrane has an elasticity D, (Fig. 6). The other membrane half, not shown in this
figure, has the same structure. Let us now analyze how the cell shape varies as pressure,
relative elasticities, and domain lengths are varied. The problem reduces to solving Eq. 6 in
which the spontaneous curvatures K, will be assumed to be zero. We consider the role of the
elasticity ratio D1/D2 by fixing q = -1.2, I/L = 0.5, 13 = 0 and varying D1/D2 from 2 to 4.
The resultant contours are shown in Fig. 7. The increase of DI/D2 corresponds to a situation in
which the top portion of the cell becomes softer. This is why it bends more, as is particularly
apparent at its extremeties. Similarly, the cell outline changes when the location of the domain
of different elasticity changes. Putting q = -1.2, D1/D2 = 4, 12/L = 0.5, we shall vary the
relative lengths l, and 13 maintaining their sum constant (l1 + 13)/L = 0.5. The calculated
results are given in Fig. 8. It is clear that by varying the parameters in question it is possible to
come up with a broad variety of shapes, all however resembling stomatocytes.

DISCUSSION

We have shown how, in a uniform membrane containing a number of different components, a
nonuniform organization may arise and how this affects the membrane shape. The underlying
assumptions of this model have been that the membrane is a multicomponent system; the
particles constituting the membrane are laterally mobile; the membrane components interact

BIOPHYSICAL JOURNAL VOLUME 36 198110



0.O/

0.02

3

X ee
0.03

4

0.04

FIGURE 6 FIGURE 7 FIGURE 8

FIGURE 6 A composite membrane. The segment 12 represents a domain with curvature elasticity D2, the
rest of the membrane having elasticity D,.
FIGURE 7 Effect of the different elasticities of two segments constituting a membrane on its shape. The
elasticity ratio is indicated in the figure. The system parameters are q = - 1.2, and l,/ L = 0.5.
FIGURE 8 Effect of the location of the intermediate domain having a constant length 12/L = 0.5 on the
cell form. The system parameters are q = -1.2, and D,/D2 = 4.

with each other; the components may be asymmetric; and the different components have
different mechanical properties. Such assumptions appear to be quite plausible. The real
biological membranes are indeed composed of a large number of different molecules that are
more or less mobile.
We have assumed that the membrane components can interact with each other. Eq. 7 is a

formula for the chemical potential of particles in which the direct interaction is accounted for
by the term -yc, where y represents the strength of the intereaction. Eq. 7 also contains the
terms p (dep/dl - K) and v (dep/dl - Kr)2 which incorporate the concentration of the particles
in question. These terms account for the interaction between the particles via elastic
interactions, i.e., the long-range forces. The interaction is stronger for greater curvature
elasticity of the membrane. This effect can be demonstrated by Eq. 16 incorporating the term
ptc = DS2c; the term Dt2c is always positive. Thus similar particles in an elastic membrane
should repel each other with a force proportional to the membrane curvature elasticity and the
square of the asymmetry of particles.
The results can be easily generalized to the case of interactions of unlike particles. The

interaction energy formula would then contain a product of their asymmetries U2. When the
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signs of (, and 42 are different, the interaction energy will be negative, i.e. particles of unlike
asymmetry will be attracted to each other.
The possibility of such interaction has already been suggested. Gruler (50) hypothesized

that asymmetric (conical) particles floating in the "lipid sea" of the membrane should either
attract or repel each other depending on what distortions they introduce into this elastic
medium. This effect has been experimentally demonstrated on liquid crystals (51).
A direct interaction between the structural components of a membrane may be due to

various mechanisms; very often it is of purely steric nature. It may be due to the electric
charges of the polar heads of lipids or protein charges. It is essential to life processes that such
interaction can be easily controlled by the aqueous environment, especially by the presence
and concentration of specific and nonspecific electrolytes (52-54). The effect caused by the
adsorption of ligands is an example, i.e., sufficiently large molecules selectively reacting with
only the specific membrane components is equivalent to the indirect attraction between the
respective membrane components.

Another important characteristic of the membrane used as a model in the present paper is
its geometric curvature. It can affect the membrane structure, provided that the latter has
some effect on curvature elasticity. The membrane can have a spontaneous curvature, for
example, when it is composed of asymmetric (conical-in the simplest case) blocks. The
presence of asymmetric components in a cell membrane is more the rule than exception. This
is the case for lipid molecules, and probably for membrane proteins (38). The spontaneous
curvature could be due to the different surface areas of the exterior and interior monolayers,
i.e., the different amounts of matter in each of these monolayers. Such a "bilayer couple"
hypothesis has been suggested by Sheetz and Singer (55) and by Evans (27).
A variation of a property of an individual component, sometimes even a small variation, can

give rise to a radical restructuring of the organization of a membrane. We have shown above
that a cluster or domain of particles of one type has dimensions that depend upon the
conditions. The formation of such domains has been observed many times both in biological
and artificial membranes. An investigation in artificial membrane has been carried out
(52-54, 56-59) on lipid vesicles and monolayers composed of mixed lipids of several different
types. Phase separation occurred as a result of environmental factors, such as temperature,
presence of divalent cations, adsorption of the external proteins such as polylysine, etc. Each
of the above conditions ultimately results in a change of interaction between the membrane
components, and in this sense such phase separation is described by the model adopted here.

In cell membranes phase separation and formation of domains occur very frequently and
radically affect the salient biological processes (60). Lateral phase separation, for example,
affects the mobility of the membrane antigens (61), is necessary for the functioning of certain
membrane proteins (62), changes the susceptibility of erythrocytes to the action of phospholi-
pase-C (63), etc. The clustering of the membrane components apparently affects the fusion of
natural membranes making possible the fusion of regions of a pure lipid bilayer from which
the intramembrane proteins have been removed (64, 65). The fact that phase separation is
necessary for membrane fusion has been indirectly demonstrated in a study of the fusion of
artificial vesicles from a mixture of phosphatidylserine and phosphatidylcholine under the
action of calcium ions (66); the conditions required for the separation of these lipids coincide
with the optimum vesicle fusion conditions.
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Protein clustering can, for example, occur in the course of an exocytosis process (67). One
of the mechanisms may be that the formation of lipid domains of different composition are
accompanied by displacements of the membrane proteins, provided that the latter have
different solubilities in one or another domain type. This has been demonstrated in
experiments involving vesicle formation from human erythrocytes (68). Their membrane
composition differs radically from that of the "mother" erythrocytes. The concentration of
phosphoric acid in the vesicles is 10 times as high as that in the erythrocyte membrane, while
the concentration of phosphatidyl ethanolamine is somewhat below the norm, acetylcholine-
esterase concentration increases twofold.
When we analyzed Fig. 5 we noted that the resulting domain may have a spontaneous

curvature quite different from that of the adjacent membrane regions. This has been
experimentally verified (57, 58, 69). The pictures of artificial vesicles shown there demon-
strate clearly that marked protrusions and invaginations have appeared in certain membrane
regions after phase transition. These protrusions and invaginations may eventually give rise to
vesicles.
A phase separation in a membrane may result in a spontaneous curvature even in cases

where the membrane components, and consequently the resulting domains are symmetrical. A
separation of the layer into individual phases involves an increase in its area (39). If the phase
transition occurs in only one of the monolayers surrounding the cell, the resultant extension of
this monolayer will produce a positive or negative spontaneous curvature.
A similar effect may be produced by the intrusion of foreign molecules into the exterior or

interior membrane monolayers. Indeed, an addition of amphifilic chemical substances to an
erythrocyte solution converts the discocytes either into stomatocytes or echinocytes, depending
on the substance type (70). For example, "anion crenators" build themselves into the exterior
monolayer thereby expanding it. The membrane is caused to have an additional spontaneous
curvature resulting in cell crenation. In contrast, the "cation cup-formers" prefer to invade the
interior monolayer, expanding it and creating a negative spontaneous curvature. This
promotes the formation of invaginations and results in stomatocytes. The same effect was
obtained by treating erythrocytes with detergents that extract a part of the lipids from the
exterior monolayer. This also produces a negative spontaneous curvature resulting in the
formation of stomatocytes. The combined action on a cell of cup-formers and crenators does
not affect the spontaneous curvature of membrane, and does not lead to transformations
(71).
The distribution of a number of membrane components, such as enzymes, over the cell

surface should be expected to depend on the local curvature. The data available today support
this suggestion. In many cells whose forms are subject to variation during their lifetime it has
been often observed that the normally uniformly distributed mobile molecules suddenly begin
to concentrate at certain specific places. Such concentration usually occurs in strongly curved
regions. In reference 72 the concentration of antigens on echinocytic spicules obtained from
type A human erythrocytes was observed. de Petris (73) studied the transformation of
lymphocytes. The observed formation of microvilli on the spherical cell surface was accom-
panied by the movement of the surface immunoglobulins and by their concentration on the
microvillum peaks. It is important that the surface immunoglobulins concentrated on the
microvilli are as motile as before because they are not permanently bonded to any of the
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structural components of a microvillum, for example, a strand of microfilaments passing along
the microvillus axis. In the same paper, de Petris (73) lists other cases of such nonuniform
redistribution of surface molecules due to membrane shape variation. The mechanism
discussed above may be regarded as the simplest explanation of this phenomenon.

It is natural to expect that in cell membranes there are regions of unfavorable curvature
that completely lack a certain molecular species. The analysis of spectrin distribution over
membranes of the echinocytic red blood cells carried out by Ziparo et al. (74) shows that this
protein occurs more or less uniformly over the entire surface, with the exception of areas near
the spicule bases (i.e., areas of negative curvature where there was practically none of it).
Thus the curvature conception allows explanation of a range of phenomena. It can be used

to account for the distribution of intramembrane particles on the cell surface (69, 75), the
origination of the myelin shapes produced by erythrocytes (76), and the origin and size of
bilayer lipid vesicles generated under ultrasonic irradiation of the lecithin suspension in water
(77). Sheetz and Chen (78) have suggested that the curvature should affect the dynamic
behavior. The phase transitions in a flat and curved lipid bilayer were found to be considerably
different (79-81), and the lateral phase separation was found to occur in a different way
(82).

It is interesting to note that there are differences not only between flat and curved bilayers,
but also between two monolayers of a curved bilayer. Two reasons may be responsible for this.
The first is that topologically they are curved in the opposite directions, the inner monolayer
being curved towards the polar heads and the outer monolayer towards the hydrocarbon tails.
Second, the curvature of the interior monolayer is obviously higher than that of the exterior
one. The difference should be more tangible in small vesicles. Indeed, the experiments
involving dipalmitoyl phosphatidylcholine vesicles (83) showed that the structure was
substantially asymmetric. The total thickness of the membrane of such vesicles with an outer
radius of about 109 A is practically the same as that of a flat bilayer but the thicknesses of the
outer and inner monolayers are widely different, being 15 and 20 A, respectively. This means
that the lipid molecule tails in the outer layer are much longer than in the inner layer where
they are partially folded. No wonder that the phase transitions in such layers occur differently
and at different temperatures. This supports the hypothesis of the bilayer couple hypothesis as
one of the mechanisms governing cell shape variations.
The development of a local curvature on a cell membrane may serve as a triggering

mechanism actuating certain physiological processes. The external protein adsorption on a
membrane can cause a radical restructuring in the outer and then in the inner monolayer of
the cell membrane (54). Thus, every projection on the outer surface of membrane will have its
counterpart cavity on the inner surface. This form may happen to be favorable for the
adsorption on the interior membrane surface of some other molecule of the cytoplasm. This
will be a simplest example of the transmembrane interaction of two adsorbed molecules
whereby they come closer in space and may then take part in some reaction. The spontaneous
curvature thus produced may affect the curvature elasticity of membrane (84). Given certain
relations among the membrane constituents, a very high entailing monolayer collapse into
micelles is predicted (84).
A local phase transition in a membrane, followed by the development of spontaneous

curvature, may trigger the development of vesicles, as in the case of pinocytosis (38). Such is
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apparently the endovesiculation mechanism in the erythrocytes of newborn babies under the
effect of certain ligands (85). The process may take place in the following manner (85). The
ligand binds to the receptors on the erythrocyte surface and causes their clustering. The
resulting cluster exhibits a negative spontaneous curvature which entails invagination
followed by endocytosis. The fact that very small vesicles are produced is apparently due to
limitation of receptor mobility by certain domains. These limitations are possibly even stricter
in the erythrocytes of adult humans, since no endocytosis has been observed in them under
similar conditions.
The model developed here is most clearly applicable to the simplest lipid vesicles. However,

lipid vesicles sometimes represent a good simulation of the real cells, including erythrocytes.
Thus lecithin in water spontaneously separates into membranes consisting of one or more
bilayers which merge together to form vesicles. The contour of these vesicles resembles the
various forms of erythrocytes, including stomatocyte and dumb-bell shapes (86). This
probably indicates that the mechanism of erythrocyte-shape maintenance is similar in this
regard to that of lipid vesicles, even though the structure of the erythrocyte is much more
complex.

There is another difficult point in the present theory. Strictly speaking the model describes
a monomolecular layer of a liquid crystal with another molecular species floating in it. The
biological membranes are not exactly monomolecular layers of liquid crystals. Nor are they
simple bilayers, because the intrinsic proteins spanning the membranes give them some
properties of a monolayer. For this reason the rather simplified model may have something in
common with the biological membranes.

Insofar as we have confined our attention only to an equilibrium membrane structure, we
have completely disregarded its viscoelastic and other time-dependent properties, although
there are indications that these properties may have an important role in maintaining or
varying the erythrocyte shapes (14, 87, 88). There are a number of papers which treat the
erythrocyte membrane as a superelastic shell and explain successfully some erythrocyte
deformations. It seems that in the analysis of large deformations of real erythrocytes, one also
has to take into consideration the shear elasticity of its membrane, especially when the
transformation proceeds rather fast, i.e., when the membrane is not in an equilibrium state at
any moment. The reason for that is the very complicated structure of a real erythrocyte
membrane.

Indeed the membrane structure of the real erythrocyte differs in many details from the
model discussed in this paper, primarily by the spectrin-actin network underlying the
membrane. It should be noted that such a cytoskeleton is a two-dimensional, rather than a
spatial structure, spanning the cytoplasmic side of the membrane (89). The structure and
function of the spectrin-actin networks are currently being studied in many laboratories. The
explanations so far advanced are as follows (90): the lipid layer per se, containing the integral
protein inclusions, is apparently insufficiently strong to serve as a shell for such a large cell as
an erythrocyte; the lipid layer would not be stable enough and would disintegrate into small
vesicles.
The spectrin network has, most probably, a twofold function. First, it connects the separate

portions of the membrane, thereby preventing fragmentation; second, it imparts a high
bending strength to the system. It is interesting that this cytoskeleton stratum can exist
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practically without any membrane. If the erythrocyte ghosts are treated with the nonionic
detergent Triton X-100, which extracts a major portion of lipids and integral proteins, only
the cytoskeletons with the same size and shape as the initial ghosts will remain (91, 89). These
cytoskeletons consist primarily of spectrin and actin with traces of other proteins and a minor
amount of phospholipids.

This spectrin net is not a rigid permanent structure, however. In the course of erythrocyte
transformations it can be destroyed (and rebuilt), as indicated by the movements of the
integral proteins whose mobility under normal conditions is quite limited (92). It seems that
the translocation of membrane particles occurs just in this transitive state. It may be caused
by different reasons such as shape changes under the external forces, for example. The rate of
such translocation is determined by membrane viscosity and was calculated in reference 93.
The question of dynamic nature of spectrin-actin network and its ability to disrupt and to
rebuild in the new form is of special interest. But it must be a subject of separate investigation.
The presence of the spectrin network, therefore, does not undermine the model of the present
paper, but rather imparts to it new features which must be considered when describing the
nonequilibrium effects and the rheological properties of cells.
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